Vaught's conjecture.

Antonio Montalbán

U.C. Berkeley

January 2017 Napier, New Zealand

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Part I: Vaught's Conjecture

Conjecture: [Vaught 61] The number of countable models in an axiomatizable class of structures is either countable or continuum.

Conjecture: [Vaught 61] The number of countable models in an axiomatizable class of structures is either countable or continuum.

Definition: Two sets A and B have the same cardinality

if there is a bijection between them.

If so, we write |A| = |B|.

Definition: Two sets A and B have the same cardinality

if there is a bijection between them.

If so, we write |A| = |B|.

Theorem: [Cantor-Bernstein-Schroeder] For every two sets, A, B, either

- |A| = |B|, or
- |A| < |B| (A has the same cardinality as a subset of B, but not vice versa), Or
- |B| < |A| (B has the same cardinality as a subset of A, but not vice versa), Or

Definition: Two sets A and B have the same cardinality

if there is a bijection between them.

If so, we write |A| = |B|.

Theorem: [Cantor-Bernstein-Schroeder] For every two sets, A, B, either

- |A| = |B|, or
- |A| < |B| (A has the same cardinality as a subset of B, but not vice versa), Or
- |B| < |A| (B has the same cardinality as a subset of A, but not vice versa), Or

Theorem: [Cantor] $|\mathbb{N}| < |\mathbb{R}|$.

Definition: Two sets A and B have the same cardinality

if there is a bijection between them.

If so, we write |A| = |B|.

Theorem: [Cantor-Bernstein-Schroeder] For every two sets, A, B, either

- |A| = |B|, or
- |A| < |B| (A has the same cardinality as a subset of B, but not vice versa), Or
- |B| < |A| (B has the same cardinality as a subset of A, but not vice versa), Or

Theorem: [Cantor] $|\mathbb{N}| < |\mathbb{R}|$.

Definition: A is *countable* if there is an onto map from \mathbb{N} to A,

Definition: Two sets A and B have the same cardinality

if there is a bijection between them.

If so, we write |A| = |B|.

Theorem: [Cantor-Bernstein-Schroeder] For every two sets, A, B, either

- |A| = |B|, or
- |A| < |B| (A has the same cardinality as a subset of B, but not vice versa), Or
- |B| < |A| (B has the same cardinality as a subset of A, but not vice versa), Or

Theorem: [Cantor] $|\mathbb{N}| < |\mathbb{R}|$.

Definition: A is *countable* if there is an onto map from \mathbb{N} to A, or equivalently, if $|A| \leq |\mathbb{N}|$.

Definition: Two sets A and B have the same cardinality

if there is a bijection between them.

If so, we write |A| = |B|.

Theorem: [Cantor-Bernstein-Schroeder] For every two sets, A, B, either

- |A| = |B|, or
- |A| < |B| (A has the same cardinality as a subset of B, but not vice versa), Or
- |B| < |A| (B has the same cardinality as a subset of A, but not vice versa), Or

Theorem: [Cantor] $|\mathbb{N}| < |\mathbb{R}|$.

Definition: A is *countable* if there is an onto map from \mathbb{N} to A, or equivalently, if $|A| \le |\mathbb{N}|$. A has *continuum many elements* if $|A| = |\mathbb{R}|$.

Antonio Montalbán (U.C. Berkeley)

CH: [Cantor 1878] No set has cardinality strictly in between countable and continuum,

CH: [Cantor 1878] No set has cardinality strictly in between countable and continuum,

where continuum refers to the size of $\mathbb R.$

CH: [Cantor 1878] No set has cardinality strictly in between countable and continuum, where continuum refers to the size of R.

Thm [Gödel 1940]: CH can't be proved to be false in set theory (ZFC).

CH: [Cantor 1878] No set has cardinality strictly in between countable and continuum, where continuum refers to the size of R.

Thm [Gödel 1940]: *CH* can't be proved to be false in set theory (ZFC). **Thm** [Cohen 1963]: *CH* can't be proved to be true in set theory (ZFC).

CH: [Cantor 1878] No set has cardinality strictly in between countable and continuum, where continuum refers to the size of R.

Thm [Gödel 1940]: *CH* can't be proved to be false in set theory (ZFC). **Thm** [Cohen 1963]: *CH* can't be proved to be true in set theory (ZFC).

However, this rarely shows up in practice.

CH: [Cantor 1878] No set has cardinality strictly in between countable and continuum, where continuum refers to the size of R.

Thm [Gödel 1940]: *CH* can't be proved to be false in set theory (ZFC). **Thm** [Cohen 1963]: *CH* can't be proved to be true in set theory (ZFC).

However, this rarely shows up in practice.

Thm [Suslin 1917]: Every Borel subset of \mathbb{R} has size either countable or continuum.

CH: [Cantor 1878] No set has cardinality strictly in between countable and continuum, where continuum refers to the size of R.

Thm [Gödel 1940]: *CH* can't be proved to be false in set theory (ZFC). **Thm** [Cohen 1963]: *CH* can't be proved to be true in set theory (ZFC).

However, this rarely shows up in practice.

Thm [Suslin 1917]: Every Borel subset of \mathbb{R} has size either countable or continuum.

Thm [Silver 1980]: If \equiv is a Borel equivalence relation on \mathbb{R} , then the number of equivalence classes is either countable or continuum.

$0 < 1 < 2 < 3 < \cdots < \aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \aleph_{\omega+1} < \cdots$

$0 < 1 < 2 < 3 < \cdots < \aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \aleph_{\omega+1} < \cdots$

Recall:

• \aleph_0 is the cardinality of \mathbb{N} .

$0 < 1 < 2 < 3 < \cdots < \aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \aleph_{\omega+1} < \cdots$

Recall:

- \aleph_0 is the cardinality of \mathbb{N} .
- \aleph_1 is the smallest cardinality larger than \aleph_0 .

$0 < 1 < 2 < 3 < \cdots < \aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \aleph_{\omega+1} < \cdots$

Recall:

- \aleph_0 is the cardinality of \mathbb{N} .
- \aleph_1 is the smallest cardinality larger than \aleph_0 .
- \aleph_2 is the smallest cardinality larger than \aleph_1 .

$0 < 1 < 2 < 3 < \cdots < \aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \aleph_{\omega+1} < \cdots$

Recall:

- \aleph_0 is the cardinality of \mathbb{N} .
- ℵ₁ is the smallest cardinality larger than ℵ₀.
- \aleph_2 is the smallest cardinality larger than \aleph_1 .
- 2^{\aleph_0} is the cardinality of \mathbb{R} (continuum).

$0 < 1 < 2 < 3 < \cdots < \aleph_0 < \aleph_1 < \aleph_2 < \cdots < \aleph_\omega < \aleph_{\omega+1} < \cdots$

Recall:

- \aleph_0 is the cardinality of \mathbb{N} .
- ℵ₁ is the smallest cardinality larger than ℵ₀.
- \aleph_2 is the smallest cardinality larger than \aleph_1 .
- 2^{\aleph_0} is the cardinality of \mathbb{R} (continuum).

Thm:[Cohen] Consistently with ZFC,

 2^{\aleph_0} can be any cardinal κ so long as $|\kappa^{\aleph_0}| = \kappa$.

Conjecture: [Vaught 61] The number of countable models in an axiomatizable class of structures is either countable or continuum.

Conjecture: [Vaught 61] The number of countable models in an axiomatizable class of structures is either countable or continuum.

Structure

By *structure* we mean a domain on which we have

constants, operations and relations.

By *structure* we mean a domain on which we have constants, operations and relations.

Examples

• The group $(\mathbb{Q}; 0, +)$.

By *structure* we mean a domain on which we have

constants, operations and relations.

Examples

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.

By structure we mean a domain on which we have

constants, operations and relations.

Examples

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.
- The ring ($\mathbb{Q}[x]$; 0, 1, +, ×).

By structure we mean a domain on which we have

constants, operations and relations.

Examples

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.
- The ring $(\mathbb{Q}[x]; 0, 1, +, \times)$.
- The ordered ring (\mathbb{Z} ; 0, 1, +, \times , \leq).

Example: Ordered fields are an axiomatizable class of structures:

Example: Ordered fields are an **axiomatizable** class of structures: It is the class of all structures $\mathcal{K} = (K; 0_K, 1_K, +_K, \times_K, <_K)$ where

Example: Ordered fields are an axiomatizable class of structures:

It is the class of all structures $\mathcal{K} = (\mathcal{K}; 0_{\mathcal{K}}, 1_{\mathcal{K}}, +_{\mathcal{K}}, <_{\mathcal{K}})$ where

- $0_K, 1_K \in K$,
- $+_{K}, \times_{K} : K^{2} \rightarrow K$,
- $<_{K} \subseteq K^{2}$,

and

Example: Ordered fields are an axiomatizable class of structures:

It is the class of all structures $\mathcal{K} = (\mathcal{K}; 0_{\mathcal{K}}, 1_{\mathcal{K}}, +_{\mathcal{K}}, <_{\mathcal{K}})$ where

- $0_K, 1_K \in K$,
- $+_{K}, \times_{K} : K^{2} \rightarrow K$,
- $<_{\mathcal{K}} \subseteq \mathcal{K}^2$,

and

1
$$\forall x, y, z(x +_{K} (y +_{K} z) = (x +_{K} y) +_{K} z)$$

2 $\forall x, y(x +_{K} y = y +_{K} z)$
3 $\forall x(x +_{K} 0_{K} = x)$
4 $\forall x((\exists y)x +_{K} y = 0_{K})$
5 $\forall x, y, z(x \times_{K} (y \times_{K} z) = (x \times_{K} y) \times_{K} z)$
6 $\forall x(x \times_{K} 1_{K} = x)$
7 $\forall x(x \neq 0_{K} \to ((\exists y)x \times_{K} y = 1_{K}))$
8 $\forall x, y, z(x \times_{K} (y +_{K} z) = (x \times_{K} y) +_{K} (x \times_{K} z))$
9 $\forall x(x \neq 0_{K} \to (x <_{K} 0 \lor 0_{K} < x))$
10 $\forall x, y(x <_{K} y \to \forall z(z +_{K} x < z +_{K} y))$
11 $\forall x, y(x <_{K} y \to \forall z(z > 0_{K} \to (z \times_{K} x < z \times_{K} y))$

)

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.

A vocabulary is a set of constant, functions and relations symbols.

For instance, $\tau = \{0,1,+,\times,<\}$ is a vocabulary.

A vocabulary is a set of constant, functions and relations symbols.

For instance, $au = \{0, 1, +, \times, <\}$ is a vocabulary.

To define a *language* we use

- vocabulary,
- the logical symbols $\lor, \&, \rightarrow, \neg, \forall, \exists, (,),$
- variable symbols,

A vocabulary is a set of constant, functions and relations symbols.

For instance, $au = \{0, 1, +, \times, <\}$ is a vocabulary.

To define a *language* we use

- vocabulary,
- the logical symbols $\lor, \&, \rightarrow, \neg, \forall, \exists, (,),$
- variable symbols,

and follows certain rules to define *well-formed* sentences.

A vocabulary is a set of constant, functions and relations symbols.

For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

To define a *language* we use

- vocabulary,
- the logical symbols $\lor, \&, \rightarrow, \neg, \forall, \exists, (,),$
- variable symbols,

and follows certain rules to define *well-formed* sentences.

For instance, $\forall x, y (x < y \rightarrow \forall z (z + x < z + y))$ is a well-formed sentence.

A vocabulary is a set of constant, functions and relations symbols.

For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

To define a *language* we use

- vocabulary,
- the logical symbols $\lor, \&, \rightarrow, \neg, \forall, \exists, (,),$
- variable symbols,

and follows certain rules to define *well-formed* sentences.

For instance, $\forall x, y (x < y \rightarrow \forall z (z + x < z + y))$ is a well-formed sentence.

Given a structure \mathcal{A} and a sentence φ , one can define what it means for φ to be true on \mathcal{A} , or for \mathcal{A} to model φ , written $\mathcal{A} \models \varphi$.

Antonio Montalbán (U.C. Berkeley)

A vocabulary is a set of constant, functions and relations symbols.

For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

To define a *language* we use

- vocabulary,
- the logical symbols $\lor, \&, \rightarrow, \neg, \forall, \exists, (,),$
- variable symbols,

and follows certain rules to define *well-formed* sentences.

For instance, $\forall x, y (x < y \rightarrow \forall z (z + x < z + y))$ is a well-formed sentence.

Given a structure \mathcal{A} and a sentence φ , one can define what it means for φ to be true on \mathcal{A} , or for \mathcal{A} to model φ , written $\mathcal{A} \models \varphi$.

In *1st-order languages*, \forall and \exists range over the elements of the stucture.

A vocabulary is a set of constant, functions and relations symbols.

For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

To define a *language* we use

- vocabulary,
- the logical symbols $\lor, \&, \rightarrow, \neg, \forall, \exists, (,),$
- variable symbols,

and follows certain rules to define *well-formed* sentences.

For instance, $\forall x, y (x < y \rightarrow \forall z (z + x < z + y))$ is a well-formed sentence.

Given a structure \mathcal{A} and a sentence φ , one can define what it means for φ to be true on \mathcal{A} , or for \mathcal{A} to model φ , written $\mathcal{A} \models \varphi$.

In *1st-order languages*, \forall and \exists range over the elements of the stucture. Throughout this talk, vocabularies are always countable.

Antonio Montalbán (U.C. Berkeley)

Vaught's conjecture

Axiomatizable class of structures

Definition: A class of structures \mathbb{K} is *axiomatizable* if it consist of those structures that satisfy a certain set of sentences.

Axiomatizable class of structures

Definition: A class of structures \mathbb{K} is *axiomatizable* if it consist of those structures that satisfy a certain set of sentences.

Examples:

- The class of groups
- The class of rings
- The class of commutative rings with no zero-divisors
- The class of linear orderings
- The class of dense linear orderings without end-points
- The class of algebraically closed fields
- The class of Q-vector spaces.

Conjecture: [Vaught 61] The number of countable models in an axiomatizable class of structures is either countable or continuum.

Conjecture: [Vaught 61] The number of countable models in an axiomatizable class of structures

is either countable or continuum.

Throughout this talk, we only consider countable structures.

Throughout this talk, we only consider **countable structures**.

Observation: There are at most 2^{\aleph_0} many countable structures on a given vocabulary:

Throughout this talk, we only consider **countable structures**.

Observation: There are at most 2^{\aleph_0} many countable structures on a given vocabulary:

Ex: Counting the number of countable ordered fields (K; 0_K , 1_K , $+_K$, \times_K , $<_K$), we can assume $K = \mathbb{N}$,

Throughout this talk, we only consider **countable structures**.

Observation: There are at most 2^{\aleph_0} many countable structures on a given vocabulary:

Ex: Counting the number of countable ordered fields $(K; 0_K, 1_K, +_K, \times_K, <_K)$, we can assume $K = \mathbb{N}$, and hence $0_K \in \mathbb{N}$, $1_K \in \mathbb{N}$, $+_K \subseteq \mathbb{N}^3$, $\times_K \subseteq \mathbb{N}^3$, $<_K \subseteq \mathbb{N}^2$.

Throughout this talk, we only consider **countable structures**.

Observation: There are at most 2^{\aleph_0} many countable structures on a given vocabulary:

Ex: Counting the number of countable ordered fields $(K; 0_K, 1_K, +_K, \times_K, <_K)$, we can assume $K = \mathbb{N}$, and hence $0_K \in \mathbb{N}$, $1_K \in \mathbb{N}$, $+_K \subseteq \mathbb{N}^3$, $\times_K \subseteq \mathbb{N}^3$, $<_K \subseteq \mathbb{N}^2$. So, there are 2^{\aleph_0} possibilities. Throughout this talk, we only consider **countable structures**.

Observation: There are at most 2^{\aleph_0} many countable structures on a given vocabulary:

Ex: Counting the number of countable ordered fields $(K; 0_K, 1_K, +_K, \times_K, <_K)$, we can assume $K = \mathbb{N}$, and hence $0_K \in \mathbb{N}$, $1_K \in \mathbb{N}$, $+_K \subseteq \mathbb{N}^3$, $\times_K \subseteq \mathbb{N}^3$, $<_K \subseteq \mathbb{N}^2$. So, there are 2^{\aleph_0} possibilities.

Note: Some of these possibilities might end up being isomorphic, and hence are being counted multiple times.

Class of structures Number of countable models

Groups

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	2 ^{ℵ₀} (continuum)

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	$ \begin{array}{c c} 2^{\aleph_0} (continuum) \\ 2^{\aleph_0} (continuum) \end{array} $
Algebraically closed fields	

Class	Number of
of structures	countable models
Groups	$\frac{2^{\aleph_0} \text{ (continuum)}}{2^{\aleph_0} \text{ (continuum)}}$
Fields	2^{\aleph_0} (continuum)
Algebraically closed fields	\aleph_0 (countable)

Class	Number of
of structures	countable models
Groups	$ \begin{array}{c c} 2^{\aleph_0} \text{ (continuum)} \\ 2^{\aleph_0} \text{ (continuum)} \end{array} $
Fields	2^{\aleph_0} (continuum)
Algebraically closed fields	\aleph_0 (countable)
\mathbb{Q} -vector spaces	

Class	Number of
of structures	countable models
Groups	2 ^{ℵ₀} (continuum)
Fields	2^{\aleph_0} (continuum)
Algebraically closed fields	\aleph_0 (countable)
\mathbb{Q} -vector spaces	\aleph_0 (countable)

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	2 ^{ℵ₀} (continuum)
Algebraically closed fields	\aleph_0 (countable)
\mathbb{Q} -vector spaces	\aleph_0 (countable)
Linear orders	

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	2 ^{ℵ₀} (continuum)
Algebraically closed fields	\aleph_0 (countable)
\mathbb{Q} -vector spaces	\aleph_0 (countable) 2^{\aleph_0} (continuum)
Linear orders	2^{\aleph_0} (continuum)

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	2^{\aleph_0} (continuum)
Algebraically closed fields	ℵ₀ (countable)
${\mathbb Q}$ -vector spaces	\aleph_0 (countable)
Linear orders	2 ^{ℵ₀} (continuum)
dense linear orders without end-points	

dense linear orders without end-points

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	2^{\aleph_0} (continuum)
Algebraically closed fields	\aleph_0 (countable)
\mathbb{Q} -vector spaces	\aleph_0 (countable)
Linear orders	2 ^{ℵ₀} (continuum)
dense linear orders without end-points	1 (countable)

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	2^{\aleph_0} (continuum)
Algebraically closed fields	\aleph_0 (countable)
\mathbb{Q} -vector spaces	\aleph_0 (countable)
Linear orders	2^{\aleph_0} (continuum)
dense linear orders without end-points	1 (countable)
dense linear orders	

Class	Number of
of structures	countable models
Groups	2^{\aleph_0} (continuum)
Fields	2 ^{ℵ₀} (continuum)
Algebraically closed fields	\aleph_0 (countable)
\mathbb{Q} -vector spaces	\aleph_0 (countable)
Linear orders	2^{\aleph_0} (continuum)
dense linear orders without end-points	1 (countable)
dense linear orders	4 (countable)

Conjecture: [Vaught 61] The number of countable models in an axiomatizable class of structures is either countable or continuum.

Partial results towards Vaught's conjecture:

Some special cases are known to be true:

Partial results towards Vaught's conjecture:

Some special cases are known to be true:

Theorem [Steel 78] Vaught's conjecture holds axiomatizable classes of structures all whose models are linear orderings.

Some special cases are known to be true:

Theorem [Steel 78] Vaught's conjecture holds axiomatizable classes of structures all whose models are linear orderings. **Theorem** [Shelah 84] Vaught's conjecture holds for ω -stable theories. Some special cases are known to be true:

Theorem [Steel 78] Vaught's conjecture holds axiomatizable classes of structures all whose models are linear orderings. **Theorem** [Shelah 84] Vaught's conjecture holds for ω -stable theories.

The most important partial result is:

Some special cases are known to be true:

Theorem [Steel 78] Vaught's conjecture holds axiomatizable classes of structures all whose models are linear orderings. **Theorem** [Shelah 84] Vaught's conjecture holds for ω -stable theories.

The most important partial result is:

Theorem: [Morley 70] The number of countable models on any axiomatizable class is either countable, \aleph_1 , or 2^{\aleph_0} .

Summary of the talk:

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Summary of the talk:

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Let $\mathcal{A},\,\mathcal{B}$ be structures.

Definition: \mathcal{A} and \mathcal{B} are *elementary equivalent* if, for every sentence φ ,

•

$$\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi.$$

Let $\mathcal{A},\,\mathcal{B}$ be structures.

Definition: \mathcal{A} and \mathcal{B} are *elementary equivalent* if, for every sentence φ ,

$$\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi.$$

Observation: Elementary equivalent structures need not be isomorphic.

Let \mathcal{A} , \mathcal{B} be structures.

Definition: \mathcal{A} and \mathcal{B} are *elementary equivalent* if, for every sentence φ ,

$$\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi.$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q}; +)$ and $(\mathbb{R}; +)$ are elementary equivalent,

Let \mathcal{A} , \mathcal{B} be structures.

Definition: \mathcal{A} and \mathcal{B} are *elementary equivalent* if, for every sentence φ ,

$$\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi.$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q}; +)$ and $(\mathbb{R}; +)$ are elementary equivalent, but $(\mathbb{Z}; +)$ isn't.

Let \mathcal{A} , \mathcal{B} be structures.

Definition: A and B are *elementary equivalent* if, for every sentence φ ,

$$\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi.$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q}; +)$ and $(\mathbb{R}; +)$ are elementary equivalent, but $(\mathbb{Z}; +)$ isn't.

Lemma: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many elementary equivalence classes.

Let \mathcal{A} , \mathcal{B} be structures.

Definition: A and B are *elementary equivalent* if, for every sentence φ ,

$$\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi.$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q}; +)$ and $(\mathbb{R}; +)$ are elementary equivalent, but $(\mathbb{Z}; +)$ isn't.

Lemma: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many elementary equivalence classes.

Proof: Elementary equivalence is Borel.

Let \mathcal{A} , \mathcal{B} be structures.

Definition: \mathcal{A} and \mathcal{B} are *elementary equivalent* if, for every sentence φ ,

$$\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi.$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q}; +)$ and $(\mathbb{R}; +)$ are elementary equivalent, but $(\mathbb{Z}; +)$ isn't.

Lemma: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many elementary equivalence classes.

Proof: Elementary equivalence is Borel.

Then, by Silver's theorem, every axiomatizable class of structures has either countably many or continuum many elementary equivalence classes.

Antonio Montalbán (U.C. Berkeley)

Vaught's conjecture

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.

Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$\mathcal{A}\modelsarphi(ar{a})\iff\mathcal{B}\modelsarphi(ar{b}).$$

Let \mathcal{A} , \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.

Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$\mathcal{A}\models \varphi(\bar{a})\iff \mathcal{B}\models \varphi(\bar{b}).$$

Observation: Non-automorphic tuples may have the same type.

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.

Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$\mathcal{A}\models \varphi(\bar{a})\iff \mathcal{B}\models \varphi(\bar{b}).$$

Observation: Non-automorphic tuples may have the same type.

Example: In $(\mathbb{Z} + \mathbb{Z}; \leq)$ all elements have the same type.

Let \mathcal{A} , \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.

Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$\mathcal{A}\models \varphi(\bar{a})\iff \mathcal{B}\models \varphi(\bar{b}).$$

Observation: Non-automorphic tuples may have the same type.

Example: In $(\mathbb{Z} + \mathbb{Z}; \leq)$ all elements have the same type.

Corollary: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many types.

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.

Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$\mathcal{A}\models arphi(ar{a})\iff \mathcal{B}\models arphi(ar{b}).$$

Observation: Non-automorphic tuples may have the same type.

Example: In $(\mathbb{Z} + \mathbb{Z}; \leq)$ all elements have the same type.

Corollary: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many types.

Proof: Type equivalence is Borel.

Antonio Montalbán (U.C. Berkeley)

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.

Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$\mathcal{A}\models arphi(ar{a})\iff \mathcal{B}\models arphi(ar{b}).$$

Observation: Non-automorphic tuples may have the same type.

Example: In $(\mathbb{Z} + \mathbb{Z}; \leq)$ all elements have the same type.

Corollary: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many types.

Proof: Type equivalence is Borel. By Silver's theorem, every axiomatizable class of structures has either countably many or continuum many different types.

Antonio Montalbán (U.C. Berkeley)

Vaught's conjecture

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.

Corollary: If $\mathbb K$ has less than continuum many models, it has countably many types.

Martin's Conjecture:

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.

Corollary: If $\mathbb K$ has less than continuum many models, it has countably many types.

Martin's Conjecture:

Let ${\mathbb K}$ be an axiomatizable class of structures without continuum many models.

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.

Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.

Martin's Conjecture:

Let $\mathbb K$ be an axiomatizable class of structures without continuum many models. There are countably many types realized in $\mathbb K.$

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.

Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.

Martin's Conjecture:

Let \mathbb{K} be an axiomatizable class of structures without continuum many models. There are countably many types realized in \mathbb{K} . For each type, add to the language a new symbol T_i

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.

Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.

Martin's Conjecture:

Let \mathbb{K} be an axiomatizable class of structures without continuum many models. There are countably many types realized in \mathbb{K} . For each type, add to the language a new symbol T_i that holds of the tuples which have that type.

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.

Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.

Martin's Conjecture:

Let \mathbb{K} be an axiomatizable class of structures without continuum many models. There are countably many types realized in \mathbb{K} . For each type, add to the language a new symbol T_i that holds of the tuples which have that type. Then, for structure in \mathbb{K} in the new language,

isomorphism and elementary equivalence coincide.

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.

Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.

Martin's Conjecture:

Let \mathbb{K} be an axiomatizable class of structures without continuum many models. There are countably many types realized in \mathbb{K} . For each type, add to the language a new symbol T_i that holds of the tuples which have that type. Then, for structure in \mathbb{K} in the new language,

isomorphism and elementary equivalence coincide.

Since there are countably or continuum many elementary equivalence classes, Martin's conjecture \implies Vaught's conjecture. Definition: A theory is ω -stable if, in every model, even after naming countably many elements, there are countably many types.

Definition: A theory is ω -stable if, in every model, even after naming countably many elements, there are countably many types.

Theorem: [Shelah, Bouscaren] ω -stable theories satisfy Martin's conjecture.

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Part III: Computability Theory

Part III: Computability Theory

From a computability viewpoint,

a counterexample to Vaught's conjecture must look like the class of ordinals.

Def: A set $A \subseteq \mathbb{N}$ is *computable* if there is a computer program that, on input *n*, decides whether $n \in A$.

Church-Turing thesis:

This definition is independent of the programing language chosen.

Def: A set $A \subseteq \mathbb{N}$ is *computable* if there is a computer program that, on input *n*, decides whether $n \in A$.

Church-Turing thesis:

This definition is independent of the programing language chosen.

Examples: The following sets are computable:

- The set of even numbers.
- The set of prime numbers.
- The set of stings that correspond to well-formed programs.

Def: A set $A \subseteq \mathbb{N}$ is *computable* if there is a computer program that, on input *n*, decides whether $n \in A$.

Church-Turing thesis:

This definition is independent of the programing language chosen.

Examples: The following sets are computable:

- The set of even numbers.
- The set of prime numbers.
- The set of stings that correspond to well-formed programs.

Recall that any finite object can be encoded by a natural number.

Antonio Montalbán (U.C. Berkeley)

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators.

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations), of **non-trivial** groups is **not** computable.

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations), of **non-trivial** groups is **not** computable.

Simply connected manifolds: The set of finite triangulations of **simply connected** manifolds is **not** computable.

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations), of **non-trivial** groups is **not** computable.

Simply connected manifolds: The set of finite triangulations of **simply connected** manifolds is **not** computable.

The Halting problem: The set of programs that **halt**, and don't run for ever, is **not** computable.

Def: For $A, B \subseteq \mathbb{N}$, A is computable in B, written $A \leq_T B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: For $A, B \subseteq \mathbb{N}$, A is computable in B, written $A \leq_T B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: A is Turing equivalent to B, written $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

Def: For $A, B \subseteq \mathbb{N}$, A is computable in B, written $A \leq_T B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: A is Turing equivalent to B, written $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

Example: The following sets are Turing equivalent.

- The set of pairs (set-of-generators, relations), of non-trivial groups;
- The set of finite triangulations of simply connected manifolds;
- The set of programs that halt.

Def: For $A, B \subseteq \mathbb{N}$, A is computable in B, written $A \leq_T B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: A is Turing equivalent to B, written $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

Example: The following sets are Turing equivalent.

- The set of pairs (set-of-generators, relations), of non-trivial groups;
- The set of finite triangulations of simply connected manifolds;
- The set of programs that halt.

They are all $<_T$ the following set:

• The set of pairs (set-of-generators, relations), of torsion groups.

Def: For $A, B \subseteq \mathbb{N}$, A is computable in B, written $A \leq_T B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: A is Turing equivalent to B, written $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

Example: The following sets are Turing equivalent.

- The set of pairs (set-of-generators, relations), of non-trivial groups;
- The set of finite triangulations of simply connected manifolds;
- The set of programs that halt.

They are all $<_T$ the following set:

• The set of pairs (set-of-generators, relations), of torsion groups.

Which is $<_{T}$ the following set:

• The set of true sentences in number theory.

Computable Mathematics

Study

- how effective are constructions in mathematics;
- I how complex is to represent certain structures;

Computable Mathematics

Study

- I how effective are constructions in mathematics;
- In the second second

Various areas have been studied,

- Combinatorics,
- Algebra,
- In Analysis,
- Model Theory

In many cases one needs to develop a better understanding of the mathematical structures to be able to get the computable analysis.

Example: A countable ordered group $\mathcal{A} = (A; \times_A, \leq_A)$ can be encoded by three sets:

Example: A countable ordered group $\mathcal{A} = (A; \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}$,

Example: A countable ordered group $\mathcal{A} = (A; \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

Example: A countable ordered group $\mathcal{A} = (A; \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

Example: A countable ordered group $\mathcal{A} = (A; \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

We call such a triplet a *presentation* of A.

Example: A countable ordered group $\mathcal{A} = (A; \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

We call such a triplet a *presentation* of A.

Def: A presentation of A is *computable* if A, \times_A , and \leq_A are.

Example: A countable ordered group $\mathcal{A} = (A; \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

We call such a triplet a *presentation* of A.

Def: A presentation of A is *computable* if A, \times_A , and \leq_A are.

Note: A single structure can have many isomorphic presentations.

Theorem: Every Abelian ring has a maximal ideal.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring $\mathcal{A} = (A, 0, 1, +_A, \times_A)$ can be encoded by three sets $A \subseteq \mathbb{N}$, $+_A \subseteq \mathbb{N}^3$ and $\times_A \subseteq \mathbb{N}^3$.

 \mathcal{A} is *computable* if A, $+_A$ and $\times_{\mathcal{A}}$ are.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring $\mathcal{A} = (A, 0, 1, +_A, \times_A)$ can be encoded by three sets $A \subseteq \mathbb{N}$, $+_A \subseteq \mathbb{N}^3$ and $\times_A \subseteq \mathbb{N}^3$.

 \mathcal{A} is *computable* if A, $+_A$ and $\times_{\mathcal{A}}$ are.

Theorem: [Friedman, Simpson, Smith] Not every computable Abelian ring has a computable maximal ideal.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring $\mathcal{A} = (A, 0, 1, +_A, \times_A)$ can be encoded by three sets $A \subseteq \mathbb{N}$, $+_A \subseteq \mathbb{N}^3$ and $\times_A \subseteq \mathbb{N}^3$.

 \mathcal{A} is *computable* if A, $+_A$ and $\times_{\mathcal{A}}$ are.

Theorem: [Friedman, Simpson, Smith]

Not every computable Abelian ring has a computable maximal ideal. However, maximal ideals can be found computable in the halting problem.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring $\mathcal{A} = (\mathcal{A}, 0, 1, +_{\mathcal{A}}, \times_{\mathcal{A}})$ can be encoded by three sets $\mathcal{A} \subseteq \mathbb{N}$, $+_{\mathcal{A}} \subseteq \mathbb{N}^3$ and $\times_{\mathcal{A}} \subseteq \mathbb{N}^3$.

 \mathcal{A} is *computable* if A, $+_A$ and $\times_{\mathcal{A}}$ are.

Theorem: [Friedman, Simpson, Smith]

Not every computable Abelian ring has a computable maximal ideal. However, maximal ideals can be found computable in the halting problem. There are computable rings, all whose maximal ideals compute the halting problem.

Def: A group $\mathcal{G} = (G, +)$ is *computable* if both $G \subseteq \mathbb{N}$ and $+ \subseteq \mathbb{N}^3$ are computable.

Def: A group $\mathcal{G} = (G, +)$ is *computable* if both $G \subseteq \mathbb{N}$ and $+ \subseteq \mathbb{N}^3$ are computable.

Does every group have a computable presentation?

Def: A group $\mathcal{G} = (G, +)$ is *computable* if both $G \subseteq \mathbb{N}$ and $+ \subseteq \mathbb{N}^3$ are computable.

Does every group have a computable presentation? No. There are 2^{\aleph_0} non-isomorphic groups.

Def: A group $\mathcal{G} = (G, +)$ is *computable* if both $G \subseteq \mathbb{N}$ and $+ \subseteq \mathbb{N}^3$ are computable.

Does every group have a computable presentation? No. There are 2^{\aleph_0} non-isomorphic groups.

Example: Given a set $X \subseteq \omega$ consider the group:

$$\mathcal{G}_X = \sum_{i \in X} \mathbb{Z}_{p_i}$$

Def: A group $\mathcal{G} = (G, +)$ is *computable* if both $G \subseteq \mathbb{N}$ and $+ \subseteq \mathbb{N}^3$ are computable.

Does every group have a computable presentation? No. There are 2^{\aleph_0} non-isomorphic groups.

Example: Given a set $X \subseteq \omega$ consider the group:

$$\mathcal{G}_X = \sum_{i \in X} \mathbb{Z}_{p_i}$$

If X is the complement of the halting problem, then any presentation of \mathcal{G}_X computes the halting problem.

Def: A structure \mathcal{A} is *computable* in a structure \mathcal{B} , if every presentation of \mathcal{A} computes a presentation of \mathcal{B} .

Def: A structure \mathcal{A} is *computable* in a structure \mathcal{B} , if every presentation of \mathcal{A} computes a presentation of \mathcal{B} .

Recall: A presentation of $\mathcal{A} = (A, +_A, <_A, ...)$ is an isomorphic copy with $A \subseteq \mathbb{N}$

Def: A structure \mathcal{A} is *computable* in a structure \mathcal{B} , if every presentation of \mathcal{A} computes a presentation of \mathcal{B} .

Recall: A presentation of $\mathcal{A} = (A, +_A, <_A, ...)$ is an isomorphic copy with $A \subseteq \mathbb{N}$

Examples:

- For a ring \mathcal{A} , the $\mathcal{A}[x]$ is computable in \mathcal{A} .
- For every group \mathcal{G} , \mathcal{G} is computable in $\mathcal{G}\oplus\mathcal{G}$ and vice-versa.
- There are groups \mathcal{G} such that $\sum_{i=1}^{\infty} \mathcal{G}$ does not compute \mathcal{G} . Take $G = \sum_{i=1}^{\infty} (\mathbb{Z}_{p_i})^{k_i}$, non-computable with all $k_i \neq 0$.

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

1 \mathbb{K} is a counterexample to Vaught's conjecture.

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

- **1** \mathbb{K} is a counterexample to Vaught's conjecture.
- **2** The structures in \mathbb{K} are linearly ordered by computability

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

- **1** \mathbb{K} is a counterexample to Vaught's conjecture.
- **2** The structures in \mathbb{K} are linearly ordered by computability

non-trivially, on a cone.

That is: Relative to every oracle on a cone:

For every \mathcal{A} , \mathcal{B} in \mathbb{K} , either \mathcal{A} is computable in \mathcal{B} or \mathcal{B} is computable in \mathcal{A} ,

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

- \bigcirc \mathbb{K} is a counterexample to Vaught's conjecture.
- **2** The structures in \mathbb{K} are linearly ordered by computability

non-trivially, on a cone.

That is: Relative to every oracle on a cone:

For every \mathcal{A} , \mathcal{B} in \mathbb{K} , either \mathcal{A} is computable in \mathcal{B} or \mathcal{B} is computable in \mathcal{A} ,

and not all structures in $\ensuremath{\mathbb{K}}$ are computably equivalent.

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

- **1** \mathbb{K} is a counterexample to Vaught's conjecture.
- **2** The structures in \mathbb{K} are linearly ordered by computability

non-trivially, on a cone.

That is: Relative to every oracle on a cone: For every \mathcal{A} , \mathcal{B} in \mathbb{K} , either \mathcal{A} is computable in \mathcal{B} or \mathcal{B} is computable in \mathcal{A} , and not all structures in \mathbb{K} are computably equivalent.

Proof of (2) \implies (1):

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

- **1** \mathbb{K} is a counterexample to Vaught's conjecture.
- **2** The structures in \mathbb{K} are linearly ordered by computability

non-trivially, on a cone.

That is: Relative to every oracle on a cone: For every \mathcal{A} , \mathcal{B} in \mathbb{K} , either \mathcal{A} is computable in \mathcal{B} or \mathcal{B} is computable in \mathcal{A} , and not all structures in \mathbb{K} are computably equivalent.

Proof of (2) \implies (1): Lemma: If (\mathcal{L}, \leq) is a linear ordering such that every element has at most countably many elements below it, then it has at most \aleph_1 many elements.

Well-orders

Definition: A linear order $(X; \leq)$ is a *well-order* if it has no infinite descending sequence.

Well-orders

Definition: A linear order $(X; \leq)$ is a *well-order* if it has no infinite descending sequence.

• All well-orders are isomorphic to ordinals.

- All well-orders are isomorphic to ordinals.
- Given two well-orders, one is an initial segment of the other.

- All well-orders are isomorphic to ordinals.
- Given two well-orders, one is an initial segment of the other.

Obs: There are \aleph_1 countable well-orders.

- All well-orders are isomorphic to ordinals.
- Given two well-orders, one is an initial segment of the other.

Obs: There are \aleph_1 countable well-orders.

However,

- All well-orders are isomorphic to ordinals.
- Given two well-orders, one is an initial segment of the other.

Obs: There are \aleph_1 countable well-orders.

However, the class of well-orders is not 1st-order axiomatizable.

Antonio Montalbán (U.C. Berkeley)

Vaught's conjecture

A second equivalent to Vaught's conjecture

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

A second equivalent to Vaught's conjecture

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

1 \mathbb{K} is a counterexample to Vaught's conjecture.

A second equivalent to Vaught's conjecture

Theorem ([M. 2012] ZFC+PD + \neg CH)

Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

- **1** \mathbb{K} is a counterexample to Vaught's conjecture.
- *Q* Relative to some oracle, for every X, Y ⊆ N,
 X and Y compute the same ordinals if and only if
 X and Y compute the same structures in K.

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

The topological Vaught's conjecture: [Miller] Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture: [Miller] Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Definition: A topological space \mathcal{X} is *Polish* if

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples:

ℝ″,

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples: \mathbb{R}^n , $2^{\mathbb{N}}$,

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples:	\mathbb{R}^{n} ,	2 ^ℕ ,	N ^ℕ ,

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples:	\mathbb{R}^{n} ,	2 ^ℕ ,	N ^ℕ ,	<i>C</i> [0, 1],	
Examples.	ща,	Ζ,	IN ,	C[0, 1],	

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples:	\mathbb{R}^{n} ,	2 ^ℕ ,	$\mathbb{N}^{\mathbb{N}}$,	<i>C</i> [0, 1],	
	,	- ,	_ , ,	-[-,-],	

Definition: A Polish group is a Polish space with a group operation

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples:	\mathbb{R}^{n} ,	2 ^ℕ ,	$\mathbb{N}^{\mathbb{N}}$,	<i>C</i> [0, 1],	
-----------	--------------------	------------------	-----------------------------	------------------	--

Definition: A *Polish group* is a Polish space with a group operation which is continuous, and has a continuous inverse.

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples:	\mathbb{R}^{n} ,	2 ^ℕ ,	$\mathbb{N}^{\mathbb{N}}$,	<i>C</i> [0, 1],
-----------	--------------------	------------------	-----------------------------	------------------

Definition: A *Polish group* is a Polish space with a group operation which is continuous, and has a continuous inverse.

Examples:

• $Sym_{\mathbb{N}}$, the group of permutations of $\mathbb N$

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples:	\mathbb{R}^{n} ,	2 ^ℕ ,	$\mathbb{N}^{\mathbb{N}}$,	<i>C</i> [0, 1],	
-----------	--------------------	------------------	-----------------------------	------------------	--

Definition: A *Polish group* is a Polish space with a group operation which is continuous, and has a continuous inverse.

Examples:

- $\mathit{Sym}_{\mathbb{N}}$, the group of permutations of $\mathbb N$
- the homeomorphisms [0,1] to [0,1]

Definition: A topological space \mathcal{X} is *Polish* if

- it is separable, and
- it admits a complete metric.

Examples:	\mathbb{R}^{n} ,	2 ^ℕ ,	$\mathbb{N}^{\mathbb{N}}$,	<i>C</i> [0, 1],
-----------	--------------------	------------------	-----------------------------	------------------

Definition: A *Polish group* is a Polish space with a group operation which is continuous, and has a continuous inverse.

Examples:

- $Sym_{\mathbb{N}}$, the group of permutations of \mathbb{N}
- the homeomorphisms [0,1] to [0,1]
- The group of $n \times n$ invertible matrices over \mathbb{R} .

The topological Vaught's conjecture:

Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture:

Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Definition: Given a group (G; *) and a set X, a group action of G on X is a map $a: G \times X \to X$ (where a(g, x) is denoted $g \cdot x$) such that

• $e \cdot x = x$,

•
$$g \cdot (h \cdot x) = (g * h) \cdot x$$
.

Definition: Given a group (G; *) and a set X, a group action of G on X is a map $a: G \times X \to X$ (where a(g, x) is denoted $g \cdot x$) such that

• $e \cdot x = x$,

•
$$g \cdot (h \cdot x) = (g * h) \cdot x$$
.

Examples:

• The self-homeomorphisms of [0, 1] act on C[0, 1] by composition.

Definition: Given a group (G; *) and a set X, a group action of G on X is a map $a: G \times X \to X$ (where a(g, x) is denoted $g \cdot x$) such that

• $e \cdot x = x$,

•
$$g \cdot (h \cdot x) = (g * h) \cdot x$$
.

Examples:

- The self-homeomorphisms of [0, 1] act on C[0, 1] by composition.
- The invertible $n \times n$ matrices act on \mathbb{R}^n by multiplication.

Definition: Given a group (G; *) and a set X, a group action of G on X is a map $a: G \times X \to X$ (where a(g, x) is denoted $g \cdot x$) such that

• $e \cdot x = x$,

•
$$g \cdot (h \cdot x) = (g * h) \cdot x$$
.

Examples:

- The self-homeomorphisms of [0, 1] act on C[0, 1] by composition.
- The invertible $n \times n$ matrices act on \mathbb{R}^n by multiplication.
- Sym_N acts on $2^{\mathbb{N}}$.

The topological Vaught's conjecture:

Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture:

Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Orbits

Consider an action $a: G \times \mathcal{X} \to \mathcal{X}$, of a group (G; *) on a space \mathcal{X} .

Consider an action $a: G \times \mathcal{X} \to \mathcal{X}$, of a group (G; *) on a space \mathcal{X} .

Definition: A subset A of X is *invariant* if $\forall g \in G, x \in A \ (g \cdot x \in A)$.

Consider an action $a: G \times \mathcal{X} \to \mathcal{X}$, of a group (G; *) on a space \mathcal{X} .

Definition: A subset A of X is *invariant* if $\forall g \in G, x \in A \ (g \cdot x \in A)$.

Definition: The *orbit* of an element $x \in \mathcal{X}$ is

$$G \cdot x = \{g \cdot x : g \in G\}.$$

Antonio Montalbán (U.C. Berkeley)

The topological Vaught's conjecture:

Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture:

Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits. Definition: The *Borel sets* of a topological space \mathcal{X} is the smallest class of subsets of \mathcal{X} that

- contains all open sets
- and is closed under
 - countable unions;
 - countable intersections;
 - complements.

The topological Vaught's conjecture: (TVC)

Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture: (TVC)

Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Theorem:

The topological Vaught's conjecture holds for the following groups:

- Locally compact
- Abelian [Sami]
- Nilpotent [Hjorth and Solecki]
- Groups with two-sided invariant metrics [Solecki]
- Groups with complete left invariant metrics [Becker]

Fix a computable vocabulary L.

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{\times, \leq\}$.

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{\times, \leq\}$.

Definition: Let \mathcal{X}_L be the set of all *L*-structures with domain \mathbb{N} .

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{\times, \leq\}$.

Definition: Let \mathcal{X}_L be the set of all *L*-structures with domain \mathbb{N} .

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G} = (\mathbb{N}; \times_{\mathcal{G}}, \leq_{\mathcal{G}})$ whith $\times_{\mathcal{G}} \subseteq \mathbb{N}^3$ and $\leq_{\mathcal{G}} \subseteq \mathbb{N}^2$.

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{\times, \leq\}$.

Definition: Let \mathcal{X}_L be the set of all *L*-structures with domain \mathbb{N} .

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G} = (\mathbb{N}; \times_G, \leq_G)$ whith $\times_G \subseteq \mathbb{N}^3$ and $\leq_G \subseteq \mathbb{N}^2$.

Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^3 \sqcup \mathbb{N}^2$:

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{\times, \leq\}$.

Definition: Let \mathcal{X}_L be the set of all *L*-structures with domain \mathbb{N} .

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G} = (\mathbb{N}; \times_{\mathcal{G}}, \leq_{\mathcal{G}})$ whith $\times_{\mathcal{G}} \subseteq \mathbb{N}^3$ and $\leq_{\mathcal{G}} \subseteq \mathbb{N}^2$.

Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^3 \sqcup \mathbb{N}^2$: $\mathcal{X}_{\mathcal{L}} \subseteq \mathcal{P}(\mathbb{N}^3 \sqcup \mathbb{N}^2) \cong 2^{\mathbb{N}^3 \sqcup \mathbb{N}^2}$

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.

Definition: Let \mathcal{X}_L be the set of all *L*-structures with domain \mathbb{N} .

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G} = (\mathbb{N}; \times_{\mathcal{G}}, \leq_{\mathcal{G}})$ whith $\times_{\mathcal{G}} \subseteq \mathbb{N}^3$ and $\leq_{\mathcal{G}} \subseteq \mathbb{N}^2$.

Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^3 \sqcup \mathbb{N}^2$: $\mathcal{X}_{\mathcal{L}} \subseteq \mathcal{P}(\mathbb{N}^3 \sqcup \mathbb{N}^2) \cong 2^{\mathbb{N}^3 \sqcup \mathbb{N}^2}$

 $\mathcal{X}_{\mathcal{L}}$ inherits the product topology of $2^{\mathbb{N}^3 \sqcup \mathbb{N}^2}$.

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{\times, \leq\}$.

Definition: Let \mathcal{X}_L be the set of all *L*-structures with domain \mathbb{N} .

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G} = (\mathbb{N}; \times_{\mathcal{G}}, \leq_{\mathcal{G}})$ whith $\times_{\mathcal{G}} \subseteq \mathbb{N}^3$ and $\leq_{\mathcal{G}} \subseteq \mathbb{N}^2$.

Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^3 \sqcup \mathbb{N}^2$: $\mathcal{X}_{\mathcal{L}} \subseteq \mathcal{P}(\mathbb{N}^3 \sqcup \mathbb{N}^2) \cong 2^{\mathbb{N}^3 \sqcup \mathbb{N}^2}$

 $\mathcal{X}_{\mathcal{L}}$ inherits the product topology of $2^{\mathbb{N}^3 \sqcup \mathbb{N}^2}$.

The following and their complements form a basis of clopen sets

•
$$\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a +_{G} b = c\}$$
 for $a, b, c \in \mathbb{N}$.

•
$$\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a \leq_G b\}$$
 for $a, b \in \mathbb{N}$.

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.

Definition: Let \mathcal{X}_L be the set of all *L*-structures with domain \mathbb{N} .

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G} = (\mathbb{N}; \times_{G}, \leq_{G})$ whith $\times_{G} \subseteq \mathbb{N}^{3}$ and $\leq_{G} \subseteq \mathbb{N}^{2}$.

Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^3 \sqcup \mathbb{N}^2$: $\mathcal{X}_{\mathcal{L}} \subseteq \mathcal{P}(\mathbb{N}^3 \sqcup \mathbb{N}^2) \cong 2^{\mathbb{N}^3 \sqcup \mathbb{N}^2}$

 $\mathcal{X}_{\mathcal{L}}$ inherits the product topology of $2^{\mathbb{N}^3 \sqcup \mathbb{N}^2}$.

The following and their complements form a basis of clopen sets

•
$$\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a +_{G} b = c\}$$
 for $a, b, c \in \mathbb{N}$.

• $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a \leq_G b\}$ for $a, b \in \mathbb{N}$.

Theorem: \mathcal{X}_L is a Polish space.

Example: the ordered groups

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{e, \times, \leq\}$. The following and their complements form a basis of clopen sets

- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : e_G = a\}$ for $a \in \mathbb{N}$.
- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a +_G b = c\}$ for $a, b, c \in \mathbb{N}$.
- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a \leq_G b\}$ for $a, b \in \mathbb{N}$.

Obs: The class of ordered groups is a closed set in \mathcal{X}_L .

Example: the ordered groups

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{e, \times, \leq\}$. The following and their complements form a basis of clopen sets

- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : e_G = a\}$ for $a \in \mathbb{N}$.
- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a +_G b = c\}$ for $a, b, c \in \mathbb{N}$.
- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a \leq_G b\}$ for $a, b \in \mathbb{N}$.

Obs: The class of ordered groups is a closed set in \mathcal{X}_L .

Obs: The class of torsion groups is a countable intersection of open sets .

Example: the ordered groups

Fix a computable vocabulary *L*. Say the vocabulary of ordered groups $\{e, \times, \leq\}$. The following and their complements form a basis of clopen sets

- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : e_G = a\}$ for $a \in \mathbb{N}$.
- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a +_G b = c\}$ for $a, b, c \in \mathbb{N}$.
- $\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}} : a \leq_G b\}$ for $a, b \in \mathbb{N}$.

Obs: The class of ordered groups is a closed set in \mathcal{X}_L .

Obs: The class of torsion groups is a countable intersection of open sets .

Theorem: If φ is a 1st-order sentence, $\{\mathcal{G} \in \mathcal{X}_L : \mathcal{G} \models \varphi\}$ is Borel.

Definition: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Definition: $L_{\omega_{1},\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Obs: The class of presentations of models of an $L_{\omega_1,\omega}$ sentence is Borel.

Definition: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

 $\begin{array}{l} \mbox{Theorem[Lopez-Escobar]: For } \mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}} \mbox{ closed under isomorphisms,} \\ \mathbb{K} \mbox{ is axiomatizable by an } \mathcal{L}_{\omega_1,\omega} \mbox{ sentence } \Longleftrightarrow \ \mathbb{K} \mbox{ is Borel.} \end{array}$

Definition: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

 $\begin{array}{l} \mbox{Theorem[Lopez-Escobar]: For } \mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}} \mbox{ closed under isomorphisms,} \\ \mathbb{K} \mbox{ is axiomatizable by an } \mathcal{L}_{\omega_1,\omega} \mbox{ sentence } \longleftrightarrow \mbox{ K is Borel.} \end{array}$

Lemma: [Scott 65] For every structure \mathcal{A} , there is an $L_{\omega_1,\omega}$ sentence φ such that, $\mathcal{B} \models \varphi$ if and only if $\mathcal{B} \cong \mathcal{A}$.

Definition: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

 $\begin{array}{l} \mbox{Theorem[Lopez-Escobar]: For } \mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}} \mbox{ closed under isomorphisms,} \\ \mathbb{K} \mbox{ is axiomatizable by an } \mathcal{L}_{\omega_1,\omega} \mbox{ sentence } \iff \mathbb{K} \mbox{ is Borel.} \end{array}$

Lemma: [Scott 65] For every structure \mathcal{A} , there is an $L_{\omega_1,\omega}$ sentence φ such that, $\mathcal{B} \models \varphi$ if and only if $\mathcal{B} \cong \mathcal{A}$.

Vaught's Conjecture for $L_{\omega_1,\omega}$:

The number of countable models of an $\mathcal{L}_{\omega_1,\omega}$ sentence

is either countable, or 2^{\aleph_0} .

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

(I.e., the group of all bijections $\omega
ightarrow \omega.$)

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*, i.e., it's an Polish space where the group operations are computable.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way. For $\mathcal{A} \in \mathcal{X}_L$, $f \in S_{\infty}$, $f \cdot \mathcal{A}$ is the structure \mathcal{B} such that $(n_1, ..., n_k) \in \mathbb{R}^{\mathcal{A}} \iff (f(n_1), ..., f(n_k)) \in \mathbb{R}^{\mathcal{B}}.$

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way. For $\mathcal{A} \in \mathcal{X}_L$, $f \in S_{\infty}$, $f \cdot \mathcal{A}$ is the structure \mathcal{B} such that $(n_1, ..., n_k) \in \mathbb{R}^{\mathcal{A}} \iff (f(n_1), ..., f(n_k)) \in \mathbb{R}^{\mathcal{B}}.$

Obs: This action, : $S_{\infty} \times \mathcal{X}_L \to \mathcal{X}_L$, is continuous.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way. For $\mathcal{A} \in \mathcal{X}_L$, $f \in S_{\infty}$, $f \cdot \mathcal{A}$ is the structure \mathcal{B} such that $(n_1, ..., n_k) \in \mathbb{R}^{\mathcal{A}} \iff (f(n_1), ..., f(n_k)) \in \mathbb{R}^{\mathcal{B}}.$

Obs: This action, $: S_{\infty} \times \mathcal{X}_L \to \mathcal{X}_L$, is continuous.

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \iff

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way. For $\mathcal{A} \in \mathcal{X}_L$, $f \in S_{\infty}$, $f \cdot \mathcal{A}$ is the structure \mathcal{B} such that $(n_1, ..., n_k) \in \mathbb{R}^{\mathcal{A}} \iff (f(n_1), ..., f(n_k)) \in \mathbb{R}^{\mathcal{B}}.$

Obs: This action, $: S_{\infty} \times \mathcal{X}_L \to \mathcal{X}_L$, is continuous.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way. For $\mathcal{A} \in \mathcal{X}_L$, $f \in S_{\infty}$, $f \cdot \mathcal{A}$ is the structure \mathcal{B} such that $(n_1, ..., n_k) \in \mathbb{R}^{\mathcal{A}} \iff (f(n_1), ..., f(n_k)) \in \mathbb{R}^{\mathcal{B}}.$

Obs: This action, : $S_{\infty} \times \mathcal{X}_L \to \mathcal{X}_L$, is continuous.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way. For $\mathcal{A} \in \mathcal{X}_L$, $f \in S_{\infty}$, $f \cdot \mathcal{A}$ is the structure \mathcal{B} such that $(n_1, ..., n_k) \in R^{\mathcal{A}} \iff (f(n_1), ..., f(n_k)) \in R^{\mathcal{B}}.$

Obs: This action, $: S_{\infty} \times \mathcal{X}_L \to \mathcal{X}_L$, is continuous.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way.

Obs: This action, : $S_{\infty} \times \mathcal{X}_L \to \mathcal{X}_L$, is continuous.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way.

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \iff they are isomorphic.

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_1,\omega}$ -axiomatizable $\iff \mathbb{K}$ is Borel and invariant.

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Definition: S_{∞} acts over \mathcal{X}_L in an obvious way.

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \iff they are isomorphic.

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_1,\omega}$ -axiomatizable $\iff \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_{1},\omega} \iff$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

Antonio Montalbán (U.C. Berkeley)

Vaught's conjecture

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \iff they are isomorphic.

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_1,\omega}$ -axiomatizable $\iff \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_{1},\omega} \iff$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

Antonio Montalbán (U.C. Berkeley)

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_1,\omega}$ -axiomatizable $\iff \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_{1},\omega} \iff$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_1,\omega}$ -axiomatizable $\iff \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_1,\omega} \iff$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_1,\omega}$ -axiomatizable $\iff \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_1,\omega} \iff$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

Theorem: [Becker, Kechris]: The following are equivalent:

• Vaught's conjecture for infinitary first-order languages.

Definition: Let S_{∞} (or $Sym_{\mathbb{N}}$) be the permutation group of ω .

With the topology inherited from ω^{ω} , S_{∞} is an *Polish group*,

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_1,\omega}$ -axiomatizable $\iff \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_1,\omega} \iff$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

Theorem: [Becker, Kechris]: The following are equivalent:

- Vaught's conjecture for infinitary first-order languages.
- For any continuous action of S_{∞} into any Polish space, the number of orbits in any Borel invariant set

is either countable or continuum.

Analytic equivalence relations

Some results can be generalized to all analytic equivalence relations.

Some results can be generalized to all analytic equivalence relations.

Thm: [Burgess 78] Consider an analytic equivalence relation on \mathbb{R} . The number of equivalence classes is either countable, \aleph_1 or 2^{\aleph_0} . Some results can be generalized to all analytic equivalence relations.

Thm: [Burgess 78] Consider an analytic equivalence relation on \mathbb{R} . The number of equivalence classes is either countable, \aleph_1 or 2^{\aleph_0} .

Theorem ([M.] ZFC+PD $+ \neg$ CH)

Let \equiv be an analytic equivalence relation on \mathbb{R} . The following are equivalent: Some results can be generalized to all analytic equivalence relations.

Thm: [Burgess 78] Consider an analytic equivalence relation on \mathbb{R} . The number of equivalence classes is either countable, \aleph_1 or 2^{\aleph_0} .

Theorem ([M.] ZFC+PD $+ \neg$ CH)

Let \equiv be an analytic equivalence relation on \mathbb{R} . The following are equivalent:

- There are \aleph_1 many \equiv -equivalence classes.
- The equivalence classes are linearly ordered by computability

on a cone, non-trivially.

Def: $A \subseteq \mathbb{R}^n$ is *analytic* if it is the projection of a Borel set from \mathbb{R}^{n+1} .

Def: $A \subseteq \mathbb{R}^n$ is *analytic* if it is the projection of a Borel set from \mathbb{R}^{n+1} .

Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$

Def: $A \subseteq \mathbb{R}^n$ is *analytic* if it is the projection of a Borel set from \mathbb{R}^{n+1} .

Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$

Recall that every countable structure can be coded as a subset of \mathbb{N} . We called such a real a *presentation of the structure*.

Def: $A \subseteq \mathbb{R}^n$ is *analytic* if it is the projection of a Borel set from \mathbb{R}^{n+1} .

Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$

Recall that every countable structure can be coded as a subset of \mathbb{N} . We called such a real a *presentation of the structure*.

Observation:

 If K is an axiomatizable class of structures, then the set of presentation of structures in K is Borel.

Def: $A \subseteq \mathbb{R}^n$ is *analytic* if it is the projection of a Borel set from \mathbb{R}^{n+1} .

Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$

Recall that every countable structure can be coded as a subset of \mathbb{N} . We called such a real a *presentation of the structure*.

Observation:

- If K is an axiomatizable class of structures, then the set of presentation of structures in K is Borel.
- ② The set of triples $(A, B, f) \in \mathbb{R}^3$, where A and B are presentations of structures in K and f is an isomorphism between A and B is Borel.

Def: $A \subseteq \mathbb{R}^n$ is *analytic* if it is the projection of a Borel set from \mathbb{R}^{n+1} .

Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$

Recall that every countable structure can be coded as a subset of \mathbb{N} . We called such a real a *presentation of the structure*.

Observation:

- If K is an axiomatizable class of structures, then the set of presentation of structures in K is Borel.
- ② The set of triples (A, B, f) ∈ ℝ³, where A and B are presentations of structures in K and f is an isomorphism between A and B is Borel.
- The set of pairs $(\mathcal{A}, \mathcal{B}) \in \mathbb{R}^3$, where \mathcal{A} and \mathcal{B} are presentations of isomorphic structures in \mathbb{K} is analytic.

Thm [Silver 1980]: If \equiv is a Borel equivalence relation on \mathbb{R} , then the number of equivalence classes is either countable or continuum.

Thm [Silver 1980]: If \equiv is a Borel equivalence relation on \mathbb{R} , then the number of equivalence classes is either countable or continuum.

Thm: [Burgess 78] If \equiv is an analitic equivalence relation on \mathbb{R} , then the number of equivalence classes is either countable, \aleph_1 or 2^{\aleph_0} .

Thm [Silver 1980]: If \equiv is a Borel equivalence relation on \mathbb{R} , then the number of equivalence classes is either countable or continuum.

Thm: [Burgess 78] If \equiv is an analitic equivalence relation on \mathbb{R} , then the number of equivalence classes is either countable, \aleph_1 or 2^{\aleph_0} .

There exists analytic equivalence relations with \aleph_1 equivalence classes.

Muchnik computability for an equivalence class.

Def: Let $\mathcal{R}, \mathcal{S} \subseteq \mathbb{R}$. \mathcal{R} is *computable* in \mathcal{S} if every $y \in \mathcal{S}$ can compute some $x \in \mathcal{R}$.

Muchnik computability for an equivalence class.

Def: Let $\mathcal{R}, \mathcal{S} \subseteq \mathbb{R}$. \mathcal{R} is *computable* in \mathcal{S} if every $y \in \mathcal{S}$ can compute some $x \in \mathcal{R}$.

Obs: If \mathcal{A} and \mathcal{B} are structures then, \mathcal{A} is computable in \mathcal{B} iff and only if the set of presentations of \mathcal{A} is computable in the set of presentations of \mathcal{B} .

Examples:

The following equivalence classes have \aleph_1 -many equivalence classes:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- i-embeddability on torsion p-groups;
- isomorphism on models of a counterexample to Vaught's conjecture when relativized;
- **5** $X \equiv Y \iff X$ and Y compute the same well-orderings.

Examples:

The following equivalence classes have \aleph_1 -many equivalence classes:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- i-embeddability on torsion p-groups;
- isomorphism on models of a counterexample to Vaught's conjecture when relativized;
- **5** $X \equiv Y \iff X$ and Y compute the same well-orderings.

Thm [M 05]: For \sim as in (2), computability is linear.

Examples:

The following equivalence classes have \aleph_1 -many equivalence classes:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- i-embeddability on torsion p-groups;
- isomorphism on models of a counterexample to Vaught's conjecture when relativized;
- **5** $X \equiv Y \iff X$ and Y compute the same well-orderings.

Thm [M 05]: For \sim as in (2), computability is linear.

Thm [M., Greenberg 05]: For \sim as in (3), computability is linear.

The main result can be generalized to all analytic equivalence relations.

Theorem ([M.] $ZFC+PD + \neg CH$)

Let \equiv be an analytic equivalence relation on \mathbb{R} . The following are equivalent: The main result can be generalized to all analytic equivalence relations.

Theorem ([M.] $ZFC+PD + \neg CH$)

Let \equiv be an analytic equivalence relation on \mathbb{R} . The following are equivalent:

- There are \aleph_1 many \equiv -equivalence classes.
- The equivalence classes are linearly ordered by computability non-trivially, on a cone.

Perfect set version

Strong Vaught's Conjecture: Every axiomatizable class of structures has either countably many or prefectly many models.

Definition: A *perfect* set is a non-empty closed set without isolated points.

Definition: A *perfect* set is a non-empty closed set without isolated points.

Observation: Closed sets have continuum many elements.

Definition: A *perfect* set is a non-empty closed set without isolated points.

Observation: Closed sets have continuum many elements.

Thm [Silver 1980]: A Borel equivalence relation
has either $\leq \aleph_0$ or perfectly many equivalence classes.Thm: [Burgess 78] An analytic equivalence relation
has either $\leq \aleph_1$ or perfectly many equivalence classes.

Definition: A *perfect* set is a non-empty closed set without isolated points.

Observation: Closed sets have continuum many elements.

 $ZFC + \neg CH \vdash$ Vaught's conjecture \iff strong Vaught's conjecture.

Definition: A *perfect* set is a non-empty closed set without isolated points.

Observation: Closed sets have continuum many elements.

Thm [Silver 1980]: A Borel equivalence relation
has either $\leq \aleph_0$ or perfectly many equivalence classes.Thm: [Burgess 78] An analytic equivalence relation
has either $\leq \aleph_1$ or perfectly many equivalence classes.

 $ZFC + \neg CH \vdash$ Vaught's conjecture \iff strong Vaught's conjecture. $ZFC \vdash$ Vaught's conjecture \iff $ZFC \vdash$ strong Vaught's conjecture.