
Algorithmic Fractal Dimensions

Jack H. Lutz
Iowa State University

NZMRI Lectures
Napier, NZ

January, 2017



Lectures
1. Information and Dimensions, Classical and Algorithmic
2. Algorithmic Dimensions in Fractal Geometry
3. Mutual Dimensions and Finite-State Dimensions



Lecture 2. Algorithmic Dimensions in Fractal Geometry

Today’s topics
Kolmogorov complexity characterizations of dimension
Dimensions of points
The Point-to-Set Principle
Conditional Kolmogorov complexity in Rn

Kakeya sets in R2

Dimensions of points on y = mx + b
Generalized Furstenberg sets
Intersections and products of fractals
Pointwise dimensions



Kolmogorov Complexity Characterizations of Dimensions

Last time we saw that, up to additive constants,

K (x) = |x|dim(x)

holds for all x ∈ {0, 1}∗. Here is an infinitary version of this fact.

Theorem (J. Lutz and Mayordomo 2008)
If ν is a strongly positive, computable probability measure on Σ∞,
then, for all S ∈ Σ∞,

dimν(S) = lim inf
m→∞

K(S � m)
Iν(S � m)

Dimν(S) = lim sup
m→∞

K(S � m)
Iν(S � m) ,

where Iν(x) = log 1
ν(x) is the Shannon ν-self-information of x.



Dimensions of Points

Work in Euclidean space Rn .

The Kolmogorov complexity of a set E ⊆ Qn is

K (E) = min{K (q) | q ∈ E} .

(Shen and Vereschagin 2002)

The Kolmogorov complexity of a set E ⊆ Rn is

K (E) = K (E ∩Qn) .

Note that
E ⊆ F ⇒ K (E) ≥ K (F) .
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Dimensions of Points

Let x ∈ Rn and r ∈ N. The Kolmogorov complexity of x at
precision r is

Kr(x) = K
(
B2−r (x)

)
,

i.e., the number of bits required to specify some rational point
q ∈ Qn such that |q − x| ≤ 2−r .



Dimensions of Points

For x ∈ Rn ,
dim(x) = lim inf

r→∞
Kr(x)

r .

Easy fact. 0 ≤ dim(x) ≤ n, and there are uncountably many
points of each dimension in this interval.

Old fact (J. Lutz ’00 + Hitchcock ’03). If E ⊆ Rn is a union of
Π0

1 sets, then
dimH (E) = sup

x∈E
dim(x) .

classical Hausdorff
(fractal) dimension

dimensions of
individual points

∴ Dimensions of points are geometrically meaningful.
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Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, STACS ’17)
For every E ⊆ Rn ,

dimH (E) = min
A⊆N

sup
x∈E

dimA(x) .

∴ In order to prove a lower bound

dimH (E) ≥ α ,

it suffices to show that

(∀A ⊆ N)(∀ε > 0)(∃x ∈ E) dimA(x) ≥ α− ε

or, if you’re lucky, that

(∀A ⊆ N)(∃x ∈ E) dimA(x) ≥ α .
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Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, STACS ’17)
For every E ⊆ Rn ,

dimP(E) = min
A⊆N

sup
x∈E

DimA(x) .



Conditional Kolmogorov Complexity in Rn

Let p ∈ Qm and q ∈ Qn . The conditional Kolomogorov complexity
of p given q is

K (p|q) = min
{
|π|
∣∣π ∈ {0, 1}∗ and U (π, q) = p

}
.

Let x ∈ Rm , q ∈ Qn , and r ∈ N. The conditional Kolmogorov
complexity of x given q at precision r is

K̂r(x|q) = min
{
K (p|q)

∣∣ p ∈ Qm ∩ B2−r (x)
}
.
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Conditional Kolmogorov Complexity in Rn

Definition (J. Lutz and N. Lutz, STACS ’17)
Let x ∈ Rm , y ∈ Rn , and r , s ∈ N. The conditional Kolmogorov
complexity of x at precision r given y at precision s is

Kr ,s(x|y) = max
{
K̂r(x|q)

∣∣ q ∈ Qn ∩ B2−s(y)
}
.

For x ∈ Rm , y ∈ Rn , and r ∈ N,

Kr(x|y) = Kr ,r(x|y) .
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Conditional Kolmogorov Complexity in Rn

Chain rule for Kr :

Kr(x, y) = Kr(x|y) + Kr(y) + o(r) .

Easy fact. K y
r (x) ≤ Kr(x|y) + o(r).



Kakeya Sets in R2

A Kakeya set in Rn is a set K ⊆ Rn that contains a unit segment
in every direction.

Theorem (≈ Besicovitch 1919). There exist Kakeya sets of
Lebesgue measure (n-dimensional volume) 0.

Theorem (Davies 1971). Every Kakeya set in R2 has Hausdorff
dimension 2.

Kakeya Conjecture. Every Kakeya set in Rn has Hausdorff
dimension n.

An important open problem for n ≥ 3.
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Kakeya Sets in R2

Today we give a new, information-theoretic proof of

Davies’s Theorem. Every Kakeya set in R2 has Hausdorff
dimension 2.

Technical Lemma (J. Lutz and N. Lutz, STACS ’17). Let
m ∈ [0, 1] and b ∈ R. For almost every x ∈ [0, 1],

lim inf
r→∞

Kr(m, b, x)−Kr(b|m)
r ≤ dim(x,mx + b) .
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Kakeya Sets in R2

Proof of Davies’s Theorem (J. Lutz and N. Lutz, STACS ’17).
Let K ⊆ R2 be a Kakeya set.

By the Point-to-Set Principle, fix A ⊆ N such that

dimH (K ) = sup
z∈K

dimA(z) .

Fix m ∈ [0, 1] such that dimA(m) = 1.

Fix a unit segment L ⊆ K of slope m.

Let (x0, y0) be the left endpoint of L.
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Kakeya Sets in R2

L

x0

y0

Let q ∈ [x0, x0 + 1
2 ].

Let L′ be the unit segment of slope m whose left endpoint is
(x0 − q, y0).
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Kakeya Sets in R2

LL′

x0

y0

−q

Our picture is now

slope L′ = slope L = m

Let b = y0 + qm be the y-intercept of L′.

By the Technical Lemma (relativized to A), fix x ∈ [0, 1
2 ] such that

dimA,m,b(x) = 1 and

lim inf
r→∞

KA
r (m, b, x)−KA

r (b|m)
r ≤ dimA(x,mx + b) .
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Kakeya Sets in R2

By the Point-to-Set Principle it suffices to show that

dimA(x,mx + b) = 2 .

Why this suffices: Because

(x,mx + b) ∈ L′ ,

(x + q,mx + b) ∈ L ⊆ K ,

and
dimA(x + q,mx + b) = dimA(x,mx + b) .
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Kakeya Sets in R2

Now dimA(x,mx + b)

Tech Lemma ≥ lim inf
r→∞

KA
r (m, b, x)−KA

r (b|m)
r

Chain = lim inf
r→∞

KA
r (m, b, x)−KA

r (b,m) + KA
r (m)

r

Chain = lim inf
r→∞

KA
r (x|b,m) + KA

r (m)
r

≥ lim inf
r→∞

KA,b,m
r (x)

r + lim inf
r→∞

KA
r (m)
r

= dimA,b,m(x) + dimA(m)
= 2 .
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Dimensions of Points on y = mx + b

Theorem (J. Lutz and Weihrauch 2008). Each of the sets

DIM<1 =
{
(x, y) ∈ R2 ∣∣ dim(x, y) < 1

}
,

DIM>1 =
{
(x, y) ∈ R2 ∣∣ dim(x, y) > 1

}
is totally disconnected.

Theorem (Turetsky 2011). The set DIM=1 is connected.

Theorem (Turetsky 2011). The set DIM6=1 is not path-connected.

Theorem (J. Lutz and N. Lutz 2015). There is, in every direction
in R2, a line missing every random point.

Theorem (J. Lutz and N. Lutz, STACS ’17). Almost every point
on every line y = mx + b with random slope m has dimension 2.
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Dimensions of Points on y = mx + b

Question (J. Lutz, early 2000s). Is there a line y = mx + b on
which every point has dimension 1?

Theorem (N. Lutz and D. Stull, TAMC ’17). For all m, b, x ∈ R,

dim(x,mx + b) ≥ dimm,b(x) + min{dim(m, b), dimm,b(x)} .

In particular, for almost every x ∈ R,

dim(x,mx + b) = 1 + min{dim(m, b), 1} .

Corollary. For every m, b ∈ R there exist x1, x2 ∈ R such that

dim(x1,mx1 + b)− dim(x2,mx2 + b) ≥ 1 .

∴ The answer to the above question is “No!”
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which every point has dimension 1?

Theorem (N. Lutz and D. Stull, TAMC ’17). For all m, b, x ∈ R,

dim(x,mx + b) ≥ dimm,b(x) + min{dim(m, b), dimm,b(x)} .
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Generalized Furstenberg sets

Recall that a Kakeya set in R2 is a set K ⊆ R2 that contains a
unit segment in every direction.

For α ∈ (0, 1], a set E ⊆ R2 is α-Furstenberg if, for every e ∈ S1

(= the unit circle in R2), there is a line Le in direction e such that
dimH (Le ∩ E) ≥ α.

Definition (Molter and Rela 2012)
For α, β ∈ (0, 1], a set E ⊆ R2 is (α, β)-generalized Furstenberg if
there is a set J ⊆ S1 such that dimH (J ) ≥ β and, for every e ∈ J ,
there is a line Le in direction e such that dimH (Le ∩ E) ≥ α.
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Generalized Furstenberg sets

Theorem (probably Furstenberg and Katznelson)
Fore α ∈ (0, 1], every α-Furstenberg set E ⊆ R2 satisfies

dimH (E) ≥ α+ max
{1

2 , α
}
.

Note that Davies’s theorem follows from the case α = 1.

Theorem (Molter and Rela 2012)
For α, β ∈ (0, 1], every (α, β)-generalized Furstenberg set E ⊆ R2

satisfies
dimH (E) ≥ α+ max

{
β

2 , α+ β − 1
}
.

Note that the previous theorem is the case β = 1.
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Generalized Furstenberg sets

Theorem (N. Lutz and D. Stull, TAMC ’17)
For α, β ∈ (0, 1], every (α, β)-generalized Furstenberg set E ⊆ R2

satisfies
dimH (E) ≥ α+ min{β, α} .

Note that this improves on the theorem of Molter and Rela exactly
when α < 1, β < 1, and β < 2α. Hence it doesn’t improve the
bound on α-Furstenberg sets.

The proof is easy using the
(nontrivial) y = mx + b bound that we just saw and the
Point-to-Set Principle.

It is the first use of algorithmic fractal dimensions to prove a new
theorem in classical fractal geometry!
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Intersections and Products of Fractals

The following are fundamental, nontrivial, textbook theorems of
fractal geometry.
Product Formula (Marstrand 1954). For all sets E ⊆ Rm and
F ⊆ Rn ,

dimH (E × F) ≥ dimH (E) + dimH (F) .

Intersection Formula (Kahane 1986; Mattila 1984, 1985). For all
Borel sets E ,F ⊆ Rn and almost every z ∈ Rn ,

dimH (E ∩ (F + z)) ≤ max{0, dimH (E × F)− n} .

Note: The product formula was known earlier with extra assumptions on E and
F . Marstrand deployed nontrivial machinery to prove it for arbitrary sets.
Textbooks usually just prove it for Borel sets.



Intersections and Products of Fractals

Theorem (N. Lutz, arXiv ’16)
The Intersection Formula holds for all sets E ,F ⊆ Rn .

The proof uses the Point-to-Set Principle. This is the second use
of algorithmic fractal dimensions to prove a new theorem in (very)
classical fractal geometry!

This paper also uses a similar method to give a much simpler proof
of the general Product Formula, along with analogous results for
packing dimension.
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Pointwise Dimensions

Classical fractal geometry has a pointwise notion of dimension.

An outer measure on Rn is a function ν : P(Rn)→ [0,∞]
satisfying

ν(∅) = 0,
E ⊆ F ⇒ ν(E) ≤ ν(F), and

E ⊆
∞⋃

k=0
Ek ⇒ ν(E) ≤

∞∑
k=0

Ek .

An outer measure ν on Rn is
finite if ν(Rn) <∞, and
locally finite if every x ∈ Rn has a neighborhood N with
ν(N ) <∞.
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Pointwise Dimensions

Definition
Let ν be a locally finite outer measure on Rn , and let x ∈ Rn . The
lower and upper pointwise dimensions of ν at x are

dimν(x) = lim inf
r→∞

log 1
ν(B2−r (x))

r

and

Dimν(x) = lim sup
r→∞

log 1
ν(B2−r (x))

r ,

respectively.

Are these in any way related to the algorithmic dimensions dim(x)
and Dim(x)?
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Pointwise Dimensions

Yes, with a very non-classical choice of the outer measure!

Definition (N. Lutz, arXiv ’16)
For each E ⊆ Rn , let

κ(E) = 2−K(E) .

Observations (N. Lutz, arXiv ’16)
1. κ is a finite outer measure on Rn .
2. For all x ∈ Rn , dim(x) = dimκ(x) and Dim(x) = Dimκ(x).
3. This relativizes and interacts informatively with the

Point-to-Set Principle.
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Thank you!


