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Summary of the talk

Part I: Vaught’s conjecture.

Part II: Vaught’s conjecture in Model Theory.

Part III: Vaught’s conjecture in Computability Theory.

Part IV: Vaught’s conjecture in Descriptive Set Theory.
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Part I: Vaught’s Conjecture

Conjecture: [Vaught 61]

The number of countable models
in an axiomatizable class of structures

is either countable or continuum.
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Cardinals

Definition: Two sets A and B have the same cardinality
if there is a bijection between them.

If so, we write |A| = |B|.

Theorem: [Cantor–Bernstein–Schroeder] For every two sets, A, B, either
- |A| = |B|, or
- |A| < |B| (A has the same cardinality as a subset of B, but not vice versa), or
- |B| < |A| (B has the same cardinality as a subset of A, but not vice versa), or

Theorem: [Cantor] |N| < |R|.

Definition: A is countable if there is an onto map from N to A,
or equivalently, if |A| ≤ |N|.

A has continuum many elements if |A| = |R|.
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Continuum Hypothesis

CH: [Cantor 1878]

No set has cardinality strictly in between countable and continuum,

where continuum refers to the size of R.

Thm [Gödel 1940]: CH can’t be proved to be false in set theory (ZFC).
Thm [Cohen 1963]: CH can’t be proved to be true in set theory (ZFC).

However, this rarely shows up in practice.

Thm [Suslin 1917]:
Every Borel subset of R has size either countable or continuum.

Thm [Silver 1980]: If ≡ is a Borel equivalence relation on R, then
the number of equivalence classes is either countable or continuum.
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Notation about cardinals

0 < 1 < 2 < 3 < · · · < ℵ0 < ℵ1 < ℵ2 < · · · < ℵω < ℵω+1 < · · ·

Recall:
• ℵ0 is the cardinality of N.

• ℵ1 is the smallest cardinality larger than ℵ0.

• ℵ2 is the smallest cardinality larger than ℵ1.

• 2ℵ0 is the cardinality of R (continuum).

Thm:[Cohen] Consistently with ZFC,
2ℵ0 can be any cardinal κ so long as |κℵ0 | = κ.
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Vaught’s Conjecture

Conjecture: [Vaught 61]

The number of countable models
in an axiomatizable class of structures

is either countable or continuum.
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Structure

By structure we mean a domain on which we have
constants, operations and relations.

Examples

The group (Q; 0,+).

The linear ordering (N;≤).

The ring (Q[x ]; 0, 1,+,×).

The ordered ring (Z; 0, 1,+,×,≤).
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Axiomatizable class of structures – an example

Example: Ordered fields are an axiomatizable class of structures:

It is the class of all structures K = (K ; 0K , 1K ,+K ,×K , <K ) where
• 0K , 1K ∈ K ,

• +K ,×K : K2 → K ,

• <K⊆ K2,

and

1 ∀x , y , z(x +K (y +K z) = (x +K y) +K z)

2 ∀x , y(x +K y = y +K z)

3 ∀x(x +K 0K = x)

4 ∀x((∃y)x +K y = 0K )

5 ∀x , y , z(x ×K (y ×K z) = (x ×K y)×K z)

6 ∀x(x ×K 1K = x)

7 ∀x(x 6= 0K → ((∃y)x ×K y = 1K ))

8 ∀x , y , z(x ×K (y +K z) = (x ×K y) +K (x ×K z))

9 ∀x(x 6= 0K → (x <K 0 ∨ 0K < x))

10 ∀x , y(x <K y → ∀z(z +K x < z +K y))

11 ∀x , y(x <K y → ∀z(z > 0K → (z ×K x < z ×K y)))
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Axiomatizable class of structures – languages

A vocabulary is a set of constant, functions and relations symbols.

For instance, τ = {0, 1,+,×, <} is a vocabulary.

To define a language we use
- vocabulary,
- the logical symbols ∨,&,→,¬, ∀,∃, (, ),
- variable symbols,

and follows certain rules to define well-formed sentences.

For instance, ∀x , y(x < y → ∀z(z + x < z + y)) is a well-formed sentence.

Given a structure A and a sentence ϕ, one can define what it means
for ϕ to be true on A, or for A to model ϕ, written A |= ϕ.

In 1st-order languages, ∀ and ∃ range over the elements of the stucture.

Throughout this talk, vocabularies are always countable.
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- variable symbols,

and follows certain rules to define well-formed sentences.

For instance, ∀x , y(x < y → ∀z(z + x < z + y)) is a well-formed sentence.

Given a structure A and a sentence ϕ, one can define what it means
for ϕ to be true on A, or for A to model ϕ, written A |= ϕ.
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Axiomatizable class of structures

Definition: A class of structures K is axiomatizable if
it consist of those structures that satisfy a certain set of sentences.

Examples:

The class of groups

The class of rings

The class of commutative rings with no zero-divisors

The class of linear orderings

The class of dense linear orderings without end-points

The class of algebraically closed fields

The class of Q-vector spaces.
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Vaught’s Conjecture

Conjecture: [Vaught 61]

The number of countable models
in an axiomatizable class of structures

is either countable or continuum.
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Vaught’s Conjecture

Conjecture: [Vaught 61]

The number of countable models
in an axiomatizable class of structures

is either countable or continuum.
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The number of countable Models – basic observations

Throughout this talk, we only consider countable structures.

Observation: There are at most 2ℵ0 many countable structures on a given
vocabulary:

Ex: Counting the number of countable ordered fields (K ; 0K , 1K ,+K ,×K , <K ),
we can assume K = N,
and hence 0K ∈ N, 1K ∈ N, +K ⊆ N3, ×K ⊆ N3, <K⊆ N2.

So, there are 2ℵ0 possibilities.

Note: Some of these possibilities might end up being isomorphic, and
hence are being counted multiple times.
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The number of countable Models – Examples

Class Number of
of structures countable models

Groups

2ℵ0 (continuum)
Fields 2ℵ0 (continuum)
Algebraically closed fields ℵ0 (countable)
Q-vector spaces ℵ0 (countable)
Linear orders 2ℵ0 (continuum)
dense linear orders without end-points 1 (countable)
dense linear orders 4 (countable)
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Vaught’s Conjecture

Conjecture: [Vaught 61]

The number of countable models
in an axiomatizable class of structures

is either countable or continuum.
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Partial results towards Vaught’s conjecture:

Some special cases are known to be true:

Theorem [Steel 78] Vaught’s conjecture holds axiomatizable classes of
structures all whose models are linear orderings.
Theorem [Shelah 84] Vaught’s conjecture holds for ω-stable theories.

The most important partial result is:

Theorem: [Morley 70]

The number of countable models on any axiomatizable class
is either countable, ℵ1, or 2ℵ0 .
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Summary of the talk:

Part I: Vaught’s conjecture.

Part II: Vaught’s conjecture in Model Theory.

Part III: Vaught’s conjecture in Computability Theory.

Part IV: Vaught’s conjecture in Descriptive Set Theory.
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Elementary Equivalence

Let A, B be structures.

Definition: A and B are elementary equivalent if, for every sentence ϕ,

A |= ϕ ⇐⇒ B |= ϕ.

Observation: Elementary equivalent structures need not be isomorphic.

Example: (Q; +) and (R; +) are elementary equivalent, but (Z; +) isn’t.

Lemma: If K is an axiomatizable class of structures without continuum
many models, it has countably many elementary equivalence classes.

Proof: Elementary equivalence is Borel.

Then, by Silver’s theorem, every axiomatizable class of structures has either countably

many or continuum many elementary equivalence classes.
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Types

Let A, B be structures, ā ∈ A<ω , and b̄ ∈ B<ω .

Definition: ā and b̄ have the same type if, for every sentence ϕ(x̄),

A |= ϕ(ā) ⇐⇒ B |= ϕ(b̄).

Observation: Non-automorphic tuples may have the same type.

Example: In (Z + Z;≤) all elements have the same type.

Corollary: If K is an axiomatizable class of structures without continuum
many models, it has countably many types.

Proof: Type equivalence is Borel. By Silver’s theorem, every axiomatizable class of

structures has either countably many or continuum many different types.
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Let A, B be structures, ā ∈ A<ω , and b̄ ∈ B<ω .
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Let A, B be structures, ā ∈ A<ω , and b̄ ∈ B<ω .
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Elementary equivalence

Definition ā and b̄ have the same type if they satisfy the same formulas.

Corollary: If K has less than continuum many models, it has countably many types.

Martin’s Conjecture:

Let K be an axiomatizable class of structures without continuum many models.

There are countably many types realized in K.

For each type, add to the language a new symbol Ti

that holds of the tuples which have that type.
Then, for structure in K in the new language,

isomorphism and elementary equivalence coincide.

Since there are countably or continuum many elementary equivalence classes,

Martin’s conjecture =⇒ Vaught’s conjecture.
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Definition ā and b̄ have the same type if they satisfy the same formulas.

Corollary: If K has less than continuum many models, it has countably many types.

Martin’s Conjecture:
Let K be an axiomatizable class of structures without continuum many models.

There are countably many types realized in K.

For each type, add to the language a new symbol Ti

that holds of the tuples which have that type.
Then, for structure in K in the new language,

isomorphism and elementary equivalence coincide.

Since there are countably or continuum many elementary equivalence classes,

Martin’s conjecture =⇒ Vaught’s conjecture.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 20 / 55



Elementary equivalence
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For each type, add to the language a new symbol Ti

that holds of the tuples which have that type.
Then, for structure in K in the new language,

isomorphism and elementary equivalence coincide.

Since there are countably or continuum many elementary equivalence classes,

Martin’s conjecture =⇒ Vaught’s conjecture.
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Case study: ω-Stable Theories

Definition: A theory is ω-stable if, in every model, even after naming
countably many elements, there are countably many types.

Theorem: [Shelah, Bouscaren] ω-stable theories satisfy Martin’s conjecture.
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Summary of the talk

Part I: Vaught’s conjecture.

Part II: Vaught’s conjecture in Model Theory.

Part III: Vaught’s conjecture in Computability Theory.

Part IV: Vaught’s conjecture in Descriptive Set Theory.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 22 / 55



Summary of the talk

Part I: Vaught’s conjecture.

Part II: Vaught’s conjecture in Model Theory.

Part III: Vaught’s conjecture in Computability Theory.

Part IV: Vaught’s conjecture in Descriptive Set Theory.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 22 / 55



Part III: Computability Theory

From a computability viewpoint,

a counterexample to Vaught’s conjecture
must look like the class of ordinals.
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Computable functions

Def: A set A ⊆ N is computable if there is a computer program
that, on input n, decides whether n ∈ A.

Church-Turing thesis:
This definition is independent of the programing language chosen.

Examples: The following sets are computable:

The set of even numbers.

The set of prime numbers.

The set of stings that correspond to well-formed programs.

Recall that any finite object can be encoded by a natural number.
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Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a
finite set of generators and a finite set of relations between the generators.

The set of pairs (set-of-generators, relations), of non-trivial groups is not
computable.

Simply connected manifolds: The set of finite triangulations of simply
connected manifolds is not computable.

The Halting problem: The set of programs that halt, and don’t run for
ever, is not computable.
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Basic definitions

Def: For A,B ⊆ N, A is computable in B, written A ≤TB,
if there is a computable procedure that can decide which numbers are in A
using B as an oracle.

Def: A is Turing equivalent to B, written A ≡T B, if A ≤TB and B ≤TA.

Example: The following sets are Turing equivalent.

The set of pairs (set-of-generators, relations), of non-trivial groups;

The set of finite triangulations of simply connected manifolds;

The set of programs that halt.

They are all <T the following set:

The set of pairs (set-of-generators, relations), of torsion groups.

Which is <T the following set:

The set of true sentences in number theory.
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Computable Mathematics

Study

1 how effective are constructions in mathematics;

2 how complex is to represent certain structures;

Various areas have been studied,

1 Combinatorics,

2 Algebra,

3 Analysis,

4 Model Theory

In many cases one needs to develop a better understanding of the
mathematical structures to be able to get the computable analysis.
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Coding structures

Example: A countable ordered group A = (A;×A,≤A)
can be encoded by three sets:

A ⊆ N, ×A ⊆ N3 and ≤A ⊆ N2.

We call such a triplet a presentation of A.

Def: A presentation of A is computable if A, ×A, and ≤A are.

Note: A single structure can have many isomorphic presentations.
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Sample theorem in computable structure theory.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring A = (A, 0, 1,+A,×A) can be encoded by three sets A ⊆ N, +A ⊆ N3

and ×A ⊆ N3.

A is computable if A, +A and ×A are.

Theorem: [Friedman, Simpson, Smith]

Not every computable Abelian ring has a computable maximal ideal.
However, maximal ideals can be found computable in the halting problem.
There are computable rings, all whose maximal ideals compute the halting
problem.
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Example: Represent Structures

Def: A group G = (G ,+) is computable
if both G ⊆ N and + ⊆ N3 are computable.

Does every group have a computable presentation?
No. There are 2ℵ0 non-isomorphic groups.

Example: Given a set X ⊆ ω consider the group:

GX =
∑
i∈X

Zpi

If X is the complement of the halting problem, then any presentation of
GX computes the halting problem.
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Muchnik computability

Def: A structure A is computable in a structure B,
if every presentation of A computes a presentation of B.

Recall: A presentation of A = (A,+A, <A, ...) is an isomorphic copy with A ⊆ N

Examples:

For a ring A, the A[x ] is computable in A.

For every group G, G is computable in G ⊕ G and vice-versa.

There are groups G such that
∑∞

i=1 G does not compute G.
Take G =

∑∞
i=1(Zpi )

ki , non-computable with all ki 6= 0.
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Vaught’s conjecture in Computability Theory

Theorem ([M. 2012] ZFC+PD + ¬CH)

Let K be an axiomatizable class of countable models. TFAE:

1 K is a counterexample to Vaught’s conjecture.

2 The structures in K are linearly ordered by computability
non-trivially, on a cone.

That is: Relative to every oracle on a cone:

For every A, B in K, either A is computable in B or B is computable in A,

and not all structures in K are computably equivalent.

Proof of (2) =⇒ (1):
Lemma: If (L,≤) is a linear ordering such that every element has at most countably
many elements below it, then it has at most ℵ1 many elements.
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Well-orders

Definition: A linear order (X ;≤) is a well-order
if it has no infinite descending sequence.

• All well-orders are isomorphic to ordinals.

• Given two well-orders, one is an initial segment of the other.

Obs: There are ℵ1 countable well-orders.

However, the class of well-orders is not 1st-order axiomatizable.
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A second equivalent to Vaught’s conjecture

Theorem ([M. 2012] ZFC+PD + ¬CH)

Let K be an axiomatizable class of countable models. TFAE:

1 K is a counterexample to Vaught’s conjecture.

2 Relative to some oracle, for every X ,Y ⊆ N,
X and Y compute the same ordinals

if and only if
X and Y compute the same structures in K.
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Summary of the talk

Part I: Vaught’s conjecture.

Part II: Vaught’s conjecture in Model Theory.

Part III: Vaught’s conjecture in Computability Theory.

Part IV: Vaught’s conjecture in Descriptive Set Theory.
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The topological Vaught’s conjecture

The topological Vaught’s conjecture: [Miller]

Consider a continuous action of a Polish group on a Polish space.
Any Borel invariant set has either countably or continuum many orbits.
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The topological Vaught’s conjecture — Polish space

Definition: A topological space X is Polish if

• it is separable, and

• it admits a complete metric.

Examples: Rn, 2N, NN, C [0, 1],... ...

Definition: A Polish group is a Polish space with a group operation
which is continuous, and has a continuous inverse.

Examples:

• SymN, the group of permutations of N
• the homeomorphisms [0, 1] to [0, 1]

• The group of n × n invertible matrices over R.
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The topological Vaught’s conjecture

The topological Vaught’s conjecture:
Consider a continuous action of a Polish group on a Polish space.
Any Borel invariant set has either countably or continuum many orbits.
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Group actions

Definition: Given a group (G ; ∗) and a set X , a group action of G on X
is a map a : G × X → X (where a(g , x) is denoted g · x) such that
• e · x = x ,

• g · (h · x) = (g ∗ h) · x .

Examples:

• The self-homeomorphisms of [0, 1] act on C [0, 1] by composition.

• The invertible n × n matrices act on Rn by multiplication.

• SymN acts on 2N.
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The topological Vaught’s conjecture

The topological Vaught’s conjecture:
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Orbits

Consider an action a : G ×X → X , of a group (G ; ∗) on a space X .

Definition: A subset A of X is invariant if ∀g ∈ G , x ∈ A (g · x ∈ A).

Definition: The orbit of an element x ∈ X is

G · x = {g · x : g ∈ G}.
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Borel sets

Definition: The Borel sets of a topological space X is the smallest class of
subsets of X that
• contains all open sets

• and is closed under
- countable unions;
- countable intersections;
- complements.
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Known cases

The topological Vaught’s conjecture: (TVC)
Consider a continuous action of a Polish group on a Polish space.
Any Borel invariant set has either countably or continuum many orbits.

Theorem:
The topological Vaught’s conjecture holds for the following groups:
• Locally compact

• Abelian [Sami]

• Nilpotent [Hjorth and Solecki]

• Groups with two-sided invariant metrics [Solecki]

• Groups with complete left invariant metrics [Becker]

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 44 / 55



Known cases

The topological Vaught’s conjecture: (TVC)
Consider a continuous action of a Polish group on a Polish space.
Any Borel invariant set has either countably or continuum many orbits.

Theorem:
The topological Vaught’s conjecture holds for the following groups:
• Locally compact

• Abelian [Sami]

• Nilpotent [Hjorth and Solecki]

• Groups with two-sided invariant metrics [Solecki]

• Groups with complete left invariant metrics [Becker]

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 44 / 55



The space of countable structures

Fix a computable vocabulary L.

Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2: XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2: XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2: XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2: XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2:

XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2: XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2: XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2: XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups {×,≤}.

Definition: Let XL be the set of all L-structures with domain N.

Structures in XL are of the form G = (N;×G ,≤G ) whith ×G ⊆ N3 and ≤G⊆ N2.

Thus G can be represented by a subset of N3 tN2: XL ⊆ P(N3 tN2) ∼= 2N
3tN2

XL inherits the product topology of 2N
3tN2

.

The following and their complements form a basis of clopen sets
• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Theorem: XL is a Polish space.

Antonio Montalbán (U.C. Berkeley) Vaught’s conjecture January 2017 45 / 55



Example: the ordered groups

Fix a computable vocabulary L. Say the vocabulary of ordered groups {e,×,≤}.
The following and their complements form a basis of clopen sets
• {G ∈ XL : eG = a} for a ∈ N.

• {G ∈ XL : a +G b = c} for a, b, c ∈ N.

• {G ∈ XL : a ≤G b} for a, b ∈ N.

Obs: The class of ordered groups is a closed set in XL.

Obs: The class of torsion groups is a countable intersection of open sets .

Theorem: If ϕ is a 1st-order sentence, {G ∈ XL : G |= ϕ} is Borel.
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Background on infinitary logic

Definition: Lω1,ω is the infinitary first-order language,
where conjunctions and disjunctions are allowed to be infinitary

Obs: The class of presentations of models of an Lω1,ω sentence is Borel.

Lemma: [Scott 65] For every structure A, there is an Lω1,ω sentence ϕ
such that, B |= ϕ if and only if B ∼= A.

Vaught’s Conjecture for Lω1,ω:
The number of countable models of an Lω1,ω sentence

is either countable, or 2ℵ0 .
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The permutation group of ω

Definition: Let S∞ (or SymN) be the permutation group of ω.
(I.e., the group of all bijections ω → ω.)

With the topology inherited from ωω, S∞ is an Polish group,
i.e., it’s an Polish space where the group operations are computable.

Definition: S∞ acts over XL in an obvious way.
For A ∈ XL, f ∈ S∞, f · A is the structure B such that

(n1, ..., nk) ∈ RA ⇐⇒ (f (n1), ..., f (nk)) ∈ RB.

Obs: This action, : S∞ ×XL → XL, is continuous.

Obs: A,B ∈ XL are in the same orbit ⇐⇒ they are isomorphic.
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Analytic equivalence relations

Some results can be generalized to all analytic equivalence relations.

Thm: [Burgess 78] Consider an analytic equivalence relation on R.
The number of equivalence classes is either countable, ℵ1 or 2ℵ0 .

Theorem ([M.] ZFC+PD + ¬CH)

Let ≡ be an analytic equivalence relation on R.
The following are equivalent:

There are ℵ1 many ≡-equivalence classes.

The equivalence classes are linearly ordered by computability
on a cone, non-trivially.
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Isomorphism is an analytic equivalence relation

Def: A ⊆ Rn is analytic if it is the projection of a Borel set from Rn+1.

Cantor’s subset of R is Borel and homeomorphic to 2N ∼= P(N) ⊇ XL

Recall that every countable structure can be coded as a subset of N.

We called such a real a presentation of the structure.

Observation:

1 If K is an axiomatizable class of structures,
then the set of presentation of structures in K is Borel.

2 The set of triples (A,B, f ) ∈ R3, where A and B are presentations of
structures in K and f is an isomorphism between A and B is Borel.

3 The set of pairs (A,B) ∈ R3, where A and B are presentations of
isomorphic structures in K is analytic.
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Analytic Sets

Thm [Silver 1980]: If ≡ is a Borel equivalence relation on R, then
the number of equivalence classes is either countable or continuum.

Thm: [Burgess 78] If ≡ is an analitic equivalence relation on R, then
the number of equivalence classes is either countable, ℵ1 or 2ℵ0 .

There exists analytic equivalence relations with ℵ1 equivalence classes.
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Muchnik computability for an equivalence class.

Def: Let R,S ⊆ R.
R is computable in S if every y ∈ S can compute some x ∈ R.

Obs: If A and B are structures then, A is computable in B iff and only if
the set of presentations of A is computable in the set of presentations of B.
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Examples:

The following equivalence classes have ℵ1-many equivalence classes:

1 isomorphism on well-orderings;

2 bi-embeddability on linear orderings;

3 bi-embeddability on torsion p-groups;

4 isomorphism on models of a counterexample to Vaught’s conjecture
when relativized;

5 X ≡ Y ⇐⇒ X and Y compute the same well-orderings.

Thm [M 05]: For ∼ as in (2), computability is linear.

Thm [M., Greenberg 05]: For ∼ as in (3), computability is linear.
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Analytic equivalence relations

The main result can be generalized to all analytic equivalence relations.

Theorem ([M.] ZFC+PD + ¬CH)

Let ≡ be an analytic equivalence relation on R.
The following are equivalent:

There are ℵ1 many ≡-equivalence classes.

The equivalence classes are linearly ordered by computability
non-trivially, on a cone.
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Perfect set version

Strong Vaught’s Conjecture: Every axiomatizable class of structures
has either countably many or prefectly many models.

Definition: A perfect set is a non-empty closed set without isolated points.

Observation: Closed sets have continuum many elements.

Thm [Silver 1980]: A Borel equivalence relation
has either ≤ ℵ0 or perfectly many equivalence classes.

Thm: [Burgess 78] An analytic equivalence relation
has either ≤ ℵ1 or perfectly many equivalence classes.

ZFC + ¬CH ` Vaught’s conjecture ⇐⇒ strong Vaught’s conjecture.
ZFC ` Vaught’s conjecture ⇐⇒ ZFC ` strong Vaught’s conjecture.
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