Algorithmic Fractal Dimensions

Jack H. Lutz
lowa State University

NZMRI Lectures
Napier, NZ
January, 2017

Lectures

1. Information and Dimensions, Classical and Algorithmic
2. Algorithmic Dimensions in Fractal Geometry
3. Mutual Dimensions and Finite-State Dimensions

Lecture 2. Algorithmic Dimensions in Fractal Geometry

Today's topics
Kolmogorov complexity characterizations of dimension
Dimensions of points
The Point-to-Set Principle
Conditional Kolmogorov complexity in \mathbb{R}^{n}
Kakeya sets in \mathbb{R}^{2}
Dimensions of points on $y=m x+b$
Generalized Furstenberg sets
Intersections and products of fractals
Pointwise dimensions

Kolmogorov Complexity Characterizations of Dimensions

Last time we saw that, up to additive constants,

$$
K(x)=|x| \operatorname{dim}(x)
$$

holds for all $x \in\{0,1\}^{*}$. Here is an infinitary version of this fact.

Theorem (J. Lutz and Mayordomo 2008)

If ν is a strongly positive, computable probability measure on Σ^{∞}, then, for all $S \in \Sigma^{\infty}$,

$$
\begin{aligned}
\operatorname{dim}^{\nu}(S) & =\liminf _{m \rightarrow \infty} \frac{\mathrm{~K}(S \upharpoonright m)}{\mathcal{I}_{\nu}(S \upharpoonright m)} \\
\operatorname{Dim}^{\nu}(S) & =\limsup _{m \rightarrow \infty} \frac{\mathrm{~K}(S \upharpoonright m)}{\mathcal{I}_{\nu}(S \upharpoonright m)},
\end{aligned}
$$

where $\mathcal{I}_{\nu}(x)=\log \frac{1}{\nu(x)}$ is the Shannon ν-self-information of x.

Dimensions of Points

Work in Euclidean space \mathbb{R}^{n}.
The Kolmogorov complexity of a set $E \subseteq \mathbb{Q}^{n}$ is

$$
K(E)=\min \{K(q) \mid q \in E\}
$$

(Shen and Vereschagin 2002)

Dimensions of Points

Work in Euclidean space \mathbb{R}^{n}.
The Kolmogorov complexity of a set $E \subseteq \mathbb{Q}^{n}$ is

$$
K(E)=\min \{K(q) \mid q \in E\} .
$$

(Shen and Vereschagin 2002)
The Kolmogorov complexity of a set $E \subseteq \mathbb{R}^{n}$ is

$$
K(E)=K\left(E \cap \mathbb{Q}^{n}\right)
$$

Dimensions of Points

Work in Euclidean space \mathbb{R}^{n}.
The Kolmogorov complexity of a set $E \subseteq \mathbb{Q}^{n}$ is

$$
K(E)=\min \{K(q) \mid q \in E\} .
$$

(Shen and Vereschagin 2002)
The Kolmogorov complexity of a set $E \subseteq \mathbb{R}^{n}$ is

$$
K(E)=K\left(E \cap \mathbb{Q}^{n}\right)
$$

Note that

$$
E \subseteq F \Rightarrow K(E) \geq K(F)
$$

Dimensions of Points

Let $x \in \mathbb{R}^{n}$ and $r \in \mathbb{N}$. The Kolmogorov complexity of x at precision r is

$$
K_{r}(x)=K\left(B_{2^{-r}}(x)\right),
$$

i.e., the number of bits required to specify some rational point $q \in \mathbb{Q}^{n}$ such that $|q-x| \leq 2^{-r}$.

Dimensions of Points

For $x \in \mathbb{R}^{n}$,

$$
\operatorname{dim}(x)=\liminf _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

Dimensions of Points

For $x \in \mathbb{R}^{n}$,

$$
\operatorname{dim}(x)=\liminf _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

Easy fact. $0 \leq \operatorname{dim}(x) \leq n$, and there are uncountably many points of each dimension in this interval.

Dimensions of Points

For $x \in \mathbb{R}^{n}$,

$$
\operatorname{dim}(x)=\liminf _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

Easy fact. $0 \leq \operatorname{dim}(x) \leq n$, and there are uncountably many points of each dimension in this interval.

Old fact (J. Lutz '00 + Hitchcock '03). If $E \subseteq \mathbb{R}^{n}$ is a union of Π_{1}^{0} sets, then

\therefore Dimensions of points are geometrically meaningful.

Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, STACS '17)

For every $E \subseteq \mathbb{R}^{n}$,

$$
\operatorname{dim}_{H}(E)=\min _{A \subseteq \mathbb{N}} \sup _{x \in E} \operatorname{dim}^{A}(x)
$$

Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, STACS '17)
For every $E \subseteq \mathbb{R}^{n}$,

$$
\operatorname{dim}_{H}(E)=\min _{A \subseteq \mathbb{N}} \sup _{x \in E} \operatorname{dim}^{A}(x)
$$

\therefore In order to prove a lower bound

$$
\operatorname{dim}_{H}(E) \geq \alpha
$$

it suffices to show that

$$
(\forall A \subseteq \mathbb{N})(\forall \varepsilon>0)(\exists x \in E) \operatorname{dim}^{A}(x) \geq \alpha-\varepsilon
$$

Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, STACS '17)
For every $E \subseteq \mathbb{R}^{n}$,

$$
\operatorname{dim}_{H}(E)=\min _{A \subseteq \mathbb{N}} \sup _{x \in E} \operatorname{dim}^{A}(x)
$$

\therefore In order to prove a lower bound

$$
\operatorname{dim}_{H}(E) \geq \alpha
$$

it suffices to show that

$$
(\forall A \subseteq \mathbb{N})(\forall \varepsilon>0)(\exists x \in E) \operatorname{dim}^{A}(x) \geq \alpha-\varepsilon
$$

or, if you're lucky, that

$$
(\forall A \subseteq \mathbb{N})(\exists x \in E) \operatorname{dim}^{A}(x) \geq \alpha
$$

Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, STACS '17)

For every $E \subseteq \mathbb{R}^{n}$,

$$
\operatorname{dim}_{P}(E)=\min _{A \subseteq \mathbb{N}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

Conditional Kolmogorov Complexity in \mathbb{R}^{n}

Let $p \in \mathbb{Q}^{m}$ and $q \in \mathbb{Q}^{n}$. The conditional Kolomogorov complexity of p given q is

$$
K(p \mid q)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*} \text { and } U(\pi, q)=p\right\} .
$$

Conditional Kolmogorov Complexity in \mathbb{R}^{n}

Let $p \in \mathbb{Q}^{m}$ and $q \in \mathbb{Q}^{n}$. The conditional Kolomogorov complexity of p given q is

$$
K(p \mid q)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*} \text { and } U(\pi, q)=p\right\} .
$$

Let $x \in \mathbb{R}^{m}, q \in \mathbb{Q}^{n}$, and $r \in \mathbb{N}$. The conditional Kolmogorov complexity of x given q at precision r is

$$
\hat{K}_{r}(x \mid q)=\min \left\{K(p \mid q) \mid p \in \mathbb{Q}^{m} \cap B_{2^{-r}}(x)\right\} .
$$

Conditional Kolmogorov Complexity in \mathbb{R}^{n}

Definition (J. Lutz and N. Lutz, STACS '17)

Let $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, and $r, s \in \mathbb{N}$. The conditional Kolmogorov complexity of x at precision r given y at precision s is

$$
K_{r, s}(x \mid y)=\max \left\{\hat{K}_{r}(x \mid q) \mid q \in \mathbb{Q}^{n} \cap B_{2^{-s}}(y)\right\} .
$$

Conditional Kolmogorov Complexity in \mathbb{R}^{n}

Definition (J. Lutz and N. Lutz, STACS '17)

Let $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, and $r, s \in \mathbb{N}$. The conditional Kolmogorov complexity of x at precision r given y at precision s is

$$
K_{r, s}(x \mid y)=\max \left\{\hat{K}_{r}(x \mid q) \mid q \in \mathbb{Q}^{n} \cap B_{2^{-s}}(y)\right\} .
$$

For $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, and $r \in \mathbb{N}$,

$$
K_{r}(x \mid y)=K_{r, r}(x \mid y)
$$

Conditional Kolmogorov Complexity in \mathbb{R}^{n}

Chain rule for K_{r} :

$$
K_{r}(x, y)=K_{r}(x \mid y)+K_{r}(y)+o(r) .
$$

Easy fact. $K_{r}^{y}(x) \leq K_{r}(x \mid y)+o(r)$.

Kakeya Sets in \mathbb{R}^{2}

A Kakeya set in \mathbb{R}^{n} is a set $K \subseteq \mathbb{R}^{n}$ that contains a unit segment in every direction.

Kakeya Sets in \mathbb{R}^{2}

A Kakeya set in \mathbb{R}^{n} is a set $K \subseteq \mathbb{R}^{n}$ that contains a unit segment in every direction.

Theorem (\approx Besicovitch 1919). There exist Kakeya sets of Lebesgue measure (n-dimensional volume) 0 .

Kakeya Sets in \mathbb{R}^{2}

A Kakeya set in \mathbb{R}^{n} is a set $K \subseteq \mathbb{R}^{n}$ that contains a unit segment in every direction.

Theorem (\approx Besicovitch 1919). There exist Kakeya sets of Lebesgue measure (n-dimensional volume) 0 .

Theorem (Davies 1971). Every Kakeya set in \mathbb{R}^{2} has Hausdorff dimension 2.

Kakeya Sets in \mathbb{R}^{2}

A Kakeya set in \mathbb{R}^{n} is a set $K \subseteq \mathbb{R}^{n}$ that contains a unit segment in every direction.

Theorem (\approx Besicovitch 1919). There exist Kakeya sets of Lebesgue measure (n-dimensional volume) 0 .

Theorem (Davies 1971). Every Kakeya set in \mathbb{R}^{2} has Hausdorff dimension 2.

Kakeya Conjecture. Every Kakeya set in \mathbb{R}^{n} has Hausdorff dimension n.

- An important open problem for $n \geq 3$.

Kakeya Sets in \mathbb{R}^{2}

Today we give a new, information-theoretic proof of
Davies's Theorem. Every Kakeya set in \mathbb{R}^{2} has Hausdorff dimension 2.

Kakeya Sets in \mathbb{R}^{2}

Today we give a new, information-theoretic proof of
Davies's Theorem. Every Kakeya set in \mathbb{R}^{2} has Hausdorff dimension 2.

Technical Lemma (J. Lutz and N. Lutz, STACS '17). Let $m \in[0,1]$ and $b \in \mathbb{R}$. For almost every $x \in[0,1]$,

$$
\liminf _{r \rightarrow \infty} \frac{K_{r}(m, b, x)-K_{r}(b \mid m)}{r} \leq \operatorname{dim}(x, m x+b)
$$

Kakeya Sets in \mathbb{R}^{2}

Proof of Davies's Theorem (J. Lutz and N. Lutz, STACS '17). Let $K \subseteq \mathbb{R}^{2}$ be a Kakeya set.

Kakeya Sets in \mathbb{R}^{2}

Proof of Davies's Theorem (J. Lutz and N. Lutz, STACS '17). Let $K \subseteq \mathbb{R}^{2}$ be a Kakeya set.

By the Point-to-Set Principle, fix $A \subseteq \mathbb{N}$ such that

$$
\operatorname{dim}_{H}(K)=\sup _{z \in K} \operatorname{dim}^{A}(z)
$$

Kakeya Sets in \mathbb{R}^{2}

Proof of Davies's Theorem (J. Lutz and N. Lutz, STACS '17). Let $K \subseteq \mathbb{R}^{2}$ be a Kakeya set.

By the Point-to-Set Principle, fix $A \subseteq \mathbb{N}$ such that

$$
\operatorname{dim}_{H}(K)=\sup _{z \in K} \operatorname{dim}^{A}(z)
$$

Fix $m \in[0,1]$ such that $\operatorname{dim}^{A}(m)=1$.

Kakeya Sets in \mathbb{R}^{2}

Proof of Davies's Theorem (J. Lutz and N. Lutz, STACS '17). Let $K \subseteq \mathbb{R}^{2}$ be a Kakeya set.

By the Point-to-Set Principle, fix $A \subseteq \mathbb{N}$ such that

$$
\operatorname{dim}_{H}(K)=\sup _{z \in K} \operatorname{dim}^{A}(z)
$$

Fix $m \in[0,1]$ such that $\operatorname{dim}^{A}(m)=1$.
Fix a unit segment $L \subseteq K$ of slope m.

Kakeya Sets in \mathbb{R}^{2}

Proof of Davies's Theorem (J. Lutz and N. Lutz, STACS '17). Let $K \subseteq \mathbb{R}^{2}$ be a Kakeya set.

By the Point-to-Set Principle, fix $A \subseteq \mathbb{N}$ such that

$$
\operatorname{dim}_{H}(K)=\sup _{z \in K} \operatorname{dim}^{A}(z)
$$

Fix $m \in[0,1]$ such that $\operatorname{dim}^{A}(m)=1$.
Fix a unit segment $L \subseteq K$ of slope m.
Let $\left(x_{0}, y_{0}\right)$ be the left endpoint of L.

Kakeya Sets in \mathbb{R}^{2}

Kakeya Sets in \mathbb{R}^{2}

Let $q \in\left[x_{0}, x_{0}+\frac{1}{2}\right]$.
Let L^{\prime} be the unit segment of slope m whose left endpoint is $\left(x_{0}-q, y_{0}\right)$.

Kakeya Sets in \mathbb{R}^{2}

Our picture is now

Kakeya Sets in \mathbb{R}^{2}

Our picture is now

Let $b=y_{0}+q m$ be the y-intercept of L^{\prime}.

Kakeya Sets in \mathbb{R}^{2}

Our picture is now

Let $b=y_{0}+q m$ be the y-intercept of L^{\prime}.
By the Technical Lemma (relativized to A), fix $x \in\left[0, \frac{1}{2}\right]$ such that $\operatorname{dim}^{A, m, b}(x)=1$ and

$$
\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b \mid m)}{r} \leq \operatorname{dim}^{A}(x, m x+b)
$$

Kakeya Sets in \mathbb{R}^{2}

By the Point-to-Set Principle it suffices to show that

$$
\operatorname{dim}^{A}(x, m x+b)=2 .
$$

Kakeya Sets in \mathbb{R}^{2}

By the Point-to-Set Principle it suffices to show that

$$
\operatorname{dim}^{A}(x, m x+b)=2
$$

Why this suffices: Because

$$
\begin{aligned}
(x, m x+b) & \in L^{\prime} \\
(x+q, m x+b) & \in L \subseteq K
\end{aligned}
$$

and

$$
\operatorname{dim}^{A}(x+q, m x+b)=\operatorname{dim}^{A}(x, m x+b) .
$$

Kakeya Sets in \mathbb{R}^{2}

Now $\operatorname{dim}^{A}(x, m x+b)$

Kakeya Sets in \mathbb{R}^{2}

Now $\operatorname{dim}^{A}(x, m x+b)$

Tech Lemma

$$
\geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b \mid m)}{r}
$$

Kakeya Sets in \mathbb{R}^{2}

Now $\operatorname{dim}^{A}(x, m x+b)$

Tech Lemma

$$
\geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b \mid m)}{r}
$$

Chain

$$
=\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b, m)+K_{r}^{A}(m)}{r}
$$

Kakeya Sets in \mathbb{R}^{2}

Now $\operatorname{dim}^{A}(x, m x+b)$

Tech Lemma

$$
\geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b \mid m)}{r}
$$

Chain

$$
=\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b, m)+K_{r}^{A}(m)}{r}
$$

Chain $\quad=\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(x \mid b, m)+K_{r}^{A}(m)}{r}$

Kakeya Sets in \mathbb{R}^{2}

Now $\operatorname{dim}^{A}(x, m x+b)$

Tech Lemma

$$
\geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b \mid m)}{r}
$$

Chain

$$
=\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b, m)+K_{r}^{A}(m)}{r}
$$

Chain $\quad=\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(x \mid b, m)+K_{r}^{A}(m)}{r}$

$$
\geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A, b, m}(x)}{r}+\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m)}{r}
$$

Kakeya Sets in \mathbb{R}^{2}

Now $\operatorname{dim}^{A}(x, m x+b)$

Tech Lemma

$$
\geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b \mid m)}{r}
$$

Chain

$$
=\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b, m)+K_{r}^{A}(m)}{r}
$$

Chain $\quad=\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(x \mid b, m)+K_{r}^{A}(m)}{r}$

$$
\begin{aligned}
& \geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A, b, m}(x)}{r}+\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m)}{r} \\
& =\operatorname{dim}^{A, b, m}(x)+\operatorname{dim}^{A}(m)
\end{aligned}
$$

Kakeya Sets in \mathbb{R}^{2}

Now $\operatorname{dim}^{A}(x, m x+b)$

Tech Lemma

$$
\begin{aligned}
& \geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b \mid m)}{r} \\
& =\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m, b, x)-K_{r}^{A}(b, m)+K_{r}^{A}(m)}{r} \\
& =\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(x \mid b, m)+K_{r}^{A}(m)}{r} \\
& \geq \liminf _{r \rightarrow \infty} \frac{K_{r}^{A, b, m}(x)}{r}+\liminf _{r \rightarrow \infty} \frac{K_{r}^{A}(m)}{r} \\
& =\operatorname{dim}^{A, b, m}(x)+\operatorname{dim}^{A}(m) \\
& =2 .
\end{aligned}
$$

Dimensions of Points on $y=m x+b$

Theorem (J. Lutz and Weihrauch 2008). Each of the sets

$$
\begin{aligned}
& \operatorname{DIM}^{<1}=\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)<1\right\}, \\
& \operatorname{DIM}^{>1}=\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)>1\right\}
\end{aligned}
$$

is totally disconnected.

Dimensions of Points on $y=m x+b$

Theorem (J. Lutz and Weihrauch 2008). Each of the sets

$$
\begin{aligned}
\operatorname{DIM}^{<1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)<1\right\}, \\
\text { DIM }^{>1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)>1\right\}
\end{aligned}
$$

is totally disconnected.
Theorem (Turetsky 2011). The set DIM ${ }^{=1}$ is connected.

Dimensions of Points on $y=m x+b$

Theorem (J. Lutz and Weihrauch 2008). Each of the sets

$$
\begin{aligned}
& \operatorname{DIM}^{<1}=\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)<1\right\}, \\
& \operatorname{DIM}^{>1}=\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)>1\right\}
\end{aligned}
$$

is totally disconnected.
Theorem (Turetsky 2011). The set DIM ${ }^{=1}$ is connected.
Theorem (Turetsky 2011). The set DIM ${ }^{\neq 1}$ is not path-connected.

Dimensions of Points on $y=m x+b$

Theorem (J. Lutz and Weihrauch 2008). Each of the sets

$$
\begin{aligned}
\operatorname{DIM}^{<1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)<1\right\}, \\
\text { DIM }^{>1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)>1\right\}
\end{aligned}
$$

is totally disconnected.
Theorem (Turetsky 2011). The set DIM ${ }^{=1}$ is connected.
Theorem (Turetsky 2011). The set DIM ${ }^{\neq 1}$ is not path-connected.
Theorem (J. Lutz and N. Lutz 2015). There is, in every direction in \mathbb{R}^{2}, a line missing every random point.

Dimensions of Points on $y=m x+b$

Theorem (J. Lutz and Weihrauch 2008). Each of the sets

$$
\begin{aligned}
\operatorname{DIM}^{<1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)<1\right\}, \\
\text { DIM }^{>1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{dim}(x, y)>1\right\}
\end{aligned}
$$

is totally disconnected.
Theorem (Turetsky 2011). The set DIM ${ }^{=1}$ is connected.
Theorem (Turetsky 2011). The set DIM ${ }^{\neq 1}$ is not path-connected.
Theorem (J. Lutz and N. Lutz 2015). There is, in every direction in \mathbb{R}^{2}, a line missing every random point.

Theorem (J. Lutz and N. Lutz, STACS '17). Almost every point on every line $y=m x+b$ with random slope m has dimension 2 .

Dimensions of Points on $y=m x+b$

Question (J. Lutz, early 2000s). Is there a line $y=m x+b$ on which every point has dimension 1?

Dimensions of Points on $y=m x+b$

Question (J. Lutz, early 2000s). Is there a line $y=m x+b$ on which every point has dimension 1 ?

Theorem (N. Lutz and D. Stull, TAMC '17). For all $m, b, x \in \mathbb{R}$,

$$
\operatorname{dim}(x, m x+b) \geq \operatorname{dim}^{m, b}(x)+\min \left\{\operatorname{dim}(m, b), \operatorname{dim}^{m, b}(x)\right\}
$$

Dimensions of Points on $y=m x+b$

Question (J. Lutz, early 2000s). Is there a line $y=m x+b$ on which every point has dimension 1 ?

Theorem (N. Lutz and D. Stull, TAMC '17). For all $m, b, x \in \mathbb{R}$,

$$
\operatorname{dim}(x, m x+b) \geq \operatorname{dim}^{m, b}(x)+\min \left\{\operatorname{dim}(m, b), \operatorname{dim}^{m, b}(x)\right\}
$$

In particular, for almost every $x \in \mathbb{R}$,

$$
\operatorname{dim}(x, m x+b)=1+\min \{\operatorname{dim}(m, b), 1\}
$$

Dimensions of Points on $y=m x+b$

Question (J. Lutz, early 2000s). Is there a line $y=m x+b$ on which every point has dimension 1 ?

Theorem (N. Lutz and D. Stull, TAMC '17). For all $m, b, x \in \mathbb{R}$,

$$
\operatorname{dim}(x, m x+b) \geq \operatorname{dim}^{m, b}(x)+\min \left\{\operatorname{dim}(m, b), \operatorname{dim}^{m, b}(x)\right\}
$$

In particular, for almost every $x \in \mathbb{R}$,

$$
\operatorname{dim}(x, m x+b)=1+\min \{\operatorname{dim}(m, b), 1\} .
$$

Corollary. For every $m, b \in \mathbb{R}$ there exist $x_{1}, x_{2} \in \mathbb{R}$ such that

$$
\operatorname{dim}\left(x_{1}, m x_{1}+b\right)-\operatorname{dim}\left(x_{2}, m x_{2}+b\right) \geq 1
$$

\therefore The answer to the above question is "No!"

Generalized Furstenberg sets

Recall that a Kakeya set in \mathbb{R}^{2} is a set $K \subseteq \mathbb{R}^{2}$ that contains a unit segment in every direction.

Generalized Furstenberg sets

Recall that a Kakeya set in \mathbb{R}^{2} is a set $K \subseteq \mathbb{R}^{2}$ that contains a unit segment in every direction.

For $\alpha \in(0,1]$, a set $E \subseteq \mathbb{R}^{2}$ is α-Furstenberg if, for every $e \in S^{1}$ ($=$ the unit circle in \mathbb{R}^{2}), there is a line \mathcal{L}_{e} in direction e such that $\operatorname{dim}_{H}\left(\mathcal{L}_{e} \cap E\right) \geq \alpha$.

Generalized Furstenberg sets

Recall that a Kakeya set in \mathbb{R}^{2} is a set $K \subseteq \mathbb{R}^{2}$ that contains a unit segment in every direction.

For $\alpha \in(0,1]$, a set $E \subseteq \mathbb{R}^{2}$ is α-Furstenberg if, for every $e \in S^{1}$ ($=$ the unit circle in \mathbb{R}^{2}), there is a line \mathcal{L}_{e} in direction e such that $\operatorname{dim}_{H}\left(\mathcal{L}_{e} \cap E\right) \geq \alpha$.

Definition (Molter and Rela 2012)

For $\alpha, \beta \in(0,1]$, a set $E \subseteq \mathbb{R}^{2}$ is (α, β)-generalized Furstenberg if there is a set $J \subseteq S^{1}$ such that $\operatorname{dim}_{H}(J) \geq \beta$ and, for every $e \in J$, there is a line \mathcal{L}_{e} in direction e such that $\operatorname{dim}_{H}\left(\mathcal{L}_{e} \cap E\right) \geq \alpha$.

Generalized Furstenberg sets

Theorem (probably Furstenberg and Katznelson)
Fore $\alpha \in(0,1]$, every α-Furstenberg set $E \subseteq \mathbb{R}^{2}$ satisfies

$$
\operatorname{dim}_{H}(E) \geq \alpha+\max \left\{\frac{1}{2}, \alpha\right\}
$$

Note that Davies's theorem follows from the case $\alpha=1$.

Generalized Furstenberg sets

Theorem (probably Furstenberg and Katznelson)

Fore $\alpha \in(0,1]$, every α-Furstenberg set $E \subseteq \mathbb{R}^{2}$ satisfies

$$
\operatorname{dim}_{H}(E) \geq \alpha+\max \left\{\frac{1}{2}, \alpha\right\}
$$

Note that Davies's theorem follows from the case $\alpha=1$.

Theorem (Molter and Rela 2012)

For $\alpha, \beta \in(0,1]$, every (α, β)-generalized Furstenberg set $E \subseteq \mathbb{R}^{2}$ satisfies

$$
\operatorname{dim}_{H}(E) \geq \alpha+\max \left\{\frac{\beta}{2}, \alpha+\beta-1\right\}
$$

Note that the previous theorem is the case $\beta=1$.

Generalized Furstenberg sets

Theorem (N. Lutz and D. Stull, TAMC '17)

For $\alpha, \beta \in(0,1]$, every (α, β)-generalized Furstenberg set $E \subseteq \mathbb{R}^{2}$ satisfies

$$
\operatorname{dim}_{H}(E) \geq \alpha+\min \{\beta, \alpha\} .
$$

Note that this improves on the theorem of Molter and Rela exactly when $\alpha<1, \beta<1$, and $\beta<2 \alpha$. Hence it doesn't improve the bound on α-Furstenberg sets.

Generalized Furstenberg sets

Theorem (N. Lutz and D. Stull, TAMC '17)

For $\alpha, \beta \in(0,1]$, every (α, β)-generalized Furstenberg set $E \subseteq \mathbb{R}^{2}$ satisfies

$$
\operatorname{dim}_{H}(E) \geq \alpha+\min \{\beta, \alpha\}
$$

The proof is easy using the (nontrivial) $y=m x+b$ bound that we just saw and the Point-to-Set Principle.

Generalized Furstenberg sets

Theorem (N. Lutz and D. Stull, TAMC '17)

For $\alpha, \beta \in(0,1]$, every (α, β)-generalized Furstenberg set $E \subseteq \mathbb{R}^{2}$ satisfies

$$
\operatorname{dim}_{H}(E) \geq \alpha+\min \{\beta, \alpha\}
$$

The proof is easy using the (nontrivial) $y=m x+b$ bound that we just saw and the Point-to-Set Principle.

It is the first use of algorithmic fractal dimensions to prove a new theorem in classical fractal geometry!

Intersections and Products of Fractals

The following are fundamental, nontrivial, textbook theorems of fractal geometry.
Product Formula (Marstrand 1954). For all sets $E \subseteq \mathbb{R}^{m}$ and $F \subseteq \mathbb{R}^{n}$,

$$
\operatorname{dim}_{H}(E \times F) \geq \operatorname{dim}_{H}(E)+\operatorname{dim}_{H}(F)
$$

Intersection Formula (Kahane 1986; Mattila 1984, 1985). For all Borel sets $E, F \subseteq \mathbb{R}^{n}$ and almost every $z \in \mathbb{R}^{n}$,

$$
\operatorname{dim}_{H}(E \cap(F+z)) \leq \max \left\{0, \operatorname{dim}_{H}(E \times F)-n\right\}
$$

Note: The product formula was known earlier with extra assumptions on E and F. Marstrand deployed nontrivial machinery to prove it for arbitrary sets.
Textbooks usually just prove it for Borel sets.

Intersections and Products of Fractals

Theorem (N. Lutz, arXiv '16)
The Intersection Formula holds for all sets $E, F \subseteq \mathbb{R}^{n}$.

Intersections and Products of Fractals

Theorem (N. Lutz, arXiv '16)

The Intersection Formula holds for all sets $E, F \subseteq \mathbb{R}^{n}$.
The proof uses the Point-to-Set Principle. This is the second use of algorithmic fractal dimensions to prove a new theorem in (very) classical fractal geometry!

Intersections and Products of Fractals

Theorem (N. Lutz, arXiv '16)

The Intersection Formula holds for all sets $E, F \subseteq \mathbb{R}^{n}$.
The proof uses the Point-to-Set Principle. This is the second use of algorithmic fractal dimensions to prove a new theorem in (very) classical fractal geometry!

This paper also uses a similar method to give a much simpler proof of the general Product Formula, along with analogous results for packing dimension.

Pointwise Dimensions

Classical fractal geometry has a pointwise notion of dimension.
An outer measure on \mathbb{R}^{n} is a function $\nu: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow[0, \infty]$ satisfying

- $\nu(\emptyset)=0$,
- $E \subseteq F \Rightarrow \nu(E) \leq \nu(F)$, and
- $E \subseteq \bigcup_{k=0}^{\infty} E_{k} \Rightarrow \nu(E) \leq \sum_{k=0}^{\infty} E_{k}$.

Classical fractal geometry has a pointwise notion of dimension.
An outer measure on \mathbb{R}^{n} is a function $\nu: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow[0, \infty]$ satisfying

- $\nu(\emptyset)=0$,
- $E \subseteq F \Rightarrow \nu(E) \leq \nu(F)$, and
- $E \subseteq \bigcup_{k=0}^{\infty} E_{k} \Rightarrow \nu(E) \leq \sum_{k=0}^{\infty} E_{k}$.

An outer measure ν on \mathbb{R}^{n} is

- finite if $\nu\left(\mathbb{R}^{n}\right)<\infty$, and
- locally finite if every $x \in \mathbb{R}^{n}$ has a neighborhood N with $\nu(N)<\infty$.

Pointwise Dimensions

Definition

Let ν be a locally finite outer measure on \mathbb{R}^{n}, and let $x \in \mathbb{R}^{n}$. The lower and upper pointwise dimensions of ν at x are

$$
\operatorname{dim}_{\nu}(x)=\liminf _{r \rightarrow \infty} \frac{\log \frac{1}{\nu\left(B_{2}-r(x)\right)}}{r}
$$

and

$$
\operatorname{Dim}_{\nu}(x)=\limsup _{r \rightarrow \infty} \frac{\log \frac{1}{\nu\left(B_{2}-r(x)\right)}}{r}
$$

respectively.

Definition

Let ν be a locally finite outer measure on \mathbb{R}^{n}, and let $x \in \mathbb{R}^{n}$. The lower and upper pointwise dimensions of ν at x are

$$
\operatorname{dim}_{\nu}(x)=\liminf _{r \rightarrow \infty} \frac{\log \frac{1}{\nu\left(B_{2}-r(x)\right)}}{r}
$$

and

$$
\operatorname{Dim}_{\nu}(x)=\limsup _{r \rightarrow \infty} \frac{\log \frac{1}{\nu\left(B_{2}-r(x)\right)}}{r}
$$

respectively.
Are these in any way related to the algorithmic dimensions $\operatorname{dim}(x)$ and $\operatorname{Dim}(x)$?

Pointwise Dimensions

Yes, with a very non-classical choice of the outer measure!

Pointwise Dimensions

Yes, with a very non-classical choice of the outer measure!
Definition (N. Lutz, arXiv '16)
For each $E \subseteq \mathbb{R}^{n}$, let

$$
\kappa(E)=2^{-K(E)} .
$$

Observations (N. Lutz, arXiv '16)

1. κ is a finite outer measure on \mathbb{R}^{n}.

Yes, with a very non-classical choice of the outer measure!
Definition (N. Lutz, arXiv '16)
For each $E \subseteq \mathbb{R}^{n}$, let

$$
\kappa(E)=2^{-K(E)} .
$$

Observations (N. Lutz, arXiv '16)

1. κ is a finite outer measure on \mathbb{R}^{n}.
2. For all $x \in \mathbb{R}^{n}, \operatorname{dim}(x)=\operatorname{dim}_{\kappa}(x)$ and $\operatorname{Dim}(x)=\operatorname{Dim}_{\kappa}(x)$.

Yes, with a very non-classical choice of the outer measure!
Definition (N. Lutz, arXiv '16)
For each $E \subseteq \mathbb{R}^{n}$, let

$$
\kappa(E)=2^{-K(E)} .
$$

Observations (N. Lutz, arXiv '16)

1. κ is a finite outer measure on \mathbb{R}^{n}.
2. For all $x \in \mathbb{R}^{n}, \operatorname{dim}(x)=\operatorname{dim}_{\kappa}(x)$ and $\operatorname{Dim}(x)=\operatorname{Dim}_{\kappa}(x)$.
3. This relativizes and interacts informatively with the Point-to-Set Principle.

Thank you!

