Vaught's conjecture.

Antonio Montalbán
U.C. Berkeley
January 2017
Napier, New Zealand

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Part I: Vaught's Conjecture

Part I: Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models
in an axiomatizable class of structures
is either countable or continuum.

Part I: Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models
in an axiomatizable class of structures
is either countable or continuum.

Cardinals

Definition: Two sets A and B have the same cardinality if there is a bijection between them.
If so, we write $|A|=|B|$.

Cardinals

Definition: Two sets A and B have the same cardinality if there is a bijection between them.
If so, we write $|A|=|B|$.

Theorem: [Cantor-Berstein-Schroeder] For every two sets, A, B, either

- $|A|=|B|$, or
- $|A|<|B|$ (A has the same cardinality as a subset of B, but not vice versa), or
- $|B|<|A|$ (B has the same cardinality as a subset of A, but not vice versa), or

Cardinals

Definition: Two sets A and B have the same cardinality if there is a bijection between them.
If so, we write $|A|=|B|$.

Theorem: [Cantor-Berstein-Schroeder] For every two sets, A, B, either

- $|A|=|B|$, or
- $|A|<|B|$ (A has the same cardinality as a subset of B, but not vice versa), or
- $|B|<|A|$ (B has the same cardinality as a subset of A, but not vice versa), or

Theorem: [Cantor] $|\mathbb{N}|<|\mathbb{R}|$.

Cardinals

Definition: Two sets A and B have the same cardinality if there is a bijection between them.
If so, we write $|A|=|B|$.

Theorem: [Cantor-Berstein-Schroeder] For every two sets, A, B, either

- $|A|=|B|$, or
- $|A|<|B|$ (A has the same cardinality as a subset of B, but not vice versa), or
- $|B|<|A|$ (B has the same cardinality as a subset of A, but not vice versa), or

Theorem: [Cantor] $|\mathbb{N}|<|\mathbb{R}|$.
Definition: A is countable if there is an onto map from \mathbb{N} to A,

Cardinals

Definition: Two sets A and B have the same cardinality if there is a bijection between them.
If so, we write $|A|=|B|$.

Theorem: [Cantor-Berstein-Schroeder] For every two sets, A, B, either

- $|A|=|B|$, or
- $|A|<|B|$ (A has the same cardinality as a subset of B, but not vice versa), or
- $|B|<|A|$ (B has the same cardinality as a subset of A, but not vice versa), or

Theorem: [Cantor] $|\mathbb{N}|<|\mathbb{R}|$.
Definition: A is countable if there is an onto map from \mathbb{N} to A, or equivalently, if $|A| \leq|\mathbb{N}|$.

Cardinals

Definition: Two sets A and B have the same cardinality if there is a bijection between them.
If so, we write $|A|=|B|$.

Theorem: [Cantor-Berstein-Schroeder] For every two sets, A, B, either

- $|A|=|B|$, or
- $|A|<|B|$ (A has the same cardinality as a subset of B, but not vice versa), or
- $|B|<|A|$ (B has the same cardinality as a subset of A, but not vice versa), or

Theorem: [Cantor] $|\mathbb{N}|<|\mathbb{R}|$.
Definition: A is countable if there is an onto map from \mathbb{N} to A, or equivalently, if $|A| \leq|\mathbb{N}|$.
A has continuum many elements if $|A|=|\mathbb{R}|$.

Continuum Hypothesis

CH: [Cantor 1878]
No set has cardinality strictly in between countable and continuum,

Continuum Hypothesis

CH: [Cantor 1878]
No set has cardinality strictly in between countable and continuum, where continuum refers to the size of \mathbb{R}.

Continuum Hypothesis

CH: [Cantor 1878]
No set has cardinality strictly in between countable and continuum,
where continuum refers to the size of \mathbb{R}.

Thm [Gödel 1940]: CH can't be proved to be false in set theory (ZFC).

Continuum Hypothesis

CH: [Cantor 1878]

No set has cardinality strictly in between countable and continuum,
where continuum refers to the size of \mathbb{R}.

Thm [Gödel 1940]: CH can't be proved to be false in set theory (ZFC). Thm [Cohen 1963]: CH can't be proved to be true in set theory (ZFC).

Continuum Hypothesis

CH: [Cantor 1878]

No set has cardinality strictly in between countable and continuum,
where continuum refers to the size of \mathbb{R}.

Thm [Gödel 1940]: CH can't be proved to be false in set theory (ZFC). Thm [Cohen 1963]: CH can't be proved to be true in set theory (ZFC).

However, this rarely shows up in practice.

Continuum Hypothesis

CH: [Cantor 1878]
No set has cardinality strictly in between countable and continuum,
where continuum refers to the size of \mathbb{R}.

Thm [Gödel 1940]: CH can't be proved to be false in set theory (ZFC). Thm [Cohen 1963]: CH can't be proved to be true in set theory (ZFC).

However, this rarely shows up in practice.
Thm [Suslin 1917]:
Every Borel subset of \mathbb{R} has size either countable or continuum.

Continuum Hypothesis

CH: [Cantor 1878]
No set has cardinality strictly in between countable and continuum, where continuum refers to the size of \mathbb{R}.

Thm [Gödel 1940]: CH can't be proved to be false in set theory (ZFC). Thm [Cohen 1963]: CH can't be proved to be true in set theory (ZFC).

However, this rarely shows up in practice.
Thm [Suslin 1917]:
Every Borel subset of \mathbb{R} has size either countable or continuum.
Thm [Silver 1980]: If \equiv is a Borel equivalence relation on \mathbb{R}, then the number of equivalence classes is either countable or continuum.

Notation about cardinals

$$
0<1<2<3<\cdots<\aleph_{0}<\aleph_{1}<\aleph_{2}<\cdots<\aleph_{\omega}<\aleph_{\omega+1}<\cdots
$$

Notation about cardinals

$$
0<1<2<3<\cdots<\aleph_{0}<\aleph_{1}<\aleph_{2}<\cdots<\aleph_{\omega}<\aleph_{\omega+1}<\cdots
$$

Recall:

- \aleph_{0} is the cardinality of \mathbb{N}.

Notation about cardinals

$$
0<1<2<3<\cdots<\aleph_{0}<\aleph_{1}<\aleph_{2}<\cdots<\aleph_{\omega}<\aleph_{\omega+1}<\cdots
$$

Recall:

- \aleph_{0} is the cardinality of \mathbb{N}.
- \aleph_{1} is the smallest cardinality larger than \aleph_{0}.

Notation about cardinals

$$
0<1<2<3<\cdots<\aleph_{0}<\aleph_{1}<\aleph_{2}<\cdots<\aleph_{\omega}<\aleph_{\omega+1}<\cdots
$$

Recall:

- \aleph_{0} is the cardinality of \mathbb{N}.
- \aleph_{1} is the smallest cardinality larger than \aleph_{0}.
- \aleph_{2} is the smallest cardinality larger than \aleph_{1}.

Notation about cardinals

$$
0<1<2<3<\cdots<\aleph_{0}<\aleph_{1}<\aleph_{2}<\cdots<\aleph_{\omega}<\aleph_{\omega+1}<\cdots
$$

Recall:

- \aleph_{0} is the cardinality of \mathbb{N}.
- \aleph_{1} is the smallest cardinality larger than \aleph_{0}.
- \aleph_{2} is the smallest cardinality larger than \aleph_{1}.
- $2^{\aleph_{0}}$ is the cardinality of \mathbb{R} (continuum).

Notation about cardinals

$$
0<1<2<3<\cdots<\aleph_{0}<\aleph_{1}<\aleph_{2}<\cdots<\aleph_{\omega}<\aleph_{\omega+1}<\cdots
$$

Recall:

- \aleph_{0} is the cardinality of \mathbb{N}.
- \aleph_{1} is the smallest cardinality larger than \aleph_{0}.
- \aleph_{2} is the smallest cardinality larger than \aleph_{1}.
- $2^{\aleph_{0}}$ is the cardinality of \mathbb{R} (continuum).

Thm: [Cohen] Consistently with ZFC,
$2^{\aleph_{0}}$ can be any cardinal κ so long as $\left|\kappa^{\aleph_{0}}\right|=\kappa$.

Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models
in an axiomatizable class of structures
is either countable or continuum.

Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models
in an axiomatizable class of structures
is either countable or continuum.

Structure

By structure we mean a domain on which we have
constants, operations and relations.

Structure

By structure we mean a domain on which we have constants, operations and relations.

Examples

- The group $(\mathbb{Q} ; 0,+)$.

Structure

By structure we mean a domain on which we have constants, operations and relations.

Examples

- The group $(\mathbb{Q} ; 0,+)$.
- The linear ordering $(\mathbb{N} ; \leq)$.

Structure

By structure we mean a domain on which we have constants, operations and relations.

Examples

- The group $(\mathbb{Q} ; 0,+)$.
- The linear ordering $(\mathbb{N} ; \leq)$.
- The ring $(\mathbb{Q}[x] ; 0,1,+, \times)$.

Structure

By structure we mean a domain on which we have
constants, operations and relations.

Examples

- The group $(\mathbb{Q} ; 0,+)$.
- The linear ordering $(\mathbb{N} ; \leq)$.
- The ring $(\mathbb{Q}[x] ; 0,1,+, \times)$.
- The ordered ring $(\mathbb{Z} ; 0,1,+, \times, \leq)$.

Axiomatizable class of structures - an example

Example: Ordered fields are an axiomatizable class of structures:

Axiomatizable class of structures - an example

Example: Ordered fields are an axiomatizable class of structures:
It is the class of all structures $\mathcal{K}=\left(K ; 0_{K}, 1_{K},+_{K}, \times_{K},<_{K}\right)$ where

Axiomatizable class of structures - an example

Example: Ordered fields are an axiomatizable class of structures:
It is the class of all structures $\mathcal{K}=\left(K ; 0_{K}, 1_{K},+_{K}, \times_{K},<_{K}\right)$ where

- $0_{K}, 1_{K} \in K$,
- $+_{K}, \times_{K}: K^{2} \rightarrow K$,
- $<_{K} \subseteq K^{2}$,
and

Axiomatizable class of structures - an example

Example: Ordered fields are an axiomatizable class of structures:
It is the class of all structures $\mathcal{K}=\left(K ; 0_{K}, 1_{K},+_{K}, \times_{K},<_{K}\right)$ where

- $0_{K}, 1_{K} \in K$,
- $+_{K}, \times_{K}: K^{2} \rightarrow K$,
- $<_{K} \subseteq K^{2}$, and
(1) $\forall x, y, z\left(x+\kappa\left(y+{ }_{k} z\right)=(x+\kappa y)+{ }_{k} z\right)$
(2) $\forall x, y\left(x+k y=y+{ }_{k} z\right)$
(3) $\forall x\left(x+k 0_{K}=x\right)$
(4) $\forall x\left((\exists y) x+{ }_{K} y=0_{K}\right)$
(5) $\forall x, y, z\left(x \times_{K}\left(y \times_{K} z\right)=\left(x \times_{K} y\right) \times_{K} z\right)$
(6) $\forall x\left(x \times_{K} 1_{K}=x\right)$
(1) $\forall x\left(x \neq 0_{K} \rightarrow\left((\exists y) x \times_{K} y=1_{K}\right)\right)$
(8) $\forall x, y, z\left(x \times_{K}\left(y+{ }_{K} z\right)=\left(x \times_{K} y\right)+{ }_{K}\left(x \times_{K} z\right)\right)$
(9) $\forall x\left(x \neq 0_{K} \rightarrow\left(x<_{K} 0 \vee 0_{K}<x\right)\right)$
(10) $\forall x, y(x<K y \rightarrow \forall z(z+K x<z+K y))$
(11) $\forall x, y\left(x<_{K} y \rightarrow \forall z\left(z>0_{K} \rightarrow\left(z \times_{K} x<z \times_{K} y\right)\right)\right)$

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.

$$
\text { For instance, } \tau=\{0,1,+, \times,<\} \text { is a vocabulary. }
$$

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.

$$
\text { For instance, } \tau=\{0,1,+, \times,<\} \text { is a vocabulary. }
$$

To define a language we use

- vocabulary,
- the logical symbols $\vee, \&, \rightarrow, \neg, \forall, \exists,($,$) ,$
- variable symbols,

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.

$$
\text { For instance, } \tau=\{0,1,+, \times,<\} \text { is a vocabulary. }
$$

To define a language we use

- vocabulary,
- the logical symbols $\vee, \&, \rightarrow, \neg, \forall, \exists,($,$) ,$
- variable symbols,
and follows certain rules to define well-formed sentences.

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.

$$
\text { For instance, } \tau=\{0,1,+, \times,<\} \text { is a vocabulary. }
$$

To define a language we use

- vocabulary,
- the logical symbols $\vee, \&, \rightarrow, \neg, \forall, \exists,($,$) ,$
- variable symbols,
and follows certain rules to define well-formed sentences.
For instance, $\forall x, y(x<y \rightarrow \forall z(z+x<z+y))$ is a well-formed sentence.

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.
For instance, $\tau=\{0,1,+, \times,<\}$ is a vocabulary.
To define a language we use

- vocabulary,
- the logical symbols $\vee, \&, \rightarrow, \neg, \forall, \exists,($,$) ,$
- variable symbols, and follows certain rules to define well-formed sentences.

For instance, $\forall x, y(x<y \rightarrow \forall z(z+x<z+y))$ is a well-formed sentence.
Given a structure \mathcal{A} and a sentence φ, one can define what it means for φ to be true on \mathcal{A}, or for \mathcal{A} to model φ, written $\mathcal{A} \models \varphi$.

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.
For instance, $\tau=\{0,1,+, \times,<\}$ is a vocabulary.
To define a language we use

- vocabulary,
- the logical symbols $\vee, \&, \rightarrow, \neg, \forall, \exists,($,$) ,$
- variable symbols, and follows certain rules to define well-formed sentences.

For instance, $\forall x, y(x<y \rightarrow \forall z(z+x<z+y))$ is a well-formed sentence.
Given a structure \mathcal{A} and a sentence φ, one can define what it means for φ to be true on \mathcal{A}, or for \mathcal{A} to model φ, written $\mathcal{A} \models \varphi$.

In 1st-order languages, \forall and \exists range over the elements of the stucture.

Axiomatizable class of structures - languages

A vocabulary is a set of constant, functions and relations symbols.
For instance, $\tau=\{0,1,+, \times,<\}$ is a vocabulary.
To define a language we use

- vocabulary,
- the logical symbols $\vee, \&, \rightarrow, \neg, \forall, \exists,($,$) ,$
- variable symbols, and follows certain rules to define well-formed sentences.

For instance, $\forall x, y(x<y \rightarrow \forall z(z+x<z+y))$ is a well-formed sentence.
Given a structure \mathcal{A} and a sentence φ, one can define what it means for φ to be true on \mathcal{A}, or for \mathcal{A} to model φ, written $\mathcal{A} \models \varphi$.

In 1st-order languages, \forall and \exists range over the elements of the stucture. Throughout this talk, vocabularies are always countable.

Axiomatizable class of structures

Definition: A class of structures \mathbb{K} is axiomatizable if it consist of those structures that satisfy a certain set of sentences.

Axiomatizable class of structures

Definition: A class of structures \mathbb{K} is axiomatizable if it consist of those structures that satisfy a certain set of sentences.

Examples:

- The class of groups
- The class of rings
- The class of commutative rings with no zero-divisors
- The class of linear orderings
- The class of dense linear orderings without end-points
- The class of algebraically closed fields
- The class of \mathbb{Q}-vector spaces.

Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models
in an axiomatizable class of structures
is either countable or continuum.

Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models
in an axiomatizable class of structures
is either countable or continuum.

The number of countable Models - basic observations

Throughout this talk, we only consider countable structures.

The number of countable Models - basic observations

Throughout this talk, we only consider countable structures.

Observation: There are at most $2^{\aleph_{0}}$ many countable structures on a given vocabulary:

The number of countable Models - basic observations

Throughout this talk, we only consider countable structures.

Observation: There are at most $2^{\aleph_{0}}$ many countable structures on a given vocabulary:

Ex: Counting the number of countable ordered fields $\left(K ; 0_{K}, 1_{K},+_{K}, \times_{K},<_{K}\right)$, we can assume $K=\mathbb{N}$,

The number of countable Models - basic observations

Throughout this talk, we only consider countable structures.

Observation: There are at most $2^{\aleph_{0}}$ many countable structures on a given vocabulary:

Ex: Counting the number of countable ordered fields $\left(K ; 0_{K}, 1_{K},+_{K}, \times_{K},<_{K}\right)$, we can assume $K=\mathbb{N}$, and hence $0_{K} \in \mathbb{N}, 1_{K} \in \mathbb{N},+_{K} \subseteq \mathbb{N}^{3}, x_{K} \subseteq \mathbb{N}^{3},<_{K} \subseteq \mathbb{N}^{2}$.

The number of countable Models - basic observations

Throughout this talk, we only consider countable structures.

Observation: There are at most $2^{\aleph_{0}}$ many countable structures on a given vocabulary:

Ex: Counting the number of countable ordered fields $\left(K ; 0_{K}, 1_{K},+_{K}, \times_{K},<_{K}\right)$, we can assume $K=\mathbb{N}$, and hence $0_{K} \in \mathbb{N}, 1_{K} \in \mathbb{N},+_{K} \subseteq \mathbb{N}^{3}, x_{K} \subseteq \mathbb{N}^{3},<_{K} \subseteq \mathbb{N}^{2}$. So, there are $2^{\aleph_{0}}$ possibilities.

The number of countable Models - basic observations

Throughout this talk, we only consider countable structures.

Observation: There are at most $2^{\aleph_{0}}$ many countable structures on a given vocabulary:

Ex: Counting the number of countable ordered fields $\left(K ; 0_{K}, 1_{K},+_{K}, \times_{K},<_{K}\right)$, we can assume $K=\mathbb{N}$, and hence $0_{K} \in \mathbb{N}, 1_{K} \in \mathbb{N},+_{K} \subseteq \mathbb{N}^{3}, x_{K} \subseteq \mathbb{N}^{3},<_{K} \subseteq \mathbb{N}^{2}$. So, there are $2^{\aleph_{0}}$ possibilities.

Note: Some of these possibilities might end up being isomorphic, and hence are being counted multiple times.

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}($ continuum $)$

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}$ (continuum)

Fields

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}($ continuum $)$
Fields	$2^{\aleph_{0}}($ continuum $)$

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}$ (continuum)
Fields	$2^{\aleph_{0}}$ (continuum)

Algebraically closed fields

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}$ (continuum)
Fields	$2^{\aleph_{0}}$ (continuum)
Algebraically closed fields	\aleph_{0} (countable)

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}$ (continuum)
Fields	$2^{\aleph_{0}(\text { continuum })}$
Algebraically closed fields	\aleph_{0} (countable)
\mathbb{Q}-vector spaces	

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}$ (continuum)
Fields	$2^{\aleph_{0}(\text { continuum })}$
Algebraically closed fields	\aleph_{0} (countable)
\mathbb{Q}-vector spaces	\aleph_{0} (countable)

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}(\text { continuum })}$
Fields	$2^{\aleph_{0} \text { (continuum) }}$
Algebraically closed fields	\aleph_{0} (countable)
\mathbb{Q}-vector spaces	\aleph_{0} (countable)
Linear orders	

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}$ (continuum)
Fields	$2^{\aleph_{0}(\text { continuum })}$
Algebraically closed fields	\aleph_{0} (countable)
\mathbb{Q}-vector spaces	\aleph_{0} (countable)
Linear orders	$2^{\aleph_{0}(\text { continuum })}$

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}(\text { continuum })}$
Fields	$2^{\aleph_{0}(\text { continuum })}$
Algebraically closed fields	\aleph_{0} (countable)
\mathbb{Q}-vector spaces	\aleph_{0} (countable)
Linear orders	
dense linear orders without end-points	$2^{\aleph_{0}(\text { continuum })}$

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}$ (continuum)
Fields	$2^{\aleph_{0} \text { (continuum) }}$
Algebraically closed fields	\aleph_{0} (countable)
\mathbb{Q}-vector spaces	\aleph_{0} (countable)
Linear orders	$2^{\aleph_{0} \text { (continuum) }}$
dense linear orders without end-points	1 (countable)

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0} \text { (continuum) }}$
Fields	$2^{\aleph_{0} \text { (continuum) }}$
Algebraically closed fields	\aleph_{0} (countable)
\mathbb{Q}-vector spaces	\aleph_{0} (countable)
Linear orders	$2^{\aleph_{0} \text { (continuum) }}$dense linear orders without end-points dense linear orders 1 (countable)

The number of countable Models - Examples

Class of structures	Number of countable models
Groups	$2^{\aleph_{0}}$ (continuum)
Fields	$2^{\aleph_{0}}$ (continuum)
Algebraically closed fields	\aleph_{0} (countable)
\mathbb{Q}-vector spaces	\aleph_{0} (countable)
Linear orders	$2^{\aleph_{0}}$ (continuum)
dense linear orders without end-points	1 (countable)
dense linear orders	4 (countable)

Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models
in an axiomatizable class of structures
is either countable or continuum.

Partial results towards Vaught's conjecture:

Some special cases are known to be true:

Partial results towards Vaught's conjecture:

Some special cases are known to be true:

Theorem [Steel 78] Vaught's conjecture holds axiomatizable classes of structures all whose models are linear orderings.

Partial results towards Vaught's conjecture:

Some special cases are known to be true:

Theorem [Steel 78] Vaught's conjecture holds axiomatizable classes of structures all whose models are linear orderings.
Theorem [Shelah 84] Vaught's conjecture holds for ω-stable theories.

Partial results towards Vaught's conjecture:

Some special cases are known to be true:

Theorem [Steel 78] Vaught's conjecture holds axiomatizable classes of structures all whose models are linear orderings.
Theorem [Shelah 84] Vaught's conjecture holds for ω-stable theories.

The most important partial result is:

Partial results towards Vaught's conjecture:

Some special cases are known to be true:

Theorem [Steel 78] Vaught's conjecture holds axiomatizable classes of structures all whose models are linear orderings.
Theorem [Shelah 84] Vaught's conjecture holds for ω-stable theories.

The most important partial result is:

Theorem: [Morley 70]
The number of countable models on any axiomatizable class
is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Summary of the talk:

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Summary of the talk:

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Elementary Equivalence

Let \mathcal{A}, \mathcal{B} be structures.
Definition: \mathcal{A} and \mathcal{B} are elementary equivalent if, for every sentence φ,

$$
\mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

Elementary Equivalence

Let \mathcal{A}, \mathcal{B} be structures.
Definition: \mathcal{A} and \mathcal{B} are elementary equivalent if, for every sentence φ,

$$
\mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

Observation: Elementary equivalent structures need not be isomorphic.

Elementary Equivalence

Let \mathcal{A}, \mathcal{B} be structures.
Definition: \mathcal{A} and \mathcal{B} are elementary equivalent if, for every sentence φ,

$$
\mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q} ;+)$ and $(\mathbb{R} ;+)$ are elementary equivalent,

Elementary Equivalence

Let \mathcal{A}, \mathcal{B} be structures.
Definition: \mathcal{A} and \mathcal{B} are elementary equivalent if, for every sentence φ,

$$
\mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q} ;+)$ and $(\mathbb{R} ;+)$ are elementary equivalent, but $(\mathbb{Z} ;+)$ isn't.

Elementary Equivalence

Let \mathcal{A}, \mathcal{B} be structures.
Definition: \mathcal{A} and \mathcal{B} are elementary equivalent if, for every sentence φ,

$$
\mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi
$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q} ;+)$ and $(\mathbb{R} ;+)$ are elementary equivalent, but $(\mathbb{Z} ;+)$ isn't.

Lemma: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many elementary equivalence classes.

Elementary Equivalence

Let \mathcal{A}, \mathcal{B} be structures.
Definition: \mathcal{A} and \mathcal{B} are elementary equivalent if, for every sentence φ,

$$
\mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi
$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q} ;+)$ and $(\mathbb{R} ;+)$ are elementary equivalent, but $(\mathbb{Z} ;+)$ isn't.

Lemma: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many elementary equivalence classes.

Proof: Elementary equivalence is Borel.

Elementary Equivalence

Let \mathcal{A}, \mathcal{B} be structures.
Definition: \mathcal{A} and \mathcal{B} are elementary equivalent if, for every sentence φ,

$$
\mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

Observation: Elementary equivalent structures need not be isomorphic. Example: $(\mathbb{Q} ;+)$ and $(\mathbb{R} ;+)$ are elementary equivalent, but $(\mathbb{Z} ;+)$ isn't.

Lemma: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many elementary equivalence classes.

Proof: Elementary equivalence is Borel.
Then, by Silver's theorem, every axiomatizable class of structures has either countably many or continuum many elementary equivalence classes.

Types

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.
Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$
\mathcal{A} \models \varphi(\bar{a}) \Longleftrightarrow \mathcal{B} \models \varphi(\bar{b}) .
$$

Types

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.
Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$
\mathcal{A} \models \varphi(\bar{a}) \Longleftrightarrow \mathcal{B} \models \varphi(\bar{b}) .
$$

Observation: Non-automorphic tuples may have the same type.

Types

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.
Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$
\mathcal{A} \models \varphi(\bar{a}) \Longleftrightarrow \mathcal{B} \models \varphi(\bar{b}) .
$$

Observation: Non-automorphic tuples may have the same type.
Example: $\ln (\mathbb{Z}+\mathbb{Z} ; \leq)$ all elements have the same type.

Types

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.
Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$
\mathcal{A} \models \varphi(\bar{a}) \Longleftrightarrow \mathcal{B} \models \varphi(\bar{b}) .
$$

Observation: Non-automorphic tuples may have the same type.
Example: $\ln (\mathbb{Z}+\mathbb{Z} ; \leq)$ all elements have the same type.

Corollary: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many types.

Types

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.
Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$
\mathcal{A} \models \varphi(\bar{a}) \Longleftrightarrow \mathcal{B} \models \varphi(\bar{b}) .
$$

Observation: Non-automorphic tuples may have the same type.
Example: $\ln (\mathbb{Z}+\mathbb{Z} ; \leq)$ all elements have the same type.

Corollary: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many types.

Proof: Type equivalence is Borel.

Types

Let \mathcal{A}, \mathcal{B} be structures, $\bar{a} \in \mathcal{A}^{<\omega}$, and $\bar{b} \in \mathcal{B}^{<\omega}$.
Definition: \bar{a} and \bar{b} have the same type if, for every sentence $\varphi(\bar{x})$,

$$
\mathcal{A} \models \varphi(\bar{a}) \Longleftrightarrow \mathcal{B} \models \varphi(\bar{b}) .
$$

Observation: Non-automorphic tuples may have the same type.
Example: $\ln (\mathbb{Z}+\mathbb{Z} ; \leq)$ all elements have the same type.

Corollary: If \mathbb{K} is an axiomatizable class of structures without continuum many models, it has countably many types.

Proof: Type equivalence is Borel. By Silver's theorem, every axiomatizable class of structures has either countably many or continuum many different types.

Elementary equivalence

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.
Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.

Martin's Conjecture:

Elementary equivalence

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.
Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.
Martin's Conjecture:
Let \mathbb{K} be an axiomatizable class of structures without continuum many models.

Elementary equivalence

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.
Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.
Martin's Conjecture:
Let \mathbb{K} be an axiomatizable class of structures without continuum many models. There are countably many types realized in \mathbb{K}.

Elementary equivalence

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.
Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.
Martin's Conjecture:
Let \mathbb{K} be an axiomatizable class of structures without continuum many models.
There are countably many types realized in \mathbb{K}.
For each type, add to the language a new symbol T_{i}

Elementary equivalence

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.
Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.
Martin's Conjecture:
Let \mathbb{K} be an axiomatizable class of structures without continuum many models.
There are countably many types realized in \mathbb{K}.
For each type, add to the language a new symbol T_{i}
that holds of the tuples which have that type.

Elementary equivalence

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.
Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.
Martin's Conjecture:
Let \mathbb{K} be an axiomatizable class of structures without continuum many models.
There are countably many types realized in \mathbb{K}.
For each type, add to the language a new symbol T_{i}
that holds of the tuples which have that type.
Then, for structure in \mathbb{K} in the new language, isomorphism and elementary equivalence coincide.

Elementary equivalence

Definition \bar{a} and \bar{b} have the same type if they satisfy the same formulas.
Corollary: If \mathbb{K} has less than continuum many models, it has countably many types.
Martin's Conjecture:
Let \mathbb{K} be an axiomatizable class of structures without continuum many models.
There are countably many types realized in \mathbb{K}.
For each type, add to the language a new symbol T_{i}
that holds of the tuples which have that type.
Then, for structure in \mathbb{K} in the new language, isomorphism and elementary equivalence coincide.

Since there are countably or continuum many elementary equivalence classes, Martin's conjecture \Longrightarrow Vaught's conjecture.

Case study: ω-Stable Theories

Definition: A theory is ω-stable if, in every model, even after naming countably many elements, there are countably many types.

Case study: ω-Stable Theories

Definition: A theory is ω-stable if, in every model, even after naming countably many elements, there are countably many types.

Theorem: [Shelah, Bouscaren] ω-stable theories satisfy Martin's conjecture.

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Part III: Computability Theory

Part III: Computability Theory

From a computability viewpoint,
a counterexample to Vaught's conjecture must look like the class of ordinals.

Computable functions

Computable functions

Def: A set $A \subseteq \mathbb{N}$ is computable if there is a computer program that, on input n, decides whether $n \in A$.

Church-Turing thesis:
This definition is independent of the programing language chosen.

Computable functions

Def: A set $A \subseteq \mathbb{N}$ is computable if there is a computer program that, on input n, decides whether $n \in A$.

Church-Turing thesis:
This definition is independent of the programing language chosen.
Examples: The following sets are computable:

- The set of even numbers.
- The set of prime numbers.
- The set of stings that correspond to well-formed programs.

Computable functions

Def: A set $A \subseteq \mathbb{N}$ is computable if there is a computer program that, on input n, decides whether $n \in A$.

Church-Turing thesis:
This definition is independent of the programing language chosen.
Examples: The following sets are computable:

- The set of even numbers.
- The set of prime numbers.
- The set of stings that correspond to well-formed programs.

Recall that any finite object can be encoded by a natural number.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations), of non-trivial groups is not computable.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations), of non-trivial groups is not computable.

Simply connected manifolds: The set of finite triangulations of simply connected manifolds is not computable.

Examples of non-computable sets

The word problem: Consider the groups that can be constructed with a finite set of generators and a finite set of relations between the generators. The set of pairs (set-of-generators, relations), of non-trivial groups is not computable.

Simply connected manifolds: The set of finite triangulations of simply connected manifolds is not computable.

The Halting problem: The set of programs that halt, and don't run for ever, is not computable.

Basic definitions

Def: For $A, B \subseteq \mathbb{N}, A$ is computable in B, written $A \leq_{T} B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Basic definitions

Def: For $A, B \subseteq \mathbb{N}, A$ is computable in B, written $A \leq_{T} B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: A is Turing equivalent to B, written $A \equiv_{T} B$, if $A \leq_{T} B$ and $B \leq_{T} A$.

Basic definitions

Def: For $A, B \subseteq \mathbb{N}, A$ is computable in B, written $A \leq_{T} B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: A is Turing equivalent to B, written $A \equiv_{T} B$, if $A \leq_{T} B$ and $B \leq_{T} A$.
Example: The following sets are Turing equivalent.

- The set of pairs (set-of-generators, relations), of non-trivial groups;
- The set of finite triangulations of simply connected manifolds;
- The set of programs that halt.

Basic definitions

Def: For $A, B \subseteq \mathbb{N}, A$ is computable in B, written $A \leq_{T} B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: A is Turing equivalent to B, written $A \equiv_{T} B$, if $A \leq_{T} B$ and $B \leq_{T} A$.
Example: The following sets are Turing equivalent.

- The set of pairs (set-of-generators, relations), of non-trivial groups;
- The set of finite triangulations of simply connected manifolds;
- The set of programs that halt.

They are all $<_{T}$ the following set:

- The set of pairs (set-of-generators, relations), of torsion groups.

Basic definitions

Def: For $A, B \subseteq \mathbb{N}, A$ is computable in B, written $A \leq_{T} B$, if there is a computable procedure that can decide which numbers are in A using B as an oracle.

Def: A is Turing equivalent to B, written $A \equiv_{T} B$, if $A \leq_{T} B$ and $B \leq_{T} A$.
Example: The following sets are Turing equivalent.

- The set of pairs (set-of-generators, relations), of non-trivial groups;
- The set of finite triangulations of simply connected manifolds;
- The set of programs that halt.

They are all $<_{T}$ the following set:

- The set of pairs (set-of-generators, relations), of torsion groups. Which is $<_{T}$ the following set:
- The set of true sentences in number theory.

Computable Mathematics

Study

(1) how effective are constructions in mathematics;
(2) how complex is to represent certain structures;

Computable Mathematics

Study

(1) how effective are constructions in mathematics;
(2) how complex is to represent certain structures;

Various areas have been studied,
(1) Combinatorics,
(2) Algebra,
(3) Analysis,
(9) Model Theory

In many cases one needs to develop a better understanding of the mathematical structures to be able to get the computable analysis.

Coding structures

Example: A countable ordered group $\mathcal{A}=\left(A ; \times_{A}, \leq_{A}\right)$ can be encoded by three sets:

Coding structures

Example: A countable ordered group $\mathcal{A}=\left(A ; \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}$,

Coding structures

Example: A countable ordered group $\mathcal{A}=\left(A ; \times_{A}, \leq_{A}\right)$
can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Coding structures

Example: A countable ordered group $\mathcal{A}=\left(A ; \times_{A}, \leq_{A}\right)$
can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Coding structures

Example: A countable ordered group $\mathcal{A}=\left(A ; \times_{A}, \leq_{A}\right)$
can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

We call such a triplet a presentation of \mathcal{A}.

Coding structures

Example: A countable ordered group $\mathcal{A}=\left(A ; \times_{A}, \leq_{A}\right)$
can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

We call such a triplet a presentation of \mathcal{A}.

Def: A presentation of \mathcal{A} is computable if A, \times_{A}, and \leq_{A} are.

Coding structures

Example: A countable ordered group $\mathcal{A}=\left(A ; \times_{A}, \leq_{A}\right)$
can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

We call such a triplet a presentation of \mathcal{A}.

Def: A presentation of \mathcal{A} is computable if A, \times_{A}, and \leq_{A} are.

Note: A single structure can have many isomorphic presentations.

Sample theorem in computable structure theory.

Theorem: Every Abelian ring has a maximal ideal.

Sample theorem in computable structure theory.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring $\mathcal{A}=\left(A, 0,1,+_{A}, \times_{A}\right)$ can be encoded by three sets $A \subseteq \mathbb{N},+_{A} \subseteq \mathbb{N}^{3}$ and $x_{A} \subseteq \mathbb{N}^{3}$.
\mathcal{A} is computable if $A,+_{A}$ and $\times_{\mathcal{A}}$ are.

Sample theorem in computable structure theory.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring $\mathcal{A}=\left(A, 0,1,+_{A}, \times_{A}\right)$ can be encoded by three sets $A \subseteq \mathbb{N},+_{A} \subseteq \mathbb{N}^{3}$ and $x_{A} \subseteq \mathbb{N}^{3}$.
\mathcal{A} is computable if $A,+_{A}$ and $\times_{\mathcal{A}}$ are.

Theorem: [Friedman, Simpson, Smith]
Not every computable Abelian ring has a computable maximal ideal.

Sample theorem in computable structure theory.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring $\mathcal{A}=\left(A, 0,1,+_{A}, \times_{A}\right)$ can be encoded by three sets $A \subseteq \mathbb{N},+_{A} \subseteq \mathbb{N}^{3}$ and $x_{A} \subseteq \mathbb{N}^{3}$.
\mathcal{A} is computable if $A,+_{A}$ and $\times_{\mathcal{A}}$ are.

Theorem: [Friedman, Simpson, Smith]
Not every computable Abelian ring has a computable maximal ideal. However, maximal ideals can be found computable in the halting problem.

Sample theorem in computable structure theory.

Theorem: Every Abelian ring has a maximal ideal.

Recall: A countable ring $\mathcal{A}=\left(A, 0,1,+_{A}, \times_{A}\right)$ can be encoded by three sets $A \subseteq \mathbb{N},+_{A} \subseteq \mathbb{N}^{3}$ and $x_{A} \subseteq \mathbb{N}^{3}$.
\mathcal{A} is computable if $A,+_{A}$ and $\times_{\mathcal{A}}$ are.

Theorem: [Friedman, Simpson, Smith]
Not every computable Abelian ring has a computable maximal ideal. However, maximal ideals can be found computable in the halting problem. There are computable rings, all whose maximal ideals compute the halting problem.

Example: Represent Structures

> Def: A group $\mathcal{G}=(G,+)$ is computable if both $G \subseteq \mathbb{N}$ and $+\subseteq \mathbb{N}^{3}$ are computable.

Example: Represent Structures

```
Def: A group \(\mathcal{G}=(G,+)\) is computable if both \(G \subseteq \mathbb{N}\) and \(+\subseteq \mathbb{N}^{3}\) are computable.
```

Does every group have a computable presentation?

Example: Represent Structures

Def: A group $\mathcal{G}=(G,+)$ is computable if both $G \subseteq \mathbb{N}$ and $+\subseteq \mathbb{N}^{3}$ are computable.

Does every group have a computable presentation?
No. There are $2^{\aleph_{0}}$ non-isomorphic groups.

Example: Represent Structures

Def: A group $\mathcal{G}=(G,+)$ is computable if both $G \subseteq \mathbb{N}$ and $+\subseteq \mathbb{N}^{3}$ are computable.

Does every group have a computable presentation?
No. There are $2^{\aleph_{0}}$ non-isomorphic groups.

Example: Given a set $X \subseteq \omega$ consider the group:

$$
\mathcal{G}_{X}=\sum_{i \in X} \mathbb{Z}_{p_{i}}
$$

Example: Represent Structures

Def: A group $\mathcal{G}=(G,+)$ is computable if both $G \subseteq \mathbb{N}$ and $+\subseteq \mathbb{N}^{3}$ are computable.

Does every group have a computable presentation?
No. There are $2^{\aleph_{0}}$ non-isomorphic groups.

Example: Given a set $X \subseteq \omega$ consider the group:

$$
\mathcal{G}_{X}=\sum_{i \in X} \mathbb{Z}_{p_{i}}
$$

If X is the complement of the halting problem, then any presentation of \mathcal{G}_{X} computes the halting problem.

Muchnik computability

Def: A structure \mathcal{A} is computable in a structure \mathcal{B}, if every presentation of \mathcal{A} computes a presentation of \mathcal{B}.

Muchnik computability

Def: A structure \mathcal{A} is computable in a structure \mathcal{B}, if every presentation of \mathcal{A} computes a presentation of \mathcal{B}.

Recall: A presentation of $\mathcal{A}=\left(A,+_{A},<_{A}, \ldots\right)$ is an isomorphic copy with $A \subseteq \mathbb{N}$

Muchnik computability

Def: A structure \mathcal{A} is computable in a structure \mathcal{B}, if every presentation of \mathcal{A} computes a presentation of \mathcal{B}.

Recall: A presentation of $\mathcal{A}=\left(A,+_{A},<_{A}, \ldots\right)$ is an isomorphic copy with $A \subseteq \mathbb{N}$

Examples:

- For a ring \mathcal{A}, the $\mathcal{A}[x]$ is computable in \mathcal{A}.
- For every group \mathcal{G}, \mathcal{G} is computable in $\mathcal{G} \oplus \mathcal{G}$ and vice-versa.
- There are groups \mathcal{G} such that $\sum_{i=1}^{\infty} \mathcal{G}$ does not compute \mathcal{G}. Take $G=\sum_{i=1}^{\infty}\left(\mathbb{Z}_{p_{i}}\right)^{k_{i}}$, non-computable with all $k_{i} \neq 0$.

Vaught's conjecture in Computability Theory

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

Vaught's conjecture in Computability Theory

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:
(1) \mathbb{K} is a counterexample to Vaught's conjecture.

Vaught's conjecture in Computability Theory

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:
(1) \mathbb{K} is a counterexample to Vaught's conjecture.
(2) The structures in \mathbb{K} are linearly ordered by computability

Vaught's conjecture in Computability Theory

Theorem ([M. 2012] ZFC+PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:
(1) \mathbb{K} is a counterexample to Vaught's conjecture.
(2) The structures in \mathbb{K} are linearly ordered by computability

That is: Relative to every oracle on a cone:
For every \mathcal{A}, \mathcal{B} in \mathbb{K}, either \mathcal{A} is computable in \mathcal{B} or \mathcal{B} is computable in \mathcal{A},

Vaught's conjecture in Computability Theory

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:
(1) \mathbb{K} is a counterexample to Vaught's conjecture.
(2) The structures in \mathbb{K} are linearly ordered by computability

That is: Relative to every oracle on a cone:
For every \mathcal{A}, \mathcal{B} in \mathbb{K}, either \mathcal{A} is computable in \mathcal{B} or \mathcal{B} is computable in \mathcal{A}, and not all structures in \mathbb{K} are computably equivalent.

Vaught's conjecture in Computability Theory

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:
(1) \mathbb{K} is a counterexample to Vaught's conjecture.
(2) The structures in \mathbb{K} are linearly ordered by computability

That is: Relative to every oracle on a cone:
For every \mathcal{A}, \mathcal{B} in \mathbb{K}, either \mathcal{A} is computable in \mathcal{B} or \mathcal{B} is computable in \mathcal{A}, and not all structures in \mathbb{K} are computably equivalent.

Proof of $(2) \Longrightarrow(1)$:

Vaught's conjecture in Computability Theory

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:
(1) \mathbb{K} is a counterexample to Vaught's conjecture.
(2) The structures in \mathbb{K} are linearly ordered by computability
non-trivially, on a cone.
That is: Relative to every oracle on a cone:
For every \mathcal{A}, \mathcal{B} in \mathbb{K}, either \mathcal{A} is computable in \mathcal{B} or \mathcal{B} is computable in \mathcal{A}, and not all structures in \mathbb{K} are computably equivalent.

Proof of $(2) \Longrightarrow(1)$:
Lemma: If (\mathcal{L}, \leq) is a linear ordering such that every element has at most countably many elements below it, then it has at most \aleph_{1} many elements.

Well-orders

Definition: A linear order $(X ; \leq)$ is a well-order
if it has no infinite descending sequence.

Well-orders

Definition: A linear order $(X ; \leq)$ is a well-order
if it has no infinite descending sequence.

- All well-orders are isomorphic to ordinals.

Well-orders

Definition: A linear order $(X ; \leq)$ is a well-order
if it has no infinite descending sequence.

- All well-orders are isomorphic to ordinals.
- Given two well-orders, one is an initial segment of the other.

Well-orders

Definition: A linear order $(X ; \leq)$ is a well-order
if it has no infinite descending sequence.

- All well-orders are isomorphic to ordinals.
- Given two well-orders, one is an initial segment of the other.

Obs: There are \aleph_{1} countable well-orders.

Well-orders

Definition: A linear order $(X ; \leq)$ is a well-order
if it has no infinite descending sequence.

- All well-orders are isomorphic to ordinals.
- Given two well-orders, one is an initial segment of the other.

Obs: There are \aleph_{1} countable well-orders.

However,

Well-orders

Definition: A linear order $(X ; \leq)$ is a well-order
if it has no infinite descending sequence.

- All well-orders are isomorphic to ordinals.
- Given two well-orders, one is an initial segment of the other.

Obs: There are \aleph_{1} countable well-orders.

However, the class of well-orders is not 1st-order axiomatizable.

A second equivalent to Vaught's conjecture

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:

A second equivalent to Vaught's conjecture

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:
(1) \mathbb{K} is a counterexample to Vaught's conjecture.

A second equivalent to Vaught's conjecture

Theorem ([M. 2012] ZFC + PD $+\neg \mathrm{CH}$)
Let \mathbb{K} be an axiomatizable class of countable models. TFAE:
(1) \mathbb{K} is a counterexample to Vaught's conjecture.
(2) Relative to some oracle, for every $X, Y \subseteq \mathbb{N}$, X and Y compute the same ordinals

$$
\begin{aligned}
& \text { if and only if } \\
& X \text { and } Y \text { compute the same structures in } \mathbb{K} \text {. }
\end{aligned}
$$

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

Summary of the talk

- Part I: Vaught's conjecture.
- Part II: Vaught's conjecture in Model Theory.
- Part III: Vaught's conjecture in Computability Theory.
- Part IV: Vaught's conjecture in Descriptive Set Theory.

The topological Vaught's conjecture

The topological Vaught's conjecture: [Miller]
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture

The topological Vaught's conjecture: [Miller]
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.
Examples: $\quad \mathbb{R}^{n}, \quad 2^{\mathbb{N}}$,

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.
Examples:
\mathbb{R}^{n},
$2^{\mathbb{N}}$
$\mathbb{N}^{\mathbb{N}}$,

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.
Examples:
\mathbb{R}^{n},
$2^{\mathbb{N}}$,
$\mathbb{N}^{\mathbb{N}}$,
$C[0,1], \ldots$

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.
Examples:
\mathbb{R}^{n},
$2^{\mathbb{N}}$,
$\mathbb{N}^{\mathbb{N}}$,
$C[0,1], \ldots$

Definition: A Polish group is a Polish space with a group operation

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.
Examples:
\mathbb{R}^{n},
$2^{\mathbb{N}}$,
$\mathbb{N}^{\mathbb{N}}$,
$C[0,1], \ldots$

Definition: A Polish group is a Polish space with a group operation which is continuous, and has a continuous inverse.

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.
Examples:
\mathbb{R}^{n},
$2^{\mathbb{N}}$,
$\mathbb{N}^{\mathbb{N}}$,
$C[0,1], \ldots$

Definition: A Polish group is a Polish space with a group operation which is continuous, and has a continuous inverse.

Examples:

- Sym $_{\mathbb{N}}$, the group of permutations of \mathbb{N}

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.
Examples:
\mathbb{R}^{n},
$2^{\mathbb{N}}$,
$\mathbb{N}^{\mathbb{N}}$,
$C[0,1], \ldots$

Definition: A Polish group is a Polish space with a group operation which is continuous, and has a continuous inverse.

Examples:

- Sym $_{\mathbb{N}}$, the group of permutations of \mathbb{N}
- the homeomorphisms $[0,1]$ to $[0,1]$

The topological Vaught's conjecture - Polish space

Definition: A topological space \mathcal{X} is Polish if

- it is separable, and
- it admits a complete metric.
Examples:
\mathbb{R}^{n},
$2^{\mathbb{N}}$,
$\mathbb{N}^{\mathbb{N}}$,
$C[0,1], \ldots$

Definition: A Polish group is a Polish space with a group operation which is continuous, and has a continuous inverse.

Examples:

- Sym $_{\mathbb{N}}$, the group of permutations of \mathbb{N}
- the homeomorphisms $[0,1]$ to $[0,1]$
- The group of $n \times n$ invertible matrices over \mathbb{R}.

The topological Vaught's conjecture

The topological Vaught's conjecture:
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture

The topological Vaught's conjecture:
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Group actions

Definition: Given a group $(G ; *)$ and a set X, a group action of G on X is a map $a: G \times X \rightarrow X$ (where $a(g, x)$ is denoted $g \cdot x)$ such that

- $e \cdot x=x$,
- $g \cdot(h \cdot x)=(g * h) \cdot x$.

Group actions

Definition: Given a group $(G ; *)$ and a set X, a group action of G on X is a map a: $G \times X \rightarrow X$ (where $a(g, x)$ is denoted $g \cdot x)$ such that

- $e \cdot x=x$,
- $g \cdot(h \cdot x)=(g * h) \cdot x$.

Examples:

- The self-homeomorphisms of $[0,1]$ act on $C[0,1]$ by composition.

Group actions

Definition: Given a group $(G ; *)$ and a set X, a group action of G on X is a map a: $G \times X \rightarrow X$ (where $a(g, x)$ is denoted $g \cdot x)$ such that

- $e \cdot x=x$,
- $g \cdot(h \cdot x)=(g * h) \cdot x$.

Examples:

- The self-homeomorphisms of $[0,1]$ act on $C[0,1]$ by composition.
- The invertible $n \times n$ matrices act on \mathbb{R}^{n} by multiplication.

Group actions

Definition: Given a group $(G ; *)$ and a set X, a group action of G on X is a map a: $G \times X \rightarrow X$ (where $a(g, x)$ is denoted $g \cdot x)$ such that

- $e \cdot x=x$,
- $g \cdot(h \cdot x)=(g * h) \cdot x$.

Examples:

- The self-homeomorphisms of $[0,1]$ act on $C[0,1]$ by composition.
- The invertible $n \times n$ matrices act on \mathbb{R}^{n} by multiplication.
- Sym $_{\mathbb{N}}$ acts on $2^{\mathbb{N}}$.

The topological Vaught's conjecture

The topological Vaught's conjecture:
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture

The topological Vaught's conjecture:
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Orbits

Consider an action $a: G \times \mathcal{X} \rightarrow \mathcal{X}$, of a group $(G ; *)$ on a space \mathcal{X}.

Orbits

Consider an action $a: G \times \mathcal{X} \rightarrow \mathcal{X}$, of a group $(G ; *)$ on a space \mathcal{X}.

Definition: A subset A of X is invariant if $\forall g \in G, x \in A(g \cdot x \in A)$.

Orbits

Consider an action $a: G \times \mathcal{X} \rightarrow \mathcal{X}$, of a group $(G ; *)$ on a space \mathcal{X}.

Definition: A subset A of X is invariant if $\forall g \in G, x \in A(g \cdot x \in A)$.

Definition: The orbit of an element $x \in \mathcal{X}$ is

$$
G \cdot x=\{g \cdot x: \quad g \in G\}
$$

The topological Vaught's conjecture

The topological Vaught's conjecture:
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

The topological Vaught's conjecture

The topological Vaught's conjecture:
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Borel sets

Definition: The Borel sets of a topological space \mathcal{X} is the smallest class of subsets of \mathcal{X} that

- contains all open sets
- and is closed under
- countable unions;
- countable intersections;
- complements.

Known cases

The topological Vaught's conjecture: (TVC)
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Known cases

The topological Vaught's conjecture: (TVC)
Consider a continuous action of a Polish group on a Polish space. Any Borel invariant set has either countably or continuum many orbits.

Theorem:
The topological Vaught's conjecture holds for the following groups:

- Locally compact
- Abelian [Sami]
- Nilpotent [Hjorth and Solecki]
- Groups with two-sided invariant metrics [Solecki]
- Groups with complete left invariant metrics [Becker]

The space of countable structures

Fix a computable vocabulary L.

The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.

The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.
Definition: Let \mathcal{X}_{L} be the set of all L-structures with domain \mathbb{N}.

The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.
Definition: Let \mathcal{X}_{L} be the set of all L-structures with domain \mathbb{N}.

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G}=\left(\mathbb{N} ; \times_{G}, \leq_{G}\right)$ whith $\times_{G} \subseteq \mathbb{N}^{3}$ and $\leq_{G} \subseteq \mathbb{N}^{2}$.

The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.
Definition: Let \mathcal{X}_{L} be the set of all L-structures with domain \mathbb{N}.

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G}=\left(\mathbb{N} ; \times_{G}, \leq_{G}\right)$ whith $\times_{G} \subseteq \mathbb{N}^{3}$ and $\leq_{G} \subseteq \mathbb{N}^{2}$.
Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^{3} \sqcup \mathbb{N}^{2}$:

The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.
Definition: Let \mathcal{X}_{L} be the set of all L-structures with domain \mathbb{N}.

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G}=\left(\mathbb{N} ; \times_{G}, \leq_{G}\right)$ whith $\times_{G} \subseteq \mathbb{N}^{3}$ and $\leq_{G} \subseteq \mathbb{N}^{2}$.
Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^{3} \sqcup \mathbb{N}^{2}: \mathcal{X}_{\mathcal{L}} \subseteq \mathcal{P}\left(\mathbb{N}^{3} \sqcup \mathbb{N}^{2}\right) \cong 2^{\mathbb{N}^{3} \sqcup \mathbb{N}^{2}}$

The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.
Definition: Let \mathcal{X}_{L} be the set of all L-structures with domain \mathbb{N}.

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G}=\left(\mathbb{N} ; \times_{G}, \leq_{G}\right)$ whith $\times_{G} \subseteq \mathbb{N}^{3}$ and $\leq_{G} \subseteq \mathbb{N}^{2}$.
Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^{3} \sqcup \mathbb{N}^{2}: \mathcal{X}_{\mathcal{L}} \subseteq \mathcal{P}\left(\mathbb{N}^{3} \sqcup \mathbb{N}^{2}\right) \cong 2^{\mathbb{N}^{3} \sqcup \mathbb{N}^{2}}$ $\mathcal{X}_{\mathcal{L}}$ inherits the product topology of $2^{\mathbb{N}^{3} \sqcup \mathbb{N}^{2}}$.

The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.
Definition: Let \mathcal{X}_{L} be the set of all L-structures with domain \mathbb{N}.

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G}=\left(\mathbb{N} ; \times_{G}, \leq_{G}\right)$ whith $\times_{G} \subseteq \mathbb{N}^{3}$ and $\leq_{G} \subseteq \mathbb{N}^{2}$.
Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^{3} \sqcup \mathbb{N}^{2}: \mathcal{X}_{\mathcal{L}} \subseteq \mathcal{P}\left(\mathbb{N}^{3} \sqcup \mathbb{N}^{2}\right) \cong 2^{\mathbb{N}^{3} \sqcup \mathbb{N}^{2}}$

$$
\mathcal{X}_{\mathcal{L}} \text { inherits the product topology of } 2^{\mathbb{N}^{3}} \sqcup \mathbb{N}^{2} \text {. }
$$

The following and their complements form a basis of clopen sets

- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a+{ }_{G} b=c\right\}$ for $a, b, c \in \mathbb{N}$.
- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a \leq_{G} b\right\}$ for $a, b \in \mathbb{N}$.

The space of countable structures

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{\times, \leq\}$.
Definition: Let \mathcal{X}_{L} be the set of all L-structures with domain \mathbb{N}.

Structures in $\mathcal{X}_{\mathcal{L}}$ are of the form $\mathcal{G}=\left(\mathbb{N} ; x_{G}, \leq_{G}\right)$ whith $\times_{G} \subseteq \mathbb{N}^{3}$ and $\leq_{G} \subseteq \mathbb{N}^{2}$.
Thus \mathcal{G} can be represented by a subset of $\mathbb{N}^{3} \sqcup \mathbb{N}^{2}: \mathcal{X}_{\mathcal{L}} \subseteq \mathcal{P}\left(\mathbb{N}^{3} \sqcup \mathbb{N}^{2}\right) \cong 2^{\mathbb{N}^{3} \sqcup \mathbb{N}^{2}}$

$\mathcal{X}_{\mathcal{L}}$ inherits the product topology of $2^{\mathbb{N}^{3} \sqcup \mathbb{N}^{2}}$.

The following and their complements form a basis of clopen sets

- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a+{ }_{G} b=c\right\}$ for $a, b, c \in \mathbb{N}$.
- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a \leq_{G} b\right\}$ for $a, b \in \mathbb{N}$.

Theorem: \mathcal{X}_{L} is a Polish space.

Example: the ordered groups

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{e, \times, \leq\}$. The following and their complements form a basis of clopen sets

- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: e_{G}=a\right\}$ for $a \in \mathbb{N}$.
- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a+{ }_{\mathrm{G}} b=c\right\}$ for $a, b, c \in \mathbb{N}$.
- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a \leq_{G} b\right\}$ for $a, b \in \mathbb{N}$.

Obs: The class of ordered groups is a closed set in \mathcal{X}_{L}.

Example: the ordered groups

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{e, \times, \leq\}$. The following and their complements form a basis of clopen sets

- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: e_{G}=a\right\}$ for $a \in \mathbb{N}$.
- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a+{ }_{\mathrm{G}} b=c\right\}$ for $a, b, c \in \mathbb{N}$.
- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a \leq_{G} b\right\}$ for $a, b \in \mathbb{N}$.

Obs: The class of ordered groups is a closed set in \mathcal{X}_{L}.

Obs: The class of torsion groups is a countable intersection of open sets .

Example: the ordered groups

Fix a computable vocabulary L. Say the vocabulary of ordered groups $\{e, \times, \leq\}$. The following and their complements form a basis of clopen sets

- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: e_{G}=a\right\}$ for $a \in \mathbb{N}$.
- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a+{ }_{\mathrm{G}} b=c\right\}$ for $a, b, c \in \mathbb{N}$.
- $\left\{\mathcal{G} \in \mathcal{X}_{\mathcal{L}}: a \leq_{G} b\right\}$ for $a, b \in \mathbb{N}$.

Obs: The class of ordered groups is a closed set in \mathcal{X}_{L}.

Obs: The class of torsion groups is a countable intersection of open sets .

Theorem: If φ is a 1st-order sentence, $\left\{\mathcal{G} \in \mathcal{X}_{L}: \mathcal{G} \models \varphi\right\}$ is Borel.

Background on infinitary logic

Definition: $L_{\omega_{1}, \omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Background on infinitary logic

Definition: $L_{\omega_{1}, \omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Obs: The class of presentations of models of an $L_{\omega_{1}, \omega}$ sentence is Borel.

Background on infinitary logic

Definition: $L_{\omega_{1}, \omega}$ is the infinitary first-order language,
where conjunctions and disjunctions are allowed to be infinitary

Theorem[Lopez-Escobar]: For $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ closed under isomorphisms, \mathbb{K} is axiomatizable by an $\mathcal{L}_{\omega_{1}, \omega}$ sentence $\Longleftrightarrow \mathbb{K}$ is Borel.

Background on infinitary logic

Definition: $L_{\omega_{1}, \omega}$ is the infinitary first-order language,
where conjunctions and disjunctions are allowed to be infinitary

Theorem[Lopez-Escobar]: For $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ closed under isomorphisms, \mathbb{K} is axiomatizable by an $\mathcal{L}_{\omega_{1}, \omega}$ sentence $\Longleftrightarrow \mathbb{K}$ is Borel.

Lemma: [Scott 65] For every structure \mathcal{A}, there is an $L_{\omega_{1}, \omega}$ sentence φ such that, $\mathcal{B} \models \varphi$ if and only if $\mathcal{B} \cong \mathcal{A}$.

Background on infinitary logic

> Definition: $L_{\omega_{1}, \omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Theorem[Lopez-Escobar]: For $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ closed under isomorphisms, \mathbb{K} is axiomatizable by an $\mathcal{L}_{\omega_{1}, \omega}$ sentence $\Longleftrightarrow \mathbb{K}$ is Borel.

Lemma: [Scott 65] For every structure \mathcal{A}, there is an $L_{\omega_{1}, \omega}$ sentence φ such that, $\mathcal{B} \models \varphi$ if and only if $\mathcal{B} \cong \mathcal{A}$.

Vaught's Conjecture for $L_{\omega_{1}, \omega}$:

The number of countable models of an $\mathcal{L}_{\omega_{1}, \omega}$ sentence
is either countable, or $2^{\aleph_{0}}$.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω. (I.e., the group of all bijections $\omega \rightarrow \omega$.)

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω. (I.e., the group of all bijections $\omega \rightarrow \omega$.)

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group, i.e., it's an Polish space where the group operations are computable.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω. (I.e., the group of all bijections $\omega \rightarrow \omega$.)

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.
For $\mathcal{A} \in \mathcal{X}_{L}, f \in S_{\infty}, f \cdot \mathcal{A}$ is the structure \mathcal{B} such that

$$
\left(n_{1}, \ldots, n_{k}\right) \in R^{\mathcal{A}} \Longleftrightarrow\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right) \in R^{\mathcal{B}} .
$$

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω. (I.e., the group of all bijections $\omega \rightarrow \omega$.)

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.
For $\mathcal{A} \in \mathcal{X}_{L}, f \in S_{\infty}, f \cdot \mathcal{A}$ is the structure \mathcal{B} such that

$$
\left(n_{1}, \ldots, n_{k}\right) \in R^{\mathcal{A}} \Longleftrightarrow\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right) \in R^{\mathcal{B}} .
$$

Obs: This action, : $S_{\infty} \times \mathcal{X}_{L} \rightarrow \mathcal{X}_{L}$, is continuous.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω. (I.e., the group of all bijections $\omega \rightarrow \omega$.)

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.
For $\mathcal{A} \in \mathcal{X}_{L}, f \in S_{\infty}, f \cdot \mathcal{A}$ is the structure \mathcal{B} such that

$$
\left(n_{1}, \ldots, n_{k}\right) \in R^{\mathcal{A}} \Longleftrightarrow\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right) \in R^{\mathcal{B}}
$$

Obs: This action, : $S_{\infty} \times \mathcal{X}_{L} \rightarrow \mathcal{X}_{L}$, is continuous.

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \qquad

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω. (I.e., the group of all bijections $\omega \rightarrow \omega$.)

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.
For $\mathcal{A} \in \mathcal{X}_{L}, f \in S_{\infty}, f \cdot \mathcal{A}$ is the structure \mathcal{B} such that

$$
\left(n_{1}, \ldots, n_{k}\right) \in R^{\mathcal{A}} \Longleftrightarrow\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right) \in R^{\mathcal{B}} .
$$

Obs: This action, : $S_{\infty} \times \mathcal{X}_{L} \rightarrow \mathcal{X}_{L}$, is continuous.
Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group, i.e., it's an Polish space where the group operations are computable.

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way. For $\mathcal{A} \in \mathcal{X}_{L}, f \in S_{\infty}, f \cdot \mathcal{A}$ is the structure \mathcal{B} such that

$$
\left(n_{1}, \ldots, n_{k}\right) \in R^{\mathcal{A}} \Longleftrightarrow\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right) \in R^{\mathcal{B}} .
$$

Obs: This action, : $S_{\infty} \times \mathcal{X}_{L} \rightarrow \mathcal{X}_{L}$, is continuous.
Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.
For $\mathcal{A} \in \mathcal{X}_{L}, f \in S_{\infty}, f \cdot \mathcal{A}$ is the structure \mathcal{B} such that

$$
\left(n_{1}, \ldots, n_{k}\right) \in R^{\mathcal{A}} \Longleftrightarrow\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right) \in R^{\mathcal{B}} .
$$

Obs: This action, : $S_{\infty} \times \mathcal{X}_{L} \rightarrow \mathcal{X}_{L}$, is continuous.
Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.

Obs: This action, : $S_{\infty} \times \mathcal{X}_{L} \rightarrow \mathcal{X}_{L}$, is continuous.
Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_{1}, \omega}$-axiomatizable $\Longleftrightarrow \mathbb{K}$ is Borel and invariant.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,

Definition: S_{∞} acts over \mathcal{X}_{L} in an obvious way.

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_{1}, \omega}$-axiomatizable $\Longleftrightarrow \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_{1}, \omega} \Longleftrightarrow$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,

Obs: $\mathcal{A}, \mathcal{B} \in \mathcal{X}_{\mathcal{L}}$ are in the same orbit \Longleftrightarrow they are isomorphic.

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_{1}, \omega}$-axiomatizable $\Longleftrightarrow \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_{1}, \omega} \Longleftrightarrow$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S_{y m}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,

Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_{1}, \omega}$-axiomatizable $\Longleftrightarrow \mathbb{K}$ is Borel and invariant.

Vaught's conjecture for $\mathcal{L}_{\omega_{1}, \omega} \Longleftrightarrow$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,
Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_{1}, \omega}$-axiomatizable $\Longleftrightarrow \mathbb{K}$ is Borel and invariant.
Vaught's conjecture for $\mathcal{L}_{\omega_{1}, \omega} \Longleftrightarrow$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,
Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_{1}, \omega}$-axiomatizable $\Longleftrightarrow \mathbb{K}$ is Borel and invariant.
Vaught's conjecture for $\mathcal{L}_{\omega_{1}, \omega} \Longleftrightarrow$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

Theorem: [Becker, Kechris]: The following are equivalent:

- Vaught's conjecture for infinitary first-order languages.

The permutation group of ω

Definition: Let $S_{\infty}\left(\right.$ or $\left.S y m_{\mathbb{N}}\right)$ be the permutation group of ω.

With the topology inherited from $\omega^{\omega}, S_{\infty}$ is an Polish group,
Recall: $\mathbb{K} \subseteq \mathcal{X}_{\mathcal{L}}$ is $\mathcal{L}_{\omega_{1}, \omega}$-axiomatizable $\Longleftrightarrow \mathbb{K}$ is Borel and invariant.
Vaught's conjecture for $\mathcal{L}_{\omega_{1}, \omega} \Longleftrightarrow$ every Borel invariant subset of $\mathcal{X}_{\mathcal{L}}$ under this action has either countably or continuum many orbits.

Theorem: [Becker, Kechris]: The following are equivalent:

- Vaught's conjecture for infinitary first-order languages.
- For any continuous action of S_{∞} into any Polish space, the number of orbits in any Borel invariant set
is either countable or continuum.

Analytic equivalence relations

Some results can be generalized to all analytic equivalence relations.

Analytic equivalence relations

Some results can be generalized to all analytic equivalence relations.

Thm: [Burgess 78] Consider an analytic equivalence relation on \mathbb{R}. The number of equivalence classes is either countable, \aleph_{1} or $2^{\aleph_{0}}$.

Analytic equivalence relations

Some results can be generalized to all analytic equivalence relations.

Thm: [Burgess 78] Consider an analytic equivalence relation on \mathbb{R}. The number of equivalence classes is either countable, \aleph_{1} or $2^{\aleph_{0}}$.

Theorem ([M.] ZFC + PD $+\neg \mathrm{CH}$)
Let \equiv be an analytic equivalence relation on \mathbb{R}.
The following are equivalent:

Analytic equivalence relations

Some results can be generalized to all analytic equivalence relations.

Thm: [Burgess 78] Consider an analytic equivalence relation on \mathbb{R}. The number of equivalence classes is either countable, \aleph_{1} or $2^{\aleph_{0}}$.

Theorem ([M.] ZFC + PD $+\neg \mathrm{CH}$)
Let \equiv be an analytic equivalence relation on \mathbb{R}.
The following are equivalent:

- There are \aleph_{1} many \equiv-equivalence classes.
- The equivalence classes are linearly ordered by computability on a cone, non-trivially.

Isomorphism is an analytic equivalence relation

Def: $A \subseteq \mathbb{R}^{n}$ is analytic if it is the projection of a Borel set from \mathbb{R}^{n+1}.

Isomorphism is an analytic equivalence relation

Def: $A \subseteq \mathbb{R}^{n}$ is analytic if it is the projection of a Borel set from \mathbb{R}^{n+1}.
Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$

Isomorphism is an analytic equivalence relation

Def: $A \subseteq \mathbb{R}^{n}$ is analytic if it is the projection of a Borel set from \mathbb{R}^{n+1}.
Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$
Recall that every countable structure can be coded as a subset of \mathbb{N}.
We called such a real a presentation of the structure.

Isomorphism is an analytic equivalence relation

Def: $A \subseteq \mathbb{R}^{n}$ is analytic if it is the projection of a Borel set from \mathbb{R}^{n+1}.
Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$
Recall that every countable structure can be coded as a subset of \mathbb{N}.
We called such a real a presentation of the structure.

Observation:

(1) If \mathbb{K} is an axiomatizable class of structures, then the set of presentation of structures in \mathbb{K} is Borel.

Isomorphism is an analytic equivalence relation

Def: $A \subseteq \mathbb{R}^{n}$ is analytic if it is the projection of a Borel set from \mathbb{R}^{n+1}.
Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$
Recall that every countable structure can be coded as a subset of \mathbb{N}.
We called such a real a presentation of the structure.

Observation:

(1) If \mathbb{K} is an axiomatizable class of structures, then the set of presentation of structures in \mathbb{K} is Borel.
(2) The set of triples $(\mathcal{A}, \mathcal{B}, f) \in \mathbb{R}^{3}$, where \mathcal{A} and \mathcal{B} are presentations of structures in \mathbb{K} and f is an isomorphism between \mathcal{A} and \mathcal{B} is Borel.

Isomorphism is an analytic equivalence relation

Def: $A \subseteq \mathbb{R}^{n}$ is analytic if it is the projection of a Borel set from \mathbb{R}^{n+1}.
Cantor's subset of \mathbb{R} is Borel and homeomorphic to $2^{\mathbb{N}} \cong \mathcal{P}(\mathbb{N}) \supseteq \mathcal{X}_{\mathcal{L}}$
Recall that every countable structure can be coded as a subset of \mathbb{N}.
We called such a real a presentation of the structure.

Observation:

(1) If \mathbb{K} is an axiomatizable class of structures, then the set of presentation of structures in \mathbb{K} is Borel.
(2) The set of triples $(\mathcal{A}, \mathcal{B}, f) \in \mathbb{R}^{3}$, where \mathcal{A} and \mathcal{B} are presentations of structures in \mathbb{K} and f is an isomorphism between \mathcal{A} and \mathcal{B} is Borel.
(3) The set of pairs $(\mathcal{A}, \mathcal{B}) \in \mathbb{R}^{3}$, where \mathcal{A} and \mathcal{B} are presentations of isomorphic structures in \mathbb{K} is analytic.

Analytic Sets

Thm [Silver 1980]: If \equiv is a Borel equivalence relation on \mathbb{R}, then the number of equivalence classes is either countable or continuum.

Analytic Sets

Thm [Silver 1980]: If \equiv is a Borel equivalence relation on \mathbb{R}, then the number of equivalence classes is either countable or continuum.

Thm: [Burgess 78] If \equiv is an analitic equivalence relation on \mathbb{R}, then the number of equivalence classes is either countable, \aleph_{1} or $2^{\aleph_{0}}$.

Analytic Sets

Thm [Silver 1980]: If \equiv is a Borel equivalence relation on \mathbb{R}, then the number of equivalence classes is either countable or continuum.

Thm: [Burgess 78] If \equiv is an analitic equivalence relation on \mathbb{R}, then the number of equivalence classes is either countable, \aleph_{1} or $2^{\aleph_{0}}$.

There exists analytic equivalence relations with \aleph_{1} equivalence classes.

Muchnik computability for an equivalence class.

Def: Let $\mathcal{R}, \mathcal{S} \subseteq \mathbb{R}$.
\mathcal{R} is computable in \mathcal{S} if every $y \in \mathcal{S}$ can compute some $x \in \mathcal{R}$.

Muchnik computability for an equivalence class.

Def: Let $\mathcal{R}, \mathcal{S} \subseteq \mathbb{R}$.
\mathcal{R} is computable in \mathcal{S} if every $y \in \mathcal{S}$ can compute some $x \in \mathcal{R}$.

Obs: If \mathcal{A} and \mathcal{B} are structures then, \mathcal{A} is computable in \mathcal{B} iff and only if the set of presentations of \mathcal{A} is computable in the set of presentations of \mathcal{B}.

Examples:

The following equivalence classes have \aleph_{1}-many equivalence classes:
(1) isomorphism on well-orderings;
(2) bi-embeddability on linear orderings;
(3) bi-embeddability on torsion p-groups;
(4) isomorphism on models of a counterexample to Vaught's conjecture when relativized;
(0) $X \equiv Y \Longleftrightarrow X$ and Y compute the same well-orderings.

Examples:

The following equivalence classes have \aleph_{1}-many equivalence classes:
(1) isomorphism on well-orderings;
(2) bi-embeddability on linear orderings;
(3) bi-embeddability on torsion p-groups;
(4) isomorphism on models of a counterexample to Vaught's conjecture when relativized;
(0) $X \equiv Y \Longleftrightarrow X$ and Y compute the same well-orderings.

Thm [M 05]: For \sim as in (2), computability is linear.

Examples:

The following equivalence classes have \aleph_{1}-many equivalence classes:
(1) isomorphism on well-orderings;
(2) bi-embeddability on linear orderings;
(3) bi-embeddability on torsion p-groups;
(4) isomorphism on models of a counterexample to Vaught's conjecture when relativized;
(3) $X \equiv Y \Longleftrightarrow X$ and Y compute the same well-orderings.

Thm [M 05]: For \sim as in (2), computability is linear.

Thm [M., Greenberg 05]: For \sim as in (3), computability is linear.

Analytic equivalence relations

The main result can be generalized to all analytic equivalence relations.
Theorem ([M.] ZFC + PD $+\neg \mathrm{CH}$)
Let \equiv be an analytic equivalence relation on \mathbb{R}.
The following are equivalent:

Analytic equivalence relations

The main result can be generalized to all analytic equivalence relations.
Theorem ([M.] ZFC + PD $+\neg \mathrm{CH}$)
Let \equiv be an analytic equivalence relation on \mathbb{R}.
The following are equivalent:

- There are \aleph_{1} many \equiv-equivalence classes.
- The equivalence classes are linearly ordered by computability non-trivially, on a cone.

Perfect set version

Strong Vaught's Conjecture: Every axiomatizable class of structures has either countably many or prefectly many models.

Perfect set version

Strong Vaught's Conjecture: Every axiomatizable class of structures has either countably many or prefectly many models.

Definition: A perfect set is a non-empty closed set without isolated points.

Perfect set version

Strong Vaught's Conjecture: Every axiomatizable class of structures has either countably many or prefectly many models.

Definition: A perfect set is a non-empty closed set without isolated points.
Observation: Closed sets have continuum many elements.

Perfect set version

Strong Vaught's Conjecture: Every axiomatizable class of structures has either countably many or prefectly many models.

Definition: A perfect set is a non-empty closed set without isolated points.
Observation: Closed sets have continuum many elements.
Thm [Silver 1980]: A Borel equivalence relation has either $\leq \aleph_{0}$ or perfectly many equivalence classes.
Thm: [Burgess 78] An analytic equivalence relation has either $\leq \aleph_{1}$ or perfectly many equivalence classes.

Perfect set version

Strong Vaught's Conjecture: Every axiomatizable class of structures has either countably many or prefectly many models.

Definition: A perfect set is a non-empty closed set without isolated points.
Observation: Closed sets have continuum many elements.
Thm [Silver 1980]: A Borel equivalence relation has either $\leq \aleph_{0}$ or perfectly many equivalence classes.
Thm: [Burgess 78] An analytic equivalence relation has either $\leq \aleph_{1}$ or perfectly many equivalence classes.

ZFC $+\neg C H \vdash$ Vaught's conjecture \Longleftrightarrow strong Vaught's conjecture.

Perfect set version

Strong Vaught's Conjecture: Every axiomatizable class of structures has either countably many or prefectly many models.

Definition: A perfect set is a non-empty closed set without isolated points.
Observation: Closed sets have continuum many elements.
Thm [Silver 1980]: A Borel equivalence relation has either $\leq \aleph_{0}$ or perfectly many equivalence classes.
Thm: [Burgess 78] An analytic equivalence relation has either $\leq \aleph_{1}$ or perfectly many equivalence classes.

ZFC $+\neg C H \vdash$ Vaught's conjecture \Longleftrightarrow strong Vaught's conjecture. ZFC \vdash Vaught's conjecture \Longleftrightarrow ZFC \vdash strong Vaught's conjecture.

