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Lecture 1. Information and Dimensions, Classical and Algorithmic

Today’s topics
Shannon information (entropy)
Algorithmic information (Kolmogorov complexity)
Classical fractal dimensions
Algorithmic fractal dimensions
Dimensions of finite strings
Dimension characterizations of Kolmogorov complexity



Shannon Information

The perfect (zero-error) information content of a nonempty, finite
set is

Ho(X) = log |X | , (log = log2)

the number of bits needed to specify an element of X .

Let (X , p)
be a finite probability space.

1. The Shannon self-information of x ∈ X is

log 1
p(x) ,

the value of H0(X) “apparent to x.”
2. The Shannon entropy of (X , p) is

H (X , p) = Ep log 1
p(x) =

∑
x∈X

p(x) log 1
p(x) .
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Algorithmic Information (Kolmogorov Complexity)

All Turing machines here are self-delimiting: In addition to
standard work tapes, they have a special program tape with a
program tape head that is read-only and cannot move left.

At start of computation with a program π ∈ {0, 1}∗ the
program tape contains

π . . .

( = “blank”) with the program tape head on the leftmost .
A computation’s output (on, say, the first worktape) is
undefined unless it halts with the program tape head on the
last bit of π.



Algorithmic Information (Kolmogorov Complexity)

The Kolmogorov complexity of a string x ∈ {0, 1}∗ is

K (x) = min
{
|π|
∣∣π ∈ {0, 1}∗ and U (π) = x

}
,

where U is a universal Turing machine.

It matters little (small additive constant) which U is chosen
for this.
K (x) = amount of algorithmic information in x.
K (x) ≤ |x|+ o(|x|).
x is “random” if K (x) ≈ |x|.
Routine coding extends this to K (x) for x ∈ N, x ∈ Q,
x ∈ Qn , etc.
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Algorithmic Information (Kolmogorov Complexity)

The algorithmic a priori probability of a string x ∈ {0, 1}∗ is

m(x) =
∑

π∈{0,1}∗
U(π)=x

2−|π| .

Trivially, 2−K(x) ≤m(x). Levin’s Coding Theorem (1974). There
is a constant α > 0 such that, for all x ∈ {0, 1}∗,

m(x) ≤ α2−K(x) .

Equivalently, there is a constant c ∈ N such that, for all
x ∈ {0, 1}∗, ∣∣∣∣K (x)− log 1

m(x)

∣∣∣∣ ≤ c .

Shannon self-information, using m
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Fractal Dimension in Metric Spaces

Let ρ be a metric on a set X .

Definition
The diameter of a set X ⊆ X is

diam(X) = sup{ρ(x, y) | x, y ∈ X} .

Closed ball of radius r about x ∈ X :

B(x, r) = {y ∈ X | ρ(x, y) ≤ r} .

Open ball of radius r about x ∈ X :

Bo(x, r) = {y ∈ X | ρ(x, y) < r} .
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Hausdorff Measures in Metric Spaces

For X ⊆ X and δ > 0,

Hδ = {countable covers of X by balls of diameter at most δ} .

For s ≥ 0,
H s
δ (X) = inf

B∈Hδ(X)

∑
B∈B

diam(B)s .

The s-dimensional Hausdorff (outer) ball measure of X is

H s(X) = lim
δ→0

H s
δ (X) .
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Hausdorff Dimension in Metric Spaces

H s(X) = s-dimensional Hausdorff (outer) ball measure of X .

Definition (Hausdorff 1919)
Let ρ be a metric on X , and let X ⊆ X . The Hausdorff dimension
of X with respect to ρ is

dim(ρ)(X) = inf{s |H s(X) = 0} .

∞

0

H s∗(X) can be anything.

H s(X)

ss∗



Packing Dimension in Metric Spaces

Pδ(X) = {packings of X by balls of diameter at most δ} ,

Ps
δ (X) = sup

B∈Pδ(X)

∑
B∈B

diam(B)s ,

Ps
0(X) = lim

δ→0
Ps
δ (X) .

The s-dimensional packing (outer) ball measure of X is

Ps(X) = inf
{ ∞∑

i=0
Ps

0(Xi)
∣∣∣∣∣ X ⊆

∞⋃
i=0

Xi

}
.

Definition (Tricot 1982, Sullivan 1984)
The packing dimension of X with respect to ρ is

Dim(ρ)(X) = inf{s |Ps(X) = 0} .
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Fractal Dimension in Sequence Spaces

Let Σ be an alphabet with 2 ≤ |Σ| <∞.
A (Borel) probability measure on Σ∞ is a function ν : Σ∗ → [0, 1]
satisfying

ν(λ) = 1, ν(w) =
∑
a∈Σ

ν(wa) for all w ∈ Σ∗ .

Intuition: Choose S ∈ Σ∞ “according to ν.” Then

ν(w) = Prob[w v S ] = Prob[w is a prefix of S ] .

Notation. µ is always the uniform probability measure on Σ∞, i.e.,

µ(w) = |Σ|−|w| .

We restrict attention to probability measures that are strongly
positive, meaning that there exists δ > 0 such that, for all w ∈ Σ∗
and a ∈ Σ, ν(wa) ≥ δν(w).
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Fractal Dimension in Sequence Spaces

The metric induced by a strongly positive probability measure ν on
Σ∗ is the function ρν : Σ∞ × Σ∞ → [0, 1] given by

ρν(S ,T ) = sup{ν(w) |w v S and w v T} .

Definition
Let ν be a strongly positive probability measure on Σ∞, and let
X ⊆ Σ∞.

1. The Hausdorff dimension of X with respect to ν is

dimν(X) = dim(ρν)(X) .

2. The packing dimension of X with respect to ν is

Dimν(X) = Dim(ρν)(X) .
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Fractal Dimension in Sequence Spaces
The metric induced by a strongly positive probability measure ν on
Σ∗ is the function ρν : Σ∞ × Σ∞ → [0, 1] given by

ρν(S ,T ) = sup{ν(w) |w v S and w v T} .
Definition
Let ν be a strongly positive probability measure on Σ∞, and let
X ⊆ Σ∞.

1. The Hausdorff dimension of X with respect to ν is

dimν(X) = dim(ρν)(X) .

2. The packing dimension of X with respect to ν is

Dimν(X) = Dim(ρν)(X) .

When ν = µ, we omit it from the terminology:
The Hausdorff dimension of X is dimH (X) = dimµ(X).
The packing dimension of X is dimP(X) = Dimµ(X).



Gale Characterizations

In a few minutes, we will define martingales, gales, and conditions
for their success.

For the moment, martingales are strategies for betting on the
successive symbols in a sequence S ∈ Σ∞, and one of these
strategies succeeds on S if it makes an infinite amount of money
betting on S .

Gales are generalized martingales that are no more powerful, but
exhibit the martingales’ success rates in a convenient form.



Gale Characterizations

Ville, 1930s: Martingale success characterizes measure 0 sets.

Schnorr, 1970s: Effective martingale success and success rates
characterize certain types of randomness.

J. Lutz, 1990s: Effective martingale success characterizes measure
in complexity classes.

Ryabko and Effective martingale success rates are related to
Staiger, 1990s: Hausdorff dimension and Kolmogorov complexity.
J. Lutz, 2000: Martingale success rates characterize Hausdorff

dimension. So used effective martingale success
rates to define effective versions of Hausdorff
dimension.

Athreya, Hitchcock, J. Lutz, and Mayordomo 2007:
Same for packing dimension.

J. Lutz and Mayordomo 2008:
Same for Billingsley dimensions.
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J. Lutz, 2000: Martingale success rates characterize Hausdorff

dimension. So used effective martingale success
rates to define effective versions of Hausdorff
dimension.

Athreya, Hitchcock, J. Lutz, and Mayordomo 2007:
Same for packing dimension.

J. Lutz and Mayordomo 2008:
Same for Billingsley dimensions.



Gale Characterizations

Definition
Let ν be a probability measure on Σ∞, and let s ≥ 0.

1. A ν-s-gale is a function d : Σ∗ → [0,∞) that satisfies

d(w)ν(w)s =
∑
a∈Σ

d(wa)ν(wa)s

for all w ∈ Σ∗.

2. A ν-martingale is a ν-1-gale.
3. An s-gale is a µ-s-gale.
4. A martingale is a 1-gale.
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Gale Characterizations

Observation (J. Lutz 2000)
d is a ν-s-gale ⇔ d ′(w) = ν(w)s−1d(w) is a ν-martingale.
∴ Gales are only a convenience.

Definition
Let d be a ν-s-gale, and let S ∈ Σ∞.

1. d succeeds on S if lim supt→∞ d(S [0..t − 1]) =∞.
2. d succeeds stringly on S if lim inf t→∞ d(S [0..t − 1]) =∞.
3. The success set of d is S∞[d] = {S | d succeeds on S}.
4. The strong success set of d is

S∞str[d] = {S | d succeeds strongly on S}.
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Gale Characterizations

Theorem (J. Lutz and Mayordomo 2008)
Let ν be a strongly positive probability measure on Σ∞, and let
X ⊆ Σ∞.

1. The Billingsley ν-dimension of X is

dimν(X) = inf
{

s
∣∣∣∣∣ there is a ν-s-gale d

such that X ⊆ S∞[d]

}
.

2. The strong Billingsley ν-dimension of X is

Dimν(X) = inf
{

s
∣∣∣∣∣ there is a ν-s-gale d

such that X ⊆ S∞str[d]

}
.



Gale Characterizations

Recall
1. The Hausdorff dimension of X is

dimH (X) = dimµ(X) .

2. The packing dimension of X is

dimP(X) = Dimµ(X) .



Effective Fractal Dimensions

Everything so far has been classical. Now it’s time for the theory
of computing.

Let ∆ be a resource bound, such as computable, constructive,
poly-time, or finite-state.

We obtain ∆-algorithmic dimensions by requiring the gales in the
gale characterizations to be ∆-computable.
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Constructive Dimensions

A very important case is ∆ = constructive.

Definition
A ν-s-gale is constructive if it is lower semi-computable, i.e., if
there is an exactly computable function d̂ : Σ∗ × N→ Q with the
following two properties.

For all w ∈ Σ∗ and t ∈ N, d̂(w, t) ≤ d̂(w, t + 1) < d(w).
For all w ∈ Σ∗, limt→∞ d̂(w, t) = d(w).
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Constructive Dimensions

Definition (J. Lutz and Mayordomo 2008, aided by a result of
Fenner 2002)
Let ν be a strongly positive probability measure on Σ∞, and let
X ⊆ Σ∞.

1. The constructive ν-dimension of X is

cdimν(X) = inf
{

s
∣∣∣∣∣ there is a constructive ν-s-gale d

such that X ⊆ S∞[d]

}
.

2. The constructive strong ν-dimension of X is

cDimν(X) = inf
{

s
∣∣∣∣∣ there is a constructive ν-s-gale d

such that X ⊆ S∞str[d]

}
.

We write cdim(X) = cdimµ(X) and cDim(X) = cDimµ(X).
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Constructive Dimensions

A correspondence principle for an effective dimension is a theorem
stating that, on sufficiently simple sets, the effective dimension
coincides with its classical counterpart. (Terminology stolen from
N. Bohr by J. Lutz.)

Correspondence Principle for Constructive Dimension:

Theorem (Hitchcock 2002)
If X ⊆ Σ∞ is any union (not necessarily effective) of computably
closed (i.e., Π0

1) sets, then cdim(X) = dimH (X).

Correspondence Principle for Constructive Strong Dimension:
is false! (Conidis 2009)
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Individual Sequences

Definition
Let ν be a probability measure on Σ∞, and let S ∈ Σ∞.

1. The ν-dimension of S is dimν(S) = cdimν({S}).
2. The strong ν-dimension of S is Dimν(S) = cDimν({S}).

Absolute Stability of Constructive Dimensions:

Theorem (Lutz and Mayordomo 2008, extending J. Lutz 2000)
If ν is a strongly positive, computable probability measure on Σ∞,
then, for all X ⊆ Σ∞,

cdimν(X) = sup
S∈X

dimν(S) and

cDimν(X) = sup
S∈X

Dimν(S) .

(Contrast with the countable stability of classical dimensions)
∴ Constructive dimensions are investigated in terms of individual
sequences.
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Individual Sequences

In general,

0 ≤ dimH (X) ≤ dimP(X)≤ ≤
cdim(X) ≤ cDim(X) ≤ 1 .



Individual Sequences

Definition (Martin-Löf 1966, Schnorr 1970)
A sequence R ∈ C is random if no constructive martingale
succeeds on R.



Individual Sequences

If R is random (with respect to the uniform probability measure on
C, then

dim(R) = Dim(R) = 1 .



Individual Sequences

What if R is random with respect to some other probability
measure on C?



Individual Sequences

Fix δ > 0 and a bias sequence ~β = (β0, β1, β2, . . .) with each
βi ∈ [δ, 1− δ].

Definition

H(β) = β log 1
β

+ (1− β) log 1
1− β = Shannon entropy

Hn(~β) = 1
n

n−1∑
i=0
H(βi)

H−(~β) = lim inf
n→∞

Hn(~β) lower average entropy

H +(~β) = lim sup
n→∞

Hn(~β) upper average entropy



Individual Sequences

Theorem (Athreya, Hitchcock, J. Lutz, and Mayordomo 2007)

Let 0 < δ < 1
2 , and let ~β = (β0, β1, . . .) be a computable bias

sequence with each βi ∈
[
δ, 1

2

]
. For every ~β-random sequence R

we have
dim(R) = H−(~β), Dim(R) = H +(~β) .



Dimensions of Finite Strings

Our next task: Extend Hausdorff dimension to define dim(x) for
each x ∈ {0, 1}∗.



Dimensions of Finite Strings

Our strategy:

For X ⊆ C = {0, 1}∞

dimH (X)

dimH (X)

cdim(X)

dim(S)

gale characterization

constructivize

apply to singletons

For x ∈ {0, 1}∗

dima
d(x)

dima
d(x)

dim(x)

discretize

constructivize

optimize
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prefixes
thereof

∪ {0, 1}∗�︸ ︷︷ ︸

terminated
binary strings
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Dimensions of Finite Strings

Definition
An s-termgale is a function d : T → [0,∞) satisfying

d(λ) ≤ 1

and
d(w) ≥ 2−s(d(w0) + d(w1) + d(w�)

)
for all w ∈ {0, 1}∗.

Bets on the successive bits and termination of a finite string.
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Dimensions of finite strings

Example
Define d : T → [0,∞) by

d(λ) = 1

d(w0) = 3
2d(w)

d(w1) = d(w�) = 1
4d(w) .

This is a 1-termgale. If w ∈ {0, 1}n has n0 0s and n1 1s, then

d(w�) =
(3

2

)n0 (1
4

)n1+1

= 2n0(1+log 3)−2(n+1) .

∴ If n0 � 2
1+log 3(n + 1) ≈ 0.77(n + 1), then d(w�)� d(λ), even

though d loses 3
4 of its money when the � appears.
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Dimensions of Finite Strings

Trivial observation: If

2−s|x|d(x) = 2−s′|x|d ′(x) (∗)

for all x ∈ T , then d is an s-termgale ⇔ d ′ is an s-termgale.

∴ If d is a 0-termgale, then

d ′(x) = 2s|x|d(x)

is an s-termgale, and all s-termgales are of this form.

Definition
A termgale is a family

d =
{

d(s)
∣∣∣ s ∈ [0,∞

}
of s-termgales, one for each s, related by (∗).

d is completely determined by any one of its elements.
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Dimensions of Finite Strings

Definition
Let d be a termgale, a ∈ Z+, and w ∈ {0, 1}∗. The dimension of
w relative to d at significance level a is

dima
d(w) = inf

{
s
∣∣∣ d(s)(w�) > a

}
.

We have now discretized Hausdorff dimension.Constructivizing is
easy:

Definition
A termgale d is constructive if d(0) is lower semicomputable.
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Dimensions of Finite Strings

Now optimize

Definition
A constructive termgale d̃ is optimal if for every constructive
termgale d there is a constant α > 0 such that, for all s ∈ [0,∞)
and w ∈ {0, 1}∗,

d̃(s)(w�) ≥ αd(s)(w�) .

Theorem (J. Lutz 2003)
If d̃ is an optimal constructive termgale, then, for every
constructive termgale d and every a ∈ Z+, there is a constant
γ ∈ [0,∞) such that, for all w ∈ {0, 1}∗,

dima
d̃(w) ≤ dimd(w) + γ

1 + |w| .
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Dimensions of Finite Strings

Corollary
If d1, d2 are optimal constructive termgales and a1, a2 ∈ Z+, then
there is a constant α ∈ [0,∞) such that, for all w ∈ {0, 1}∗,∣∣∣dima1

d1
(w)− dima2

d2
(w)

∣∣∣ ≤ α

1 + |w| .

∴ It makes very little difference which optimal constructive
termgale or which significance level we use.

Theorem (J. Lutz 2003)
There is an optimal constuctive termgale d�. (Proof uses Levin’s
m.)

Definition
The dimension of a string w ∈ {0, 1}∗ is dim(w) = dim1

d�
(w).
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termgale or which significance level we use.

Theorem (J. Lutz 2003)
There is an optimal constuctive termgale d�. (Proof uses Levin’s
m.)

Definition
The dimension of a string w ∈ {0, 1}∗ is dim(w) = dim1

d�
(w).



Dimension and Kolmogorov Complexity

Theorem (J. Lutz 2003)
There is a constant c ∈ N such that, for all x ∈ {0, 1}∗,∣∣K (x)− |x| dim(x)

∣∣ ≤ c .



Dimension and Kolmogorov Complexity
Our strategy:

For X ⊆ C = {0, 1}∞

dimH (X)

dimH (X)

cdim(X)

dim(S)

gale characterization

constructivize

apply to singletons

For x ∈ {0, 1}∗

dima
d(x)

dima
d(x)

dim(x)

K (x)

discretize

constructivize

optimize

multiply by |x|



Dimension and Kolmogorov Complexity

∴ Up to constant additive terms,

K (x) = log 1
m(x) = |x| dim(x) .

The genius of Hausdorff, Shannon, and Kolmogorov: Their
fundamentally different approaches to information, when
constructivized and optimized (after discretizing dimH ) lead to the
same fundamental quantity, K (x).



Thank you!


