Algorithmic Fractal Dimensions

Jack H. Lutz
lowa State University

NZMRI Lectures
Napier, NZ
January, 2017

Lectures

1. Information and Dimensions, Classical and Algorithmic
2. Algorithmic Dimensions in Fractal Geometry
3. Mutual Dimensions and Finite-State Dimensions

Lectures

1. Information and Dimensions, Classical and Algorithmic
2. Algorithmic Dimensions in Fractal Geometry
3. Mutual Dimensions and Finite-State Dimensions

Lecture 1. Information and Dimensions, Classical and Algorithmic
Today's topics
Shannon information (entropy)
Algorithmic information (Kolmogorov complexity)
Classical fractal dimensions
Algorithmic fractal dimensions
Dimensions of finite strings
Dimension characterizations of Kolmogorov complexity

Shannon Information

The perfect (zero-error) information content of a nonempty, finite set is

$$
H_{o}(X)=\log |X|, \quad\left(\log =\log _{2}\right)
$$

the number of bits needed to specify an element of X.

Shannon Information

The perfect (zero-error) information content of a nonempty, finite set is

$$
H_{o}(X)=\log |X|, \quad\left(\log =\log _{2}\right)
$$

the number of bits needed to specify an element of X. Let (X, p) be a finite probability space.

1. The Shannon self-information of $x \in X$ is

$$
\log \frac{1}{p(x)}
$$

the value of $H_{0}(X)$ "apparent to x."

The perfect (zero-error) information content of a nonempty, finite set is

$$
H_{o}(X)=\log |X|, \quad\left(\log =\log _{2}\right)
$$

the number of bits needed to specify an element of X. Let (X, p) be a finite probability space.

1. The Shannon self-information of $x \in X$ is

$$
\log \frac{1}{p(x)}
$$

the value of $H_{0}(X)$ "apparent to x."
2. The Shannon entropy of (X, p) is

$$
H(X, p)=E_{p} \log \frac{1}{p(x)}=\sum_{x \in X} p(x) \log \frac{1}{p(x)}
$$

Algorithmic Information (Kolmogorov Complexity)

All Turing machines here are self-delimiting: In addition to standard work tapes, they have a special program tape with a program tape head that is read-only and cannot move left.

- At start of computation with a program $\pi \in\{0,1\}^{*}$ the program tape contains
($\lrcorner=$ "blank") with the program tape head on the leftmost \lrcorner.
- A computation's output (on, say, the first worktape) is undefined unless it halts with the program tape head on the last bit of π.

Algorithmic Information (Kolmogorov Complexity)

The Kolmogorov complexity of a string $x \in\{0,1\}^{*}$ is

$$
K(x)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*} \text { and } U(\pi)=x\right\},
$$

where U is a universal Turing machine.

Algorithmic Information (Kolmogorov Complexity)

The Kolmogorov complexity of a string $x \in\{0,1\}^{*}$ is

$$
K(x)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*} \text { and } U(\pi)=x\right\}
$$

where U is a universal Turing machine.

- It matters little (small additive constant) which U is chosen for this.

Algorithmic Information (Kolmogorov Complexity)

The Kolmogorov complexity of a string $x \in\{0,1\}^{*}$ is

$$
K(x)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*} \text { and } U(\pi)=x\right\}
$$

where U is a universal Turing machine.

- It matters little (small additive constant) which U is chosen for this.
- $K(x)=$ amount of algorithmic information in x.

Algorithmic Information (Kolmogorov Complexity)

The Kolmogorov complexity of a string $x \in\{0,1\}^{*}$ is

$$
K(x)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*} \text { and } U(\pi)=x\right\}
$$

where U is a universal Turing machine.

- It matters little (small additive constant) which U is chosen for this.
- $K(x)=$ amount of algorithmic information in x.
- $K(x) \leq|x|+o(|x|)$.

Algorithmic Information (Kolmogorov Complexity)

The Kolmogorov complexity of a string $x \in\{0,1\}^{*}$ is

$$
K(x)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*} \text { and } U(\pi)=x\right\}
$$

where U is a universal Turing machine.

- It matters little (small additive constant) which U is chosen for this.
- $K(x)=$ amount of algorithmic information in x.
- $K(x) \leq|x|+o(|x|)$.
- x is "random" if $K(x) \approx|x|$.

Algorithmic Information (Kolmogorov Complexity)

The Kolmogorov complexity of a string $x \in\{0,1\}^{*}$ is

$$
K(x)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*} \text { and } U(\pi)=x\right\}
$$

where U is a universal Turing machine.

- It matters little (small additive constant) which U is chosen for this.
- $K(x)=$ amount of algorithmic information in x.
- $K(x) \leq|x|+o(|x|)$.
- x is "random" if $K(x) \approx|x|$.
- Routine coding extends this to $K(x)$ for $x \in \mathbb{N}, x \in \mathbb{Q}$, $x \in \mathbb{Q}^{n}$, etc.

Algorithmic Information (Kolmogorov Complexity)

The algorithmic a priori probability of a string $x \in\{0,1\}^{*}$ is

$$
\mathbf{m}(x)=\sum_{\substack{\pi \in\{0,1\}^{*} \\ U(\pi)=x}} 2^{-|\pi|}
$$

Algorithmic Information (Kolmogorov Complexity)

The algorithmic a priori probability of a string $x \in\{0,1\}^{*}$ is

$$
\mathbf{m}(x)=\sum_{\substack{\pi \in\{0,1\}^{*} \\ U(\pi)=x}} 2^{-|\pi|}
$$

Trivially, $2^{-K(x)} \leq \mathbf{m}(x)$.

Algorithmic Information (Kolmogorov Complexity)

The algorithmic a priori probability of a string $x \in\{0,1\}^{*}$ is

$$
\mathbf{m}(x)=\sum_{\substack{\pi \in\{0,1\}^{*} \\ U(\pi)=x}} 2^{-|\pi|}
$$

Trivially, $2^{-K(x)} \leq \mathbf{m}(x)$. Levin's Coding Theorem (1974). There is a constant $\alpha>0$ such that, for all $x \in\{0,1\}^{*}$,

$$
\mathbf{m}(x) \leq \alpha 2^{-K(x)}
$$

Algorithmic Information (Kolmogorov Complexity)

The algorithmic a priori probability of a string $x \in\{0,1\}^{*}$ is

$$
\mathbf{m}(x)=\sum_{\substack{\pi \in\{0,1\}^{*} \\ U(\pi)=x}} 2^{-|\pi|}
$$

Trivially, $2^{-K(x)} \leq \mathbf{m}(x)$. Levin's Coding Theorem (1974). There is a constant $\alpha>0$ such that, for all $x \in\{0,1\}^{*}$,

$$
\mathbf{m}(x) \leq \alpha 2^{-K(x)}
$$

Equivalently, there is a constant $c \in \mathbb{N}$ such that, for all $x \in\{0,1\}^{*}$,

$$
\left|K(x)-\log \frac{1}{\mathbf{m}(x)}\right| \leq c
$$

Algorithmic Information (Kolmogorov Complexity)

The algorithmic a priori probability of a string $x \in\{0,1\}^{*}$ is

$$
\mathbf{m}(x)=\sum_{\substack{\pi \in\{0,1\}^{*} \\ U(\pi)=x}} 2^{-|\pi|}
$$

Trivially, $2^{-K(x)} \leq \mathbf{m}(x)$. Levin's Coding Theorem (1974). There is a constant $\alpha>0$ such that, for all $x \in\{0,1\}^{*}$,

$$
\mathbf{m}(x) \leq \alpha 2^{-K(x)}
$$

Equivalently, there is a constant $c \in \mathbb{N}$ such that, for all $x \in\{0,1\}^{*}$,

$$
\left|K(x)-\log \frac{1}{\mathbf{m}(x)}\right| \leq c .
$$

Shannon self-information, using m

Fractal Dimension in Metric Spaces

Let ρ be a metric on a set \mathcal{X}.

Fractal Dimension in Metric Spaces

Let ρ be a metric on a set \mathcal{X}.

Definition

- The diameter of a set $X \subseteq \mathcal{X}$ is

$$
\operatorname{diam}(X)=\sup \{\rho(x, y) \mid x, y \in X\}
$$

Fractal Dimension in Metric Spaces

Let ρ be a metric on a set \mathcal{X}.

Definition

- The diameter of a set $X \subseteq \mathcal{X}$ is

$$
\operatorname{diam}(X)=\sup \{\rho(x, y) \mid x, y \in X\}
$$

- Closed ball of radius r about $x \in \mathcal{X}$:

$$
B(x, r)=\{y \in \mathcal{X} \mid \rho(x, y) \leq r\}
$$

Fractal Dimension in Metric Spaces

Let ρ be a metric on a set \mathcal{X}.

Definition

- The diameter of a set $X \subseteq \mathcal{X}$ is

$$
\operatorname{diam}(X)=\sup \{\rho(x, y) \mid x, y \in X\}
$$

- Closed ball of radius r about $x \in \mathcal{X}$:

$$
B(x, r)=\{y \in \mathcal{X} \mid \rho(x, y) \leq r\}
$$

- Open ball of radius r about $x \in \mathcal{X}$:

$$
B^{o}(x, r)=\{y \in \mathcal{X} \mid \rho(x, y)<r\} .
$$

Hausdorff Measures in Metric Spaces

For $X \subseteq \mathcal{X}$ and $\delta>0$,
$\mathcal{H}_{\delta}=\{$ countable covers of X by balls of diameter at most $\delta\}$.

Hausdorff Measures in Metric Spaces

For $X \subseteq \mathcal{X}$ and $\delta>0$,
$\mathcal{H}_{\delta}=\{$ countable covers of X by balls of diameter at most $\delta\}$.
For $s \geq 0$,

$$
H_{\delta}^{s}(X)=\inf _{\mathcal{B} \in \mathcal{H}_{\delta}(X)} \sum_{B \in \mathcal{B}} \operatorname{diam}(B)^{s} .
$$

Hausdorff Measures in Metric Spaces

For $X \subseteq \mathcal{X}$ and $\delta>0$,
$\mathcal{H}_{\delta}=\{$ countable covers of X by balls of diameter at most $\delta\}$.
For $s \geq 0$,

$$
H_{\delta}^{s}(X)=\inf _{\mathcal{B} \in \mathcal{H}_{\delta}(X)} \sum_{B \in \mathcal{B}} \operatorname{diam}(B)^{s}
$$

The s-dimensional Hausdorff (outer) ball measure of X is

$$
H^{s}(X)=\lim _{\delta \rightarrow 0} H_{\delta}^{s}(X)
$$

Hausdorff Dimension in Metric Spaces

$H^{s}(X)=s$-dimensional Hausdorff (outer) ball measure of X.

Definition (Hausdorff 1919)

Let ρ be a metric on \mathcal{X}, and let $X \subseteq \mathcal{X}$. The Hausdorff dimension of X with respect to ρ is

$$
\operatorname{dim}^{(\rho)}(X)=\inf \left\{s \mid H^{s}(X)=0\right\}
$$

Packing Dimension in Metric Spaces

$$
P_{\delta}(X)=\{\text { packings of } X \text { by balls of diameter at most } \delta\}
$$

Packing Dimension in Metric Spaces

$P_{\delta}(X)=\{$ packings of X by balls of diameter at most $\delta\}$,

$$
P_{\delta}^{s}(X)=\sup _{\mathcal{B} \in \mathcal{P}_{\delta}(X)} \sum_{B \in \mathcal{B}} \operatorname{diam}(B)^{s}
$$

Packing Dimension in Metric Spaces

$P_{\delta}(X)=\{$ packings of X by balls of diameter at most $\delta\}$,

$$
\begin{gathered}
P_{\delta}^{s}(X)=\sup _{\mathcal{B} \in \mathcal{P}_{\delta}(X)} \sum_{B \in \mathcal{B}} \operatorname{diam}(B)^{s} \\
P_{0}^{s}(X)=\lim _{\delta \rightarrow 0} P_{\delta}^{s}(X)
\end{gathered}
$$

Packing Dimension in Metric Spaces

$P_{\delta}(X)=\{$ packings of X by balls of diameter at most $\delta\}$,

$$
\begin{gathered}
P_{\delta}^{s}(X)=\sup _{\mathcal{B} \in \mathcal{P}_{\delta}(X)} \sum_{B \in \mathcal{B}} \operatorname{diam}(B)^{s} \\
P_{0}^{s}(X)=\lim _{\delta \rightarrow 0} P_{\delta}^{s}(X)
\end{gathered}
$$

The s-dimensional packing (outer) ball measure of X is

$$
P^{s}(X)=\inf \left\{\sum_{i=0}^{\infty} P_{0}^{s}\left(X_{i}\right) \mid X \subseteq \bigcup_{i=0}^{\infty} X_{i}\right\}
$$

Packing Dimension in Metric Spaces

$P_{\delta}(X)=\{$ packings of X by balls of diameter at most $\delta\}$,

$$
\begin{gathered}
P_{\delta}^{s}(X)=\sup _{\mathcal{B} \in \mathcal{P}_{\delta}(X)} \sum_{B \in \mathcal{B}} \operatorname{diam}(B)^{s} \\
P_{0}^{s}(X)=\lim _{\delta \rightarrow 0} P_{\delta}^{s}(X)
\end{gathered}
$$

The s-dimensional packing (outer) ball measure of X is

$$
P^{s}(X)=\inf \left\{\sum_{i=0}^{\infty} P_{0}^{s}\left(X_{i}\right) \mid X \subseteq \bigcup_{i=0}^{\infty} X_{i}\right\}
$$

Definition (Tricot 1982, Sullivan 1984)

The packing dimension of X with respect to ρ is

$$
\operatorname{Dim}^{(\rho)}(X)=\inf \left\{s \mid P^{s}(X)=0\right\}
$$

Fractal Dimension in Sequence Spaces

Let Σ be an alphabet with $2 \leq|\Sigma|<\infty$.
A (Borel) probability measure on Σ^{∞} is a function $\nu: \Sigma^{*} \rightarrow[0,1]$ satisfying

$$
\nu(\lambda)=1, \quad \nu(w)=\sum_{a \in \Sigma} \nu(w a) \text { for all } w \in \Sigma^{*} .
$$

Fractal Dimension in Sequence Spaces

Let Σ be an alphabet with $2 \leq|\Sigma|<\infty$.
A (Borel) probability measure on Σ^{∞} is a function $\nu: \Sigma^{*} \rightarrow[0,1]$ satisfying

$$
\nu(\lambda)=1, \quad \nu(w)=\sum_{a \in \Sigma} \nu(w a) \text { for all } w \in \Sigma^{*}
$$

Intuition: Choose $S \in \Sigma^{\infty}$ "according to ν." Then

$$
\nu(w)=\operatorname{Prob}[w \sqsubseteq S]=\operatorname{Prob}[w \text { is a prefix of } S] .
$$

Fractal Dimension in Sequence Spaces

Let Σ be an alphabet with $2 \leq|\Sigma|<\infty$.
A (Borel) probability measure on Σ^{∞} is a function $\nu: \Sigma^{*} \rightarrow[0,1]$ satisfying

$$
\nu(\lambda)=1, \quad \nu(w)=\sum_{a \in \Sigma} \nu(w a) \text { for all } w \in \Sigma^{*}
$$

Intuition: Choose $S \in \Sigma^{\infty}$ "according to ν." Then

$$
\nu(w)=\operatorname{Prob}[w \sqsubseteq S]=\operatorname{Prob}[w \text { is a prefix of } S] .
$$

Notation. μ is always the uniform probability measure on Σ^{∞}, i.e.,

$$
\mu(w)=|\Sigma|^{-|w|} .
$$

Fractal Dimension in Sequence Spaces

Let Σ be an alphabet with $2 \leq|\Sigma|<\infty$.
A (Borel) probability measure on Σ^{∞} is a function $\nu: \Sigma^{*} \rightarrow[0,1]$ satisfying

$$
\nu(\lambda)=1, \quad \nu(w)=\sum_{a \in \Sigma} \nu(w a) \text { for all } w \in \Sigma^{*} .
$$

Intuition: Choose $S \in \Sigma^{\infty}$ "according to ν." Then

$$
\nu(w)=\operatorname{Prob}[w \sqsubseteq S]=\operatorname{Prob}[w \text { is a prefix of } S] .
$$

Notation. μ is always the uniform probability measure on Σ^{∞}, i.e.,

$$
\mu(w)=|\Sigma|^{-|w|} .
$$

We restrict attention to probability measures that are strongly positive, meaning that there exists $\delta>0$ such that, for all $w \in \Sigma^{*}$ and $a \in \Sigma, \nu(w a) \geq \delta \nu(w)$.

Fractal Dimension in Sequence Spaces

The metric induced by a strongly positive probability measure ν on Σ^{*} is the function $\rho_{\nu}: \Sigma^{\infty} \times \Sigma^{\infty} \rightarrow[0,1]$ given by

$$
\rho_{\nu}(S, T)=\sup \{\nu(w) \mid w \sqsubseteq S \text { and } w \sqsubseteq T\} .
$$

Fractal Dimension in Sequence Spaces

The metric induced by a strongly positive probability measure ν on Σ^{*} is the function $\rho_{\nu}: \Sigma^{\infty} \times \Sigma^{\infty} \rightarrow[0,1]$ given by

$$
\rho_{\nu}(S, T)=\sup \{\nu(w) \mid w \sqsubseteq S \text { and } w \sqsubseteq T\} .
$$

Definition

Let ν be a strongly positive probability measure on Σ^{∞}, and let $X \subseteq \Sigma^{\infty}$.

1. The Hausdorff dimension of X with respect to ν is

$$
\operatorname{dim}^{\nu}(X)=\operatorname{dim}^{\left(\rho_{\nu}\right)}(X)
$$

2. The packing dimension of X with respect to ν is

$$
\operatorname{Dim}^{\nu}(X)=\operatorname{Dim}^{\left(\rho_{\nu}\right)}(X)
$$

Fractal Dimension in Sequence Spaces

The metric induced by a strongly positive probability measure ν on Σ^{*} is the function $\rho_{\nu}: \Sigma^{\infty} \times \Sigma^{\infty} \rightarrow[0,1]$ given by

$$
\rho_{\nu}(S, T)=\sup \{\nu(w) \mid w \sqsubseteq S \text { and } w \sqsubseteq T\} .
$$

Definition

Let ν be a strongly positive probability measure on Σ^{∞}, and let $X \subseteq \Sigma^{\infty}$.

1. The Hausdorff dimension of X with respect to ν is

$$
\operatorname{dim}^{\nu}(X)=\operatorname{dim}^{\left(\rho_{\nu}\right)}(X)
$$

2. The packing dimension of X with respect to ν is

$$
\operatorname{Dim}^{\nu}(X)=\operatorname{Dim}^{\left(\rho_{\nu}\right)}(X)
$$

$\operatorname{dim}^{\nu}(X)$ is also called the Billingsley dimension of X (Billingsley 1960).

Fractal Dimension in Sequence Spaces

The metric induced by a strongly positive probability measure ν on Σ^{*} is the function $\rho_{\nu}: \Sigma^{\infty} \times \Sigma^{\infty} \rightarrow[0,1]$ given by

$$
\rho_{\nu}(S, T)=\sup \{\nu(w) \mid w \sqsubseteq S \text { and } w \sqsubseteq T\} .
$$

Definition

Let ν be a strongly positive probability measure on Σ^{∞}, and let $X \subseteq \Sigma^{\infty}$.

1. The Hausdorff dimension of X with respect to ν is

$$
\operatorname{dim}^{\nu}(X)=\operatorname{dim}^{\left(\rho_{\nu}\right)}(X)
$$

2. The packing dimension of X with respect to ν is

$$
\operatorname{Dim}^{\nu}(X)=\operatorname{Dim}^{\left(\rho_{\nu}\right)}(X)
$$

When $\nu=\mu$, we omit it from the terminology:

- The Hausdorff dimension of X is $\operatorname{dim}_{H}(X)=\operatorname{dim}^{\mu}(X)$.
- The packing dimension of X is $\operatorname{dim}_{P}(X)=\operatorname{Dim}^{\mu}(X)$.

Gale Characterizations

In a few minutes, we will define martingales, gales, and conditions for their success.

For the moment, martingales are strategies for betting on the successive symbols in a sequence $S \in \Sigma^{\infty}$, and one of these strategies succeeds on S if it makes an infinite amount of money betting on S.

Gales are generalized martingales that are no more powerful, but exhibit the martingales' success rates in a convenient form.

Gale Characterizations

Ville, 1930s:
Martingale success characterizes measure 0 sets.

Gale Characterizations

Ville, 1930s: Martingale success characterizes measure 0 sets.
Schnorr, 1970s: Effective martingale success and success rates characterize certain types of randomness.

Gale Characterizations

Ville, 1930s: Martingale success characterizes measure 0 sets.
Schnorr, 1970s: Effective martingale success and success rates characterize certain types of randomness.
J. Lutz, 1990s: Effective martingale success characterizes measure in complexity classes.

Ville, 1930s: Martingale success characterizes measure 0 sets.

Schnorr, 1970s:
Effective martingale success and success rates characterize certain types of randomness.
J. Lutz, 1990s: Effective martingale success characterizes measure in complexity classes.
Ryabko and
Staiger, 1990s:

Effective martingale success rates are related to Hausdorff dimension and Kolmogorov complexity.

Gale Characterizations

Ville, 1930s: Martingale success characterizes measure 0 sets.
Schnorr, 1970s: Effective martingale success and success rates characterize certain types of randomness.
J. Lutz, 1990s: Effective martingale success characterizes measure in complexity classes.
Ryabko and Effective martingale success rates are related to
Staiger, 1990s: Hausdorff dimension and Kolmogorov complexity.
J. Lutz, 2000: Martingale success rates characterize Hausdorff dimension. So used effective martingale success rates to define effective versions of Hausdorff dimension.

Gale Characterizations

Ville, 1930s: Martingale success characterizes measure 0 sets.
Schnorr, 1970s: Effective martingale success and success rates characterize certain types of randomness.
J. Lutz, 1990s: Effective martingale success characterizes measure in complexity classes.
Ryabko and Effective martingale success rates are related to Staiger, 1990s: Hausdorff dimension and Kolmogorov complexity.
J. Lutz, 2000: Martingale success rates characterize Hausdorff dimension. So used effective martingale success rates to define effective versions of Hausdorff dimension.
Athreya, Hitchcock, J. Lutz, and Mayordomo 2007:
Same for packing dimension.

Gale Characterizations

Ville, 1930s: Martingale success characterizes measure 0 sets.
Schnorr, 1970s: Effective martingale success and success rates characterize certain types of randomness.
J. Lutz, 1990s: Effective martingale success characterizes measure in complexity classes.
Ryabko and Effective martingale success rates are related to Staiger, 1990s: Hausdorff dimension and Kolmogorov complexity.
J. Lutz, 2000: Martingale success rates characterize Hausdorff dimension. So used effective martingale success rates to define effective versions of Hausdorff dimension.
Athreya, Hitchcock, J. Lutz, and Mayordomo 2007:
Same for packing dimension.
J. Lutz and Mayordomo 2008:

Same for Billingsley dimensions.

Gale Characterizations

Definition

Let ν be a probability measure on Σ^{∞}, and let $s \geq 0$.

1. A ν-s-gale is a function $d: \Sigma^{*} \rightarrow[0, \infty)$ that satisfies

$$
d(w) \nu(w)^{s}=\sum_{a \in \Sigma} d(w a) \nu(w a)^{s}
$$

for all $w \in \Sigma^{*}$.

Gale Characterizations

Definition

Let ν be a probability measure on Σ^{∞}, and let $s \geq 0$.

1. A ν-s-gale is a function $d: \Sigma^{*} \rightarrow[0, \infty)$ that satisfies

$$
d(w) \nu(w)^{s}=\sum_{a \in \Sigma} d(w a) \nu(w a)^{s}
$$

for all $w \in \Sigma^{*}$.
2. A ν-martingale is a ν-1-gale.

Gale Characterizations

Definition

Let ν be a probability measure on Σ^{∞}, and let $s \geq 0$.

1. A ν-s-gale is a function $d: \Sigma^{*} \rightarrow[0, \infty)$ that satisfies

$$
d(w) \nu(w)^{s}=\sum_{a \in \Sigma} d(w a) \nu(w a)^{s}
$$

for all $w \in \Sigma^{*}$.
2. A ν-martingale is a ν-1-gale.
3. An s-gale is a μ-s-gale.

Gale Characterizations

Definition

Let ν be a probability measure on Σ^{∞}, and let $s \geq 0$.

1. A ν-s-gale is a function $d: \Sigma^{*} \rightarrow[0, \infty)$ that satisfies

$$
d(w) \nu(w)^{s}=\sum_{a \in \Sigma} d(w a) \nu(w a)^{s}
$$

for all $w \in \Sigma^{*}$.
2. A ν-martingale is a ν-1-gale.
3. An s-gale is a μ-s-gale.
4. A martingale is a 1-gale.

Gale Characterizations

Observation (J. Lutz 2000)
d is a ν-s-gale $\Leftrightarrow d^{\prime}(w)=\nu(w)^{s-1} d(w)$ is a ν-martingale.
\therefore Gales are only a convenience.

Gale Characterizations

Observation (J. Lutz 2000)

d is a ν-s-gale $\Leftrightarrow d^{\prime}(w)=\nu(w)^{s-1} d(w)$ is a ν-martingale.
\therefore Gales are only a convenience.

Definition

Let d be a ν-s-gale, and let $S \in \Sigma^{\infty}$.

1. d succeeds on S if $\limsup _{t \rightarrow \infty} d(S[0 . . t-1])=\infty$.
2. d succeeds stringly on S if $\liminf _{t \rightarrow \infty} d(S[0 . . t-1])=\infty$.

Gale Characterizations

Observation (J. Lutz 2000)

d is a ν-s-gale $\Leftrightarrow d^{\prime}(w)=\nu(w)^{s-1} d(w)$ is a ν-martingale.
\therefore Gales are only a convenience.

Definition

Let d be a ν-s-gale, and let $S \in \Sigma^{\infty}$.

1. d succeeds on S if $\limsup _{t \rightarrow \infty} d(S[0 . . t-1])=\infty$.
2. d succeeds stringly on S if $\liminf _{t \rightarrow \infty} d(S[0 . . t-1])=\infty$.
3. The success set of d is $S^{\infty}[d]=\{S \mid d$ succeeds on $S\}$.
4. The strong success set of d is $S_{\mathrm{str}}^{\infty}[d]=\{S \mid d$ succeeds strongly on $S\}$.

Gale Characterizations

Theorem (J. Lutz and Mayordomo 2008)

Let ν be a strongly positive probability measure on Σ^{∞}, and let $X \subseteq \Sigma^{\infty}$.

1. The Billingsley ν-dimension of X is

$$
\operatorname{dim}^{\nu}(X)=\inf \left\{\begin{array}{l|l}
s & \begin{array}{l}
\text { there is a } \nu \text {-s-gale } d \\
\text { such that } X \subseteq S^{\infty}[d]
\end{array}
\end{array}\right\}
$$

2. The strong Billingsley ν-dimension of X is

$$
\operatorname{Dim}^{\nu}(X)=\inf \left\{\begin{array}{l|l}
s & \begin{array}{l}
\text { there is a } \nu \text {-s-gale } d \\
\text { such that } X \subseteq S_{s t r}^{\infty}[d]
\end{array}
\end{array}\right\}
$$

Gale Characterizations

Recall

1. The Hausdorff dimension of X is

$$
\operatorname{dim}_{H}(X)=\operatorname{dim}^{\mu}(X) .
$$

2. The packing dimension of X is

$$
\operatorname{dim}_{P}(X)=\operatorname{Dim}^{\mu}(X)
$$

Effective Fractal Dimensions

Everything so far has been classical. Now it's time for the theory of computing.

Effective Fractal Dimensions

Everything so far has been classical. Now it's time for the theory of computing.

Let Δ be a resource bound, such as computable, constructive, poly-time, or finite-state.

Effective Fractal Dimensions

Everything so far has been classical. Now it's time for the theory of computing.

Let Δ be a resource bound, such as computable, constructive, poly-time, or finite-state.

We obtain Δ-algorithmic dimensions by requiring the gales in the gale characterizations to be Δ-computable.

Constructive Dimensions

A very important case is $\Delta=$ constructive.

Constructive Dimensions

A very important case is $\Delta=$ constructive.

Definition

A ν-s-gale is constructive if it is lower semi-computable, i.e., if there is an exactly computable function $\hat{d}: \Sigma^{*} \times \mathbb{N} \rightarrow \mathbb{Q}$ with the following two properties.

- For all $w \in \Sigma^{*}$ and $t \in \mathbb{N}, \hat{d}(w, t) \leq \hat{d}(w, t+1)<d(w)$.
- For all $w \in \Sigma^{*}, \lim _{t \rightarrow \infty} \hat{d}(w, t)=d(w)$.

Constructive Dimensions

Definition (J. Lutz and Mayordomo 2008, aided by a result of
Fenner 2002)
Let ν be a strongly positive probability measure on Σ^{∞}, and let $X \subseteq \Sigma^{\infty}$.

1. The constructive ν-dimension of X is

$$
\operatorname{cdim}^{\nu}(X)=\inf \left\{\begin{array}{l|l}
s & \begin{array}{l}
\text { there is a constructive } \nu \text {-s-gale } d \\
\text { such that } X \subseteq S^{\infty}[d]
\end{array}
\end{array}\right\}
$$

2. The constructive strong ν-dimension of X is

$$
\operatorname{cDim}^{\nu}(X)=\inf \left\{\begin{array}{ll}
s & \begin{array}{l}
\text { there is a constructive } \nu \text { - } s \text {-gale } d \\
\text { such that } X \subseteq S_{\mathrm{str}}^{\infty}[d]
\end{array}
\end{array}\right\}
$$

Constructive Dimensions

Definition (J. Lutz and Mayordomo 2008, aided by a result of
Fenner 2002)
Let ν be a strongly positive probability measure on Σ^{∞}, and let $X \subseteq \Sigma^{\infty}$.

1. The constructive ν-dimension of X is

$$
\operatorname{cdim}^{\nu}(X)=\inf \left\{s \left\lvert\, \begin{array}{l}
\text { there is a constructive } \nu \text {-s-gale } d \\
\text { such that } X \subseteq S^{\infty}[d]
\end{array}\right.\right\}
$$

2. The constructive strong ν-dimension of X is

$$
\operatorname{cDim}^{\nu}(X)=\inf \left\{s \begin{array}{l}
\text { there is a constructive } \nu \text { - } s \text {-gale } d \\
\text { such that } X \subseteq S_{\mathrm{str}}^{\infty}[d]
\end{array}\right\}
$$

We write $\operatorname{cdim}(X)=\operatorname{cdim}^{\mu}(X)$ and $\mathrm{cDim}(X)=\operatorname{cDim}^{\mu}(X)$.

Constructive Dimensions

A correspondence principle for an effective dimension is a theorem stating that, on sufficiently simple sets, the effective dimension coincides with its classical counterpart. (Terminology stolen from N. Bohr by J. Lutz.)

A correspondence principle for an effective dimension is a theorem stating that, on sufficiently simple sets, the effective dimension coincides with its classical counterpart. (Terminology stolen from N. Bohr by J. Lutz.)

Correspondence Principle for Constructive Dimension:

Theorem (Hitchcock 2002)

If $X \subseteq \Sigma^{\infty}$ is any union (not necessarily effective) of computably closed (i.e., Π_{1}^{0}) sets, then $\operatorname{cdim}(X)=\operatorname{dim}_{H}(X)$.

A correspondence principle for an effective dimension is a theorem stating that, on sufficiently simple sets, the effective dimension coincides with its classical counterpart. (Terminology stolen from N. Bohr by J. Lutz.)

Correspondence Principle for Constructive Dimension:
Theorem (Hitchcock 2002)
If $X \subseteq \Sigma^{\infty}$ is any union (not necessarily effective) of computably closed (i.e., Π_{1}^{0}) sets, then $\operatorname{cdim}(X)=\operatorname{dim}_{H}(X)$.

Correspondence Principle for Constructive Strong Dimension:

A correspondence principle for an effective dimension is a theorem stating that, on sufficiently simple sets, the effective dimension coincides with its classical counterpart. (Terminology stolen from N. Bohr by J. Lutz.)

Correspondence Principle for Constructive Dimension:
Theorem (Hitchcock 2002)
If $X \subseteq \Sigma^{\infty}$ is any union (not necessarily effective) of computably closed (i.e., Π_{1}^{0}) sets, then $\operatorname{cdim}(X)=\operatorname{dim}_{H}(X)$.

Correspondence Principle for Constructive Strong Dimension: is false! (Conidis 2009)

Individual Sequences

Definition

Let ν be a probability measure on Σ^{∞}, and let $S \in \Sigma^{\infty}$. 1. The ν-dimension of S is $\operatorname{dim}^{\nu}(S)=\operatorname{cdim}^{\nu}(\{S\})$.
2. The strong ν-dimension of S is $\operatorname{Dim}^{\nu}(S)=\operatorname{cDim}^{\nu}(\{S\})$.

Individual Sequences

Definition

Let ν be a probability measure on Σ^{∞}, and let $S \in \Sigma^{\infty}$.

1. The ν-dimension of S is $\operatorname{dim}^{\nu}(S)=\operatorname{cdim}^{\nu}(\{S\})$.
2. The strong ν-dimension of S is $\operatorname{Dim}^{\nu}(S)=\operatorname{cDim}^{\nu}(\{S\})$.

Absolute Stability of Constructive Dimensions:

Theorem (Lutz and Mayordomo 2008, extending J. Lutz 2000)

If ν is a strongly positive, computable probability measure on Σ^{∞}, then, for all $X \subseteq \Sigma^{\infty}$,

$$
\begin{aligned}
\operatorname{cdim}^{\nu}(X) & =\sup _{S \in X} \operatorname{dim}^{\nu}(S) \text { and } \\
\operatorname{cDim}^{\nu}(X) & =\sup _{S \in X} \operatorname{Dim}^{\nu}(S)
\end{aligned}
$$

(Contrast with the countable stability of classical dimensions)

Individual Sequences

Definition

Let ν be a probability measure on Σ^{∞}, and let $S \in \Sigma^{\infty}$.

1. The ν-dimension of S is $\operatorname{dim}^{\nu}(S)=\operatorname{cdim}^{\nu}(\{S\})$.
2. The strong ν-dimension of S is $\operatorname{Dim}^{\nu}(S)=\mathrm{cDim}^{\nu}(\{S\})$.

Absolute Stability of Constructive Dimensions:

Theorem (Lutz and Mayordomo 2008, extending J. Lutz 2000)

If ν is a strongly positive, computable probability measure on Σ^{∞}, then, for all $X \subseteq \Sigma^{\infty}$,

$$
\begin{aligned}
\operatorname{cdim}^{\nu}(X) & =\sup _{S \in X} \operatorname{dim}^{\nu}(S) \text { and } \\
\operatorname{cDim}^{\nu}(X) & =\sup _{S \in X} \operatorname{Dim}^{\nu}(S)
\end{aligned}
$$

(Contrast with the countable stability of classical dimensions)
\therefore Constructive dimensions are investigated in terms of individual sequences.

Individual Sequences

In general,

$$
\begin{aligned}
0 \leq \operatorname{dim}_{H}(X) & \leq \operatorname{dim}_{P}(X) \\
\mid \wedge & \mid \wedge \\
& \operatorname{cdim}(X)
\end{aligned}
$$

Individual Sequences

Definition (Martin-Löf 1966, Schnorr 1970)
A sequence $R \in \mathbf{C}$ is random if no constructive martingale succeeds on R.

Individual Sequences

If R is random (with respect to the uniform probability measure on \mathbf{C}, then

$$
\operatorname{dim}(R)=\operatorname{Dim}(R)=1
$$

Individual Sequences

What if R is random with respect to some other probability measure on \mathbf{C} ?

Individual Sequences

Fix $\delta>0$ and a bias sequence $\vec{\beta}=\left(\beta_{0}, \beta_{1}, \beta_{2}, \ldots\right)$ with each $\beta_{i} \in[\delta, 1-\delta]$.

Definition

$$
\begin{gathered}
\mathcal{H}(\beta)=\beta \log \frac{1}{\beta}+(1-\beta) \log \frac{1}{1-\beta}=\text { Shannon entropy } \\
H_{n}(\vec{\beta})=\frac{1}{n} \sum_{i=0}^{n-1} \mathcal{H}\left(\beta_{i}\right) \\
H^{-}(\vec{\beta})=\liminf _{n \rightarrow \infty} H_{n}(\vec{\beta}) \quad \text { lower average entropy } \\
H^{+}(\vec{\beta})=\limsup _{n \rightarrow \infty} H_{n}(\vec{\beta}) \quad \text { upper average entropy }
\end{gathered}
$$

Individual Sequences

Theorem (Athreya, Hitchcock, J. Lutz, and Mayordomo 2007)
Let $0<\delta<\frac{1}{2}$, and let $\vec{\beta}=\left(\beta_{0}, \beta_{1}, \ldots\right)$ be a computable bias sequence with each $\beta_{i} \in\left[\delta, \frac{1}{2}\right]$. For every $\vec{\beta}$-random sequence R we have

$$
\operatorname{dim}(R)=H^{-}(\vec{\beta}), \quad \operatorname{Dim}(R)=H^{+}(\vec{\beta})
$$

Dimensions of Finite Strings

Our next task: Extend Hausdorff dimension to define $\operatorname{dim}(x)$ for each $x \in\{0,1\}^{*}$.

Dimensions of Finite Strings

Our strategy:

Dimensions of Finite Strings

Our strategy:

$$
\text { For } X \subseteq \mathbf{C}=\{0,1\}^{\infty} \quad \text { For } x \in\{0,1\}^{*}
$$

gale characterization §

Dimensions of Finite Strings

Notation: $\mathcal{T}=\underbrace{\{0,1\}^{*}} \cup \underbrace{\{0,1\}^{*} \square}$

Dimensions of Finite Strings

Dimensions of Finite Strings

Dimensions of Finite Strings

Definition

An s-termgale is a function $d: \mathcal{T} \rightarrow[0, \infty)$ satisfying

$$
d(\lambda) \leq 1
$$

and

$$
d(w) \geq 2^{-s}(d(w 0)+d(w 1)+d(w \square))
$$

for all $w \in\{0,1\}^{*}$.

Dimensions of Finite Strings

Definition

An s-termgale is a function $d: \mathcal{T} \rightarrow[0, \infty)$ satisfying

$$
d(\lambda) \leq 1
$$

and

$$
d(w) \geq 2^{-s}(d(w 0)+d(w 1)+d(w \square))
$$

for all $w \in\{0,1\}^{*}$.
Bets on the successive bits and termination of a finite string.

Dimensions of finite strings

Example
Define $d: \mathcal{T} \rightarrow[0, \infty)$ by

$$
\begin{aligned}
d(\lambda) & =1 \\
d(w 0) & =\frac{3}{2} d(w) \\
d(w 1) & =d(w \square)=\frac{1}{4} d(w) .
\end{aligned}
$$

Dimensions of finite strings

Example
Define $d: \mathcal{T} \rightarrow[0, \infty)$ by

$$
\begin{aligned}
d(\lambda) & =1 \\
d(w 0) & =\frac{3}{2} d(w) \\
d(w 1) & =d(w \square)=\frac{1}{4} d(w) .
\end{aligned}
$$

This is a 1-termgale.

Dimensions of finite strings

Example

Define $d: \mathcal{T} \rightarrow[0, \infty)$ by

$$
\begin{aligned}
d(\lambda) & =1 \\
d(w 0) & =\frac{3}{2} d(w) \\
d(w 1) & =d(w \square)=\frac{1}{4} d(w) .
\end{aligned}
$$

This is a 1-termgale. If $w \in\{0,1\}^{n}$ has $n_{0} 0 \mathrm{~s}$ and $n_{1} 1 \mathrm{~s}$, then

$$
\begin{aligned}
d(w \square) & =\left(\frac{3}{2}\right)^{n_{0}}\left(\frac{1}{4}\right)^{n_{1}+1} \\
& =2^{n_{0}(1+\log 3)-2(n+1)} .
\end{aligned}
$$

Dimensions of finite strings

Example

Define $d: \mathcal{T} \rightarrow[0, \infty)$ by

$$
\begin{aligned}
d(\lambda) & =1 \\
d(w 0) & =\frac{3}{2} d(w) \\
d(w 1) & =d(w \square)=\frac{1}{4} d(w) .
\end{aligned}
$$

This is a 1-termgale. If $w \in\{0,1\}^{n}$ has $n_{0} 0 \mathrm{~s}$ and $n_{1} 1 \mathrm{~s}$, then

$$
\begin{aligned}
d(w \square) & =\left(\frac{3}{2}\right)^{n_{0}}\left(\frac{1}{4}\right)^{n_{1}+1} \\
& =2^{n_{0}(1+\log 3)-2(n+1)} .
\end{aligned}
$$

\therefore If $n_{0} \gg \frac{2}{1+\log 3}(n+1) \approx 0.77(n+1)$, then $d(w \square) \gg d(\lambda)$, even though d loses $\frac{3}{4}$ of its money when the \square appears.

Dimensions of Finite Strings

Trivial observation: If

$$
\begin{equation*}
2^{-s|x|} d(x)=2^{-s^{\prime}|x|} d^{\prime}(x) \tag{*}
\end{equation*}
$$

for all $x \in \mathcal{T}$, then d is an s-termgale $\Leftrightarrow d^{\prime}$ is an s-termgale.

Dimensions of Finite Strings

Trivial observation: If

$$
\begin{equation*}
2^{-s|x|} d(x)=2^{-s^{\prime}|x|} d^{\prime}(x) \tag{*}
\end{equation*}
$$

for all $x \in \mathcal{T}$, then d is an s-termgale $\Leftrightarrow d^{\prime}$ is an s-termgale.
\therefore If d is a 0-termgale, then

$$
d^{\prime}(x)=2^{s|x|} d(x)
$$

is an s-termgale, and all s-termgales are of this form.

Dimensions of Finite Strings

Trivial observation: If

$$
\begin{equation*}
2^{-s|x|} d(x)=2^{-s^{\prime}|x|} d^{\prime}(x) \tag{*}
\end{equation*}
$$

for all $x \in \mathcal{T}$, then d is an s-termgale $\Leftrightarrow d^{\prime}$ is an s-termgale.
\therefore If d is a 0 -termgale, then

$$
d^{\prime}(x)=2^{s|x|} d(x)
$$

is an s-termgale, and all s-termgales are of this form.

Definition

A termgale is a family

$$
d=\left\{d^{(s)} \mid s \in[0, \infty\}\right.
$$

of s-termgales, one for each s, related by $(*)$.

Dimensions of Finite Strings

Trivial observation: If

$$
\begin{equation*}
2^{-s|x|} d(x)=2^{-s^{\prime}|x|} d^{\prime}(x) \tag{*}
\end{equation*}
$$

for all $x \in \mathcal{T}$, then d is an s-termgale $\Leftrightarrow d^{\prime}$ is an s-termgale.
\therefore If d is a 0 -termgale, then

$$
d^{\prime}(x)=2^{s|x|} d(x)
$$

is an s-termgale, and all s-termgales are of this form.

Definition

A termgale is a family

$$
d=\left\{d^{(s)} \mid s \in[0, \infty\}\right.
$$

of s-termgales, one for each s, related by $(*)$.
d is completely determined by any one of its elements.

Dimensions of Finite Strings

Definition

Let d be a termgale, $a \in \mathbb{Z}^{+}$, and $w \in\{0,1\}^{*}$. The dimension of w relative to d at significance level a is

$$
\operatorname{dim}_{d}^{a}(w)=\inf \left\{s \mid d^{(s)}(w \square)>a\right\}
$$

Dimensions of Finite Strings

Definition

Let d be a termgale, $a \in \mathbb{Z}^{+}$, and $w \in\{0,1\}^{*}$. The dimension of w relative to d at significance level a is

$$
\operatorname{dim}_{d}^{a}(w)=\inf \left\{s \mid d^{(s)}(w \square)>a\right\}
$$

We have now discretized Hausdorff dimension.

Dimensions of Finite Strings

Definition

Let d be a termgale, $a \in \mathbb{Z}^{+}$, and $w \in\{0,1\}^{*}$. The dimension of w relative to d at significance level a is

$$
\operatorname{dim}_{d}^{a}(w)=\inf \left\{s \mid d^{(s)}(w \square)>a\right\}
$$

We have now discretized Hausdorff dimension. Constructivizing is easy:

Definition

A termgale d is constructive if $d^{(0)}$ is lower semicomputable.

Dimensions of Finite Strings

Now optimize

Definition

A constructive termgale \tilde{d} is optimal if for every constructive termgale d there is a constant $\alpha>0$ such that, for all $s \in[0, \infty)$ and $w \in\{0,1\}^{*}$,

$$
\tilde{d}^{(s)}(w \square) \geq \alpha d^{(s)}(w \square) .
$$

Dimensions of Finite Strings

Now optimize

Definition

A constructive termgale \tilde{d} is optimal if for every constructive termgale d there is a constant $\alpha>0$ such that, for all $s \in[0, \infty)$ and $w \in\{0,1\}^{*}$,

$$
\tilde{d}^{(s)}(w \square) \geq \alpha d^{(s)}(w \square) .
$$

Theorem (J. Lutz 2003)

If \tilde{d} is an optimal constructive termgale, then, for every constructive termgale d and every $a \in \mathbb{Z}^{+}$, there is a constant $\gamma \in[0, \infty)$ such that, for all $w \in\{0,1\}^{*}$,

$$
\operatorname{dim}_{\tilde{d}}^{a}(w) \leq \operatorname{dim}_{d}(w)+\frac{\gamma}{1+|w|}
$$

Dimensions of Finite Strings

Corollary

If d_{1}, d_{2} are optimal constructive termgales and $a_{1}, a_{2} \in \mathbb{Z}^{+}$, then there is a constant $\alpha \in[0, \infty)$ such that, for all $w \in\{0,1\}^{*}$,

$$
\left|\operatorname{dim}_{d_{1}}^{a_{1}}(w)-\operatorname{dim}_{d_{2}}^{a_{2}}(w)\right| \leq \frac{\alpha}{1+|w|} .
$$

Dimensions of Finite Strings

Corollary

If d_{1}, d_{2} are optimal constructive termgales and $a_{1}, a_{2} \in \mathbb{Z}^{+}$, then there is a constant $\alpha \in[0, \infty)$ such that, for all $w \in\{0,1\}^{*}$,

$$
\left|\operatorname{dim}_{d_{1}}^{a_{1}}(w)-\operatorname{dim}_{d_{2}}^{a_{2}}(w)\right| \leq \frac{\alpha}{1+|w|} .
$$

\therefore It makes very little difference which optimal constructive termgale or which significance level we use.

Dimensions of Finite Strings

Corollary

If d_{1}, d_{2} are optimal constructive termgales and $a_{1}, a_{2} \in \mathbb{Z}^{+}$, then there is a constant $\alpha \in[0, \infty)$ such that, for all $w \in\{0,1\}^{*}$,

$$
\left|\operatorname{dim}_{d_{1}}^{a_{1}}(w)-\operatorname{dim}_{d_{2}}^{a_{2}}(w)\right| \leq \frac{\alpha}{1+|w|} .
$$

\therefore It makes very little difference which optimal constructive termgale or which significance level we use.

Theorem (J. Lutz 2003)

There is an optimal constuctive termgale \mathbf{d}_{\square}. (Proof uses Levin's m.)

Dimensions of Finite Strings

Corollary

If d_{1}, d_{2} are optimal constructive termgales and $a_{1}, a_{2} \in \mathbb{Z}^{+}$, then there is a constant $\alpha \in[0, \infty)$ such that, for all $w \in\{0,1\}^{*}$,

$$
\left|\operatorname{dim}_{d_{1}}^{a_{1}}(w)-\operatorname{dim}_{d_{2}}^{a_{2}}(w)\right| \leq \frac{\alpha}{1+|w|} .
$$

\therefore It makes very little difference which optimal constructive termgale or which significance level we use.

Theorem (J. Lutz 2003)

There is an optimal constuctive termgale \mathbf{d}_{\square}. (Proof uses Levin's m.)

Definition

The dimension of a string $w \in\{0,1\}^{*}$ is $\operatorname{dim}(w)=\operatorname{dim}_{\mathbf{d}_{\square}}^{1}(w)$.

Dimension and Kolmogorov Complexity

Theorem (J. Lutz 2003)

There is a constant $c \in \mathbb{N}$ such that, for all $x \in\{0,1\}^{*}$,

$$
|K(x)-|x| \operatorname{dim}(x)| \leq c .
$$

Dimension and Kolmogorov Complexity

Our strategy:

Dimension and Kolmogorov Complexity

\therefore Up to constant additive terms,

$$
K(x)=\log \frac{1}{\mathbf{m}(x)}=|x| \operatorname{dim}(x)
$$

The genius of Hausdorff, Shannon, and Kolmogorov: Their fundamentally different approaches to information, when constructivized and optimized (after discretizing dim_{H}) lead to the same fundamental quantity, $K(x)$.

Thank you!

