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Trigonometric and Fourier series

Definition

A trigonometric series is an expression of the form

s ∼
∞∑

n=−∞
cne

inx , x ∈ T

The unit circle T can be viewed as the interval [0, 2π] with 0, 2π
identified. This can be also written as

s ∼ a0

2
+

∞∑
n=1

ancos(nx) + bnsin(nx).
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Trigonometric and Fourier series

Definition

A Fourier series is an expression of the form

s ∼
∞∑

n=−∞
f̂ (n)e inx , f ∈ L1(T)

The Fourier coefficients of f are given by

f̂ (n) =
1

2π

∫ 2π

0
f (x)e−inxdx .
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I: Riemann, Heine and Cantor
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Riemann, Heine and Cantor

Riemann Habilitationsschrift (1854)

Study of the structure of functions that can be represented by
trigonometric series

f (x) =
∞∑

n=−∞
cne

inx
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Riemann, Heine and Cantor

Suggests three general problems:

(The Uniqueness Problem) Is such an expansion unique?

(The Characterization Problem) Can one characterize the
functions that have a trigonometric expansion?

(The Coefficient Problem) How does one “compute” the
coefficients of the expansion from the function?
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Riemann, Heine and Cantor

Will concentrate on the Uniqueness Problem but here are some
comments on the other two problems.

(The Characterization Problem) Even for continuous
functions, although there are many well-known sufficient
criteria for the expansion in a trigonometric series, one can
argue (on the basis of a result that I will mention later) than
no reasonable exact criteria can be found.
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Riemann, Heine and Cantor

(The Coefficient Problem) If an integrable function can be
represented by a trigonometric series, then the coefficients are
its Fourier coefficients (de la Vallée-Poussin). However there
are everywhere convergent series, like

∞∑
n=2

sin(nx)

log n
,

whose sum is not integrable. Denjoy from 1941 to 1949 wrote
a 700 (!) page book describing a general procedure for
computing the coefficients.
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Riemann, Heine and Cantor

Heine suggested to Cantor to study the Uniqueness Problem.

Theorem (Cantor, 1870)

If
∑∞

n=−∞ cne
inx = 0,∀x ∈ T, then cn = 0,∀n.

Theorem (Cantor, 1872)

If
∑∞

n=−∞ cne
inx = 0,∀x ∈ T, except on a closed set of finite

Cantor-Bendixson rank, then cn = 0,∀n.
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Riemann, Heine and Cantor

Theorem (Lebesgue, 1903)

If
∑∞

n=−∞ cne
inx = 0,∀x ∈ T, except on a closed countable set,

then cn = 0,∀n.

Theorem (W.H.Young, 1909)

If
∑∞

n=−∞ cne
inx = 0,∀x ∈ T, except on a countable set, then

cn = 0,∀n.
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Sets of uniqueness

Definition

A (Borel) set A ⊆ T is called a set of uniqueness if∑∞
n=−∞ cne

inx = 0,∀x 6∈ A, implies cn = 0,∀n. Otherwise it is
called a set of multiplicity.

We denote by U the class of sets of uniqueness and by M the class
of sets of multiplicity. Thus

countable ⊆ U ⊆ (Lebesgue) null.

Is U = countable?
Is U = (Lebesgue) null?
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II. The Russian and Polish Schools (mid 1910’s - mid
1930’s)



Trigonometric Series and Set theory

The Russian and Polish Schools

The structure of sets of uniqueness was investigated intensely
during that period by the Russian school of Luzin, Menshov and
Bari, and the Polish school of Rajchman, Zygmund and
Marcinkiewicz.
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The Russian and Polish Schools

Theorem (Bari, Zygmund 1923)

The union of countably many closed sets of uniqueness is also a
set of uniqueness.
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The Russian and Polish Schools

Definition

Given real numbers ξ1, ξ2, . . . , with 0 < ξn < 1/2, denote by
Eξ1,ξ2,... the Cantor-type set (in T) constructed with successive
ratios of dissection ξ1, ξ2, . . . . We also let Eξ = Eξ,ξ,.... In
particular, E1/3 is the usual Cantor set.
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The Russian and Polish Schools

Theorem (Menshov, 1916)

There is a closed null set of multiplicity. In fact, Eξ1,ξ2,..., with

ξn = (n+1)
2(n+2) , is such a set.

Theorem (Bari,Rajchman, 1921-1923)

There are perfect sets of uniqueness. In fact, E1/3 is such a set.

It follows that
countable $ U $ null.

Thus by the 1920’s it had become clear that the class of (even
closed) sets of uniqueness is hard to delineate in terms of classical
notions of smallness in analysis.
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The Russian and Polish Schools

Bari’s memoir in 1927 stated some classical problems on sets of
uniqueness.

(The Characterization Problem) Find necessary and
sufficient conditions for a perfect set to be a set of
uniqueness.

It appears that the intended meaning was to ask for geometric,
analytic (or, as we will see later, even number theoretic)
structural properties of a given perfect set, expressed
“explicitly” in terms of some standard description of it, that
will determine whether it is a set of uniqueness or multiplicity.
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The Russian and Polish Schools

(The Union Problem) Is the union of two (Borel) sets of
uniqueness also a set of uniqueness?

The first open case is that of two Gδ sets.

(The Category Problem) Is every (Borel) set of
uniqueness of the first category (meager)?
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The first open case is that of two Gδ sets.

(The Category Problem) Is every (Borel) set of
uniqueness of the first category (meager)?
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III. Thin sets in harmonic analysis (early 1950’s - mid
1970’s)
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Thin sets in harmonic analysis

During that period there was an explosion of research into the
structure of thin sets in harmonic analysis, including the study of
closed sets of uniqueness.

Piateski-Shapiro in 1952-54 introduced functional analysis methods
into the subject of uniqueness. This has become the standard
language of the subject since then.
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Thin sets in harmonic analysis

Definition

We denote by A(T) the Banach algebra of functions with
absolutely convergent Fourier series. This is of course the same as
`1(Z). Its dual is the space `∞(Z), which in this context is called
the space of pseudomeasures and denoted by PM. Its predual is
the space c0(Z), which in this context is called the space of
pseudofunctions and denoted by PF.
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Thin sets in harmonic analysis

Example

A (probability Borel) measure µ can be identified with its
Fourier-Stieltjes coefficients

µ̂(n) =

∫
e−inxdµ.

These are bounded, so every measure is a pseudomeasure.

Example

A function f ∈ L1(T) can be identified with its Fourier coefficients
f̂ (n) and these are in c0(Z), by the Riemann-Lebesgue Lemma, so
every function is a pseudofunction.
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Thin sets in harmonic analysis

Definition

The support of a pseudomeasure S is the complement of the
largest open set on which S vanishes, i.e., annihilates all functions
in A(T) supported by it.

This gives the usual definition of support when applied to a
measure or a function.

Piatetski-Shapiro’s reformulation of the concept of closed set of
uniqueness.

Theorem (Piatetski-Shapiro, 1952)

A closed set E is a set of uniqueness iff it does not support a non-0
pseudofunction.
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Thin sets in harmonic analysis

At this point it is time to introduce an important variation of the
concept of set of uniqueness, which really goes back to Menshov’s
work. His example of a null closed set of multiplicity was witnessed
by the Fourier-Stieltjes series of a (probability Borel) measure.
Such a set is called a set of strict multiplicity.

Definition

A (Borel) set is called a set of extended uniqueness if it satisfies
uniqueness for Fourier-Stieltjes series of measures. Otherwise it is
called a set of strict multiplicity. The class of sets of extended
uniqueness is denoted by U0 and the class of sets of strict
multiplicity is denoted by M0.



Trigonometric Series and Set theory

Thin sets in harmonic analysis

At this point it is time to introduce an important variation of the
concept of set of uniqueness, which really goes back to Menshov’s
work. His example of a null closed set of multiplicity was witnessed
by the Fourier-Stieltjes series of a (probability Borel) measure.
Such a set is called a set of strict multiplicity.

Definition

A (Borel) set is called a set of extended uniqueness if it satisfies
uniqueness for Fourier-Stieltjes series of measures. Otherwise it is
called a set of strict multiplicity. The class of sets of extended
uniqueness is denoted by U0 and the class of sets of strict
multiplicity is denoted by M0.



Trigonometric Series and Set theory

Thin sets in harmonic analysis

Definition

A Rajchman measure is a measure whose Fourier-Stieltjes
coefficients converge to 0, i.e., form a pseudofunction.

Lebesgue measure is of this form and a Rajchman measure is
thought of as a measure with “large support”. However, Menshov
showed that there are singular Rajchman measures. In terms of
Rajchman measures, the sets of extended uniqueness are exactly
those that are null for all such measures.

Theorem (Piatetski-Shapiro, 1954)

There is a closed set of extended uniqueness but not of uniqueness.
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Thin sets in harmonic analysis

This result of Piatetski-Shapiro was amplified in the work of
Körner in the early 1970’s, who solved a major problem at that
time by constructing a particular kind of closed thin set, called a
Helson set, which is of multiplicity. As Helson, 1954 had already
shown that these sets are of extended uniqueness, this also implied
the Piatetski-Shapiro theorem. This result of Körner was one of
the last major results of that period. Its original proof was
extremely complicated and despite a major simplification by
Kaufman it remains a subtle and difficult result.
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Thin sets in harmonic analysis

During that period there was also a major advance in the
characterization problem.

Definition

A real number is called a Pisot (or Pisot-Vijayaraghavan) number
if it is an algebraic integer > 1 all of whose conjugates have
absolute value < 1.

Examples: The integers > 1 and the golden mean.

Intuitively, these are numbers whose powers approach integers.
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Thin sets in harmonic analysis

Theorem (Salem, 1944)

The Pisot numbers form a closed set of algebraic integers.

Theorem (Salem-Zygmund, 1955)

The set Eξ is a set of uniqueness iff 1/ξ is a Pisot number.
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IV. Applications of descriptive set theory (mid 1980’s -
mid 1990’s)
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Applications of descriptive set theory

We have seen that the problems of uniqueness have involved ideas
from many subjects, such as classical real analysis, modern
harmonic analysis, functional analysis, number theory, etc.
Although set theory owes its origin to Cantor’s work on the
uniqueness problem, relatively little contact existed between set
theory and the study of sets of uniqueness until the 1980’s, when
ideas from a basic area of set theory, called descriptive set theory,
were brought to bear in the study of this subject. This is interesting
since descriptive set theory was originally developed in the same
Russian and Polish schools during the same period 1915-1935.
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Applications of descriptive set theory

Luzin’s school was concerned with was then called the theory of
real functions and there was at that time a distinction between the
so-called metric theory (differentiation, integration, trigonometric
series, etc.) and the descriptive theory (called today descriptive set
theory). Strangely enough, according to Kolmogorov, who was a
member of that school, Luzin divided his students to those that
would study the metric theory and those that would study the
descriptive one. (Kolmogorov actually violated this rule and
worked on both.) In the following years the subjects drifted apart,
the first one practiced by analysts and the second one by logicians.
They were brought back together in the 1980’s in the study of sets
of uniqueness.



Trigonometric Series and Set theory

Applications of descriptive set theory

Descriptive set theory is the study of definable sets and functions
in Polish (complete, separable metric) spaces, like the Euclidean
spaces, Hilbert space and more generally separable Banach spaces,
second countable locally compact groups, etc.

In this theory sets are classified in hierarchies according to the
complexity of their definitions and the structure of sets at each
level of these hierarchies is systematically studied.
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Applications of descriptive set theory

Of particular importance are the Borel and projective sets. The
Borel sets are obtained from the open sets by applying repeatedly
countable Boolean operations and the projective sets are obtained
form the Borel sets by the operations of complementation and
projection.

These classes of sets are ramified in natural hierarchies as follows:

open Fσ Fσδ · · · A PCA · · ·
closed Gδ Gδσ · · ·︸ ︷︷ ︸

Borel

CA CPCA · · ·︸ ︷︷ ︸
Projective

A = analytic sets, CA = co-analytic sets
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Applications of descriptive set theory

Intuitively, sets whose membership is characterized in “effective”
terms, even allowing countable operations, are Borel.

Here are a couple of examples of co-analytic non-Borel sets in
analysis:

In the space C (T), the set of differentiable functions is
co-analytic but not Borel (Mazurkiewicz, 1936)

In the space C (T), the set of functions that can be expanded
in a trigonometric series is co-analytic but not Borel (Ajtai-K,
1987)
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Applications of descriptive set theory

In the 1980’s and 1990’s methods of descriptive set theory were
combined with previous work in analysis to the study of sets of
uniqueness. This was primarily developed in series of papers (and
unpublished work) of the following mathematicians: Debs-Saint
Raymond, Kaufman, K-Louveau, K-Louveau-Woodin, Solovay.

The main point is that descriptive set theory allows one to develop
a “global” theory of closed sets of uniqueness, with many
applications to the classical theory.
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Raymond, Kaufman, K-Louveau, K-Louveau-Woodin, Solovay.

The main point is that descriptive set theory allows one to develop
a “global” theory of closed sets of uniqueness, with many
applications to the classical theory.
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Applications of descriptive set theory

The appropriate space here is the compact metric space K (T) of
closed subsets of the circle, with the usual Hausdorff metric. One
studies the structure of the following two subsets of this space:

U = {E ∈ K (T) : E is a set of uniqueness}
U0 = {E ∈ K (T) : E is a set of extended uniqueness}

The global theory can be encapsulated in the following main
theorem, whose proof is contained in a series of papers of the
above authors. It states three basic principles that describe the
structure of the classes U, U0.
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Applications of descriptive set theory

Theorem

a) (Stability property) The sets U,U0 are calibrated σ-ideals.

b) (Descriptive complexity, I) Both U,U0 are co-analytic and
locally non-Borel, i.e., for every closed set E not in U (resp., not in
U0) the set U ∩ K (E ) (resp., U0 ∩ K (E )) is not Borel.

c) (Descriptive complexity, II) The σ-ideal U0 admits a Borel basis
but the σ-ideal U does not.
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U has no Borel basis U0 has a Borel basis

Co-analytic

Locally non-Borel

Calibrated σ-ideals
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Applications of descriptive set theory

This theory has numerous applications both in the solution of
classical problems and also in understanding and proving in a new
way previously established results.
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Applications of descriptive set theory

(Characterization Problem) One can argue that this has a
negative solution in a strong sense, since not only there is no
“explicit” characterization of perfect sets of uniqueness of the
sought after type but also there is no way to characterize such
sets in terms of decomposing them into a countable number
of explicitly characterizable components.
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Applications of descriptive set theory

Every known until the early 1980’s closed set of uniqueness
could be written as a union of a countable sequence of simpler
uniqueness sets, belonging to a class denoted by U ′. This is a
Borel class, so the non-basis theorem shows that there are
many new kinds of U-sets. This result can therefore be viewed
as a powerful new existence theorem. For example, it answers
a question of Piatetski-Shapiro, on the existence of U-sets not
expressible as countable unions of so-called H(n)-sets (with
varying n).
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Applications of descriptive set theory

(Category Problem) This is completely solved affirmatively in
a strong sense, as it follows that every Borel set of extended
uniqueness is of the first category. Equivalently this means
that every Borel set of the second category supports a
Rajchman measure. This in turn has several applications,
including in particular a unified, new and much simpler way of
proving some well-known results in the theory, originally
established by various techniques and constructions.
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Applications of descriptive set theory

Menshov’s Theorem says that there are (Lebesgue) null sets
that support Rajchman measures. This is now clear as it
well-known that there are comeager null sets. Thus Menshov’s
result is seen as a consequence of the orthogonality between
measure and category.

Ivashev-Musatov and Kaufman have extended Menshov’s
Theorem to show that for any function h there are
h-Hausdorff measure 0 closed sets that support Rajchman
measures. The same argument as above applies.

The Kahane-Salem (1964) problem asks whether the set of
non-normal numbers supports a Rajchman measure. This was
solved affirmatively by Lyons (1986). Again this follows form
the fact that the set of non-normal numbers is comeager.
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Applications of descriptive set theory

(The Union Problem) This is still open, even for the union of
two Gδ sets. It is mostly believed that there is a
counterexample. The preceding theory however implies that
from a counterexample one obtains a closed set with
properties similar to those obtained by Körner (Helson sets of
multiplicity). Thus conceivably Körner’s Theorem could be
useful in the construction of such a counterexample.
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Applications of descriptive set theory

There are several further applications of descriptive set theoretic
methods also to other aspects of the subject, e.g., Lyons’
characterization of Rajchman measures by their null sets is seen as
following from a general descriptive set theoretic result of
Mokobodzki about analytic classes of measures. Also such ideas
have been applied by S. Kahane (a cousin of J.-P. Kahane) to the
solution of some old problems about other types of thin sets in
harmonic analysis.
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Conclusion

This is where we stand now. Despite the progress made over the
last 150 years many mysteries remain. Here are for example some
intriguing problems that are still open:

Where is the dividing line in the Characterization Problem?

Eξ: characterizable
Eξ1,ξ2,...: ???
E in general: uncharacterizable

The Union Problem for Gδ sets and for arbitrary Borel sets.

(The Interior Problem, Bari 1927) Is the concept of set of
uniqueness determined by the closed sets, i.e., does a Borel
set of multiplicity contain a closed set of multiplicity?
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