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“How dare we speak of the laws of chance?
Is not chance the antithesis of all law?”

— Joseph Bertrand, Calcul des Probabilités, 1889



Part 1: Three Approaches to Defining Randomness

Computability Theory

A First Look at Randomness

The Statistician’s Approach: Martin-Löf Randomness

The Coder’s Approach: Kolmogorov complexity

The Gambler’s Approach: Martingales



Part 1: Three Approaches to Defining Randomness

Computability Theory

A First Look at Randomness

The Statistician’s Approach: Martin-Löf Randomness
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Computable Functions

We work with functions f : X → Y where X and Y are countable sets like
N, 2<ω, Q, {0, 1}, etc.

We identify A ⊂ X with its characteristic function: the function
f : X → {0, 1} s.t. x ∈ A iff f (x) = 1.

A function is computable if its values can be determined by an algorithm.

The notion of algorithm can be formalized using Turing machines.

Example: The set of primes is computable.

On input n > 0, run through all 1 < m 6
√

n.
For each m, check whether m divides n.

If some m does, return 0.
If no m does, return 1.
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Uniformly Computable Functions

A sequence of functions f0, f1, . . . is uniformly computable if there is a
single algorithm that on input (e, n) returns fe(n).

Prop. There is no way to list the computable functions N→ N so that
they are uniformly computable.

Pf. Suppose there were such a listing f0, f1, . . . and let g(n) = fn(n) + 1.

Then g is computable, so fe = g for some e.

But then fe(e) = g(e) = fe(e) + 1, a contradiction.
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Partial Computable Functions

An algorithm is just a finite specification in some language, so we do have
a nice listing of all algorithms.

However, not all algorithms halt on all inputs.

A partial function f : X → Y is one whose domain is a (possibly proper)
subset of X .

We write f (x)↓ to mean that f (x) is defined, and f (x)↑ otherwise.

If f (x)↓ for all x ∈ X , then f is total.

f is a partial computable function if there is an algorithm that on input x
outputs f (x) if f (x)↓ and does not halt if f (x)↑.
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Universal Partial Computable Functions

We can list all partial computable functions N→ N as Φ0,Φ1, . . . so that
there is a single algorithm that on input (e, n) outputs Φe(n) if Φe(n)↓
and does not halt if Φe(n)↑.

This algorithm is universal.

In the context of partial computable functions 2<ω → 2<ω, we can take a
nice listing Φ0,Φ1, . . . and define U(0e1σ) = Φe(σ).

U is a universal partial computable function.

The definition of U depends on the choice of listing, but U’s basic
properties do not.
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The Halting Problem

The Halting Problem ∅′ is {(e, n) : Φe(n)↓}.

Prop. ∅′ is not computable.

Pf. Suppose it is and define

fe(n) =

{
Φe(n) if Φe(n)↓
0 otherwise.

Then f0, f1, . . . is a uniformly computable listing of all total computable
functions, a contradiction.
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Computably Enumerable Sets

A set is computably enumerable (c.e.) if it can be listed by an algorithm,
but not necessarily in any particular order.

17 47 6 3,413,217 57 . . .

A set is c.e. iff it is the domain of a partial computable function.

A set is c.e. iff it is the range of a partial computable function.

∅′ is c.e., as are, e.g., the word problem for a finitely generated group, the
set of solvable Diophantine equations, the set of theorems of a computably
specified formal system, etc.

A sequence of sets A0,A1, . . . is uniformly c.e. if there is a single algorithm
listing all pairs (e, n) : n ∈ Ae .

There is a uniformly c.e. listing of all c.e. sets.
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Intuitive Randomness

Which of the following binary sequences seem random?

A 000000000000000000000000000000000000000000000000000000000000

B 001101001101001101001101001101001101001101001101001101001101

C 010001101100000101001110010111011100000001001000110100010101

D 001001101101100010001111010100111011001001100000001011010100

E 010101110110111101110010011010110111001101101000011011110111

F 011101111100110110011010010000111111001101100000011011010101

G 000001100010111000100000000101000010110101000000100000000100

H 010100110111101101110101010000010111100000010101110101010001



Intuitive Randomness

Non-randomness: increasingly complex patterns.
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Intuitive Randomness

Randomness: bits coming from atmospheric patterns.
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Intuitive Randomness

Partial Randomness: mixing random and nonrandom sequences.

A 000000000000000000000000000000000000000000000000000000000000

B 001101001101001101001101001101001101001101001101001101001101
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Intuitive Randomness

Randomness relative to other measures: biased coins.
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What Counts as a Nonrandom Pattern?

Consider the following patterns:

1. The sequence α has a 1 in every odd position.

2. Every finite string appears as a segment of α infinitely often.

If α satisfies 1, it is clearly not random.

However, we expect a random α to satisfy 2.

Indeed, locally random objects can have highly predictable global
structure. For example, the random graph.

We need a way to distinguish rare patterns from common patterns.
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Three Approaches to Randomness at an Intuitive Level

The statistician’s approach: Deal directly with rare patterns using measure
theory. Random sequences should not have rare properties.

The coder’s approach: Rare patterns can be used to compress information.
Random sequences should not be compressible (i.e., easily describable).

The gambler’s approach: A betting strategy can exploit rare patterns.
Random sequences should be unpredictable.

We begin by looking at an early attempt to define random sequences, by
von Mises.

This attempt predated computability theory.

We will see how each of the three approaches above can be seen as an
elaboration on von Mises’ flawed attempt.
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This attempt predated computability theory.

We will see how each of the three approaches above can be seen as an
elaboration on von Mises’ flawed attempt.



Von Mises’ Approach

For α ∈ 2ω, let Rn(α) =
|{m < n : α(m) = 1}|

n
.

If α is random, we expect it to satisfy the law of large numbers:
limn Rn(α) = 1

2 .

But of course that law is not enough to characterize randomness, since
010101 . . ., say, satisfies it.

Von Mises’ basic idea: A gambler should not be able to make any money
on a random sequence.

If a gambler can determine a subsequence of α that violates the law of
large numbers, then the gambler can make money on α in the long run, so
α is not random.

Von Mises proposed that this observation could be turned around to
characterize randomness.
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Von Mises Randomness

A place selection rule is an increasing function f : N→ N, telling us which
bits of a sequence to look at.

Let R f
n (α) =

|{m < n : α(f (m)) = 1}|
n

.

α ∈ 2ω is von Mises random if limn R f
n (α) = 1

2 for all acceptable place
selection rules.

Here “acceptable” means somehow given by a rule not depending on
knowledge of α.

Let C be a collection of place selection rules.

α is C-von Mises random if limn R f
n (α) = 1

2 for all f ∈ C.
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Von Mises’ Approach: The Good News

If acceptable place selection rules have to be finitely specified, then there
should be only countably many of them.

Thm (Wald). Let C be any countable collection of place selection rules.
Then C-von Mises random sequences exist.

Church suggested taking C to be the computable place selection rules.
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Von Mises’ Approach: The Bad News

Thm (Ville). Let C be any countable collection of place selection rules.
There is a C-von Mises random sequence α s.t. for all n,

Rn(α) >
1

2
.

Such an α is clearly not random.

Ville suggested adding another requirement for random sequences, the Law
of the Iterated Logarithm.

But how do we know this added requirement would be enough?
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Three Approaches to Improving on von Mises’ Idea

The statistician’s approach: Define an abstract notion of reasonable
statistical test, and define random sequences as those that pass all such
tests.

The coder’s approach: Define an abstract notion of reasonable description,
and define random sequences as those that have no simple descriptions.

The gambler’s approach: Broaden von Mises’ notion of betting, and
require random sequences to be immune to every reasonable betting
strategy.

Problem: What should count as a statistical test, or a description, or a
betting strategy?

Common solution: Use computability theory to define robust classes of
tests, description systems, and betting strategies.
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Part 1: Three Approaches to Defining Randomness

Computability Theory

A First Look at Randomness

The Statistician’s Approach: Martin-Löf Randomness

The Coder’s Approach: Kolmogorov complexity

The Gambler’s Approach: Martingales



Cantor Space and Effectively Open Sets

We work in Cantor space 2ω.

For σ ∈ 2<ω, let [σ] = {α ∈ 2ω : σ ≺ α}.

2ω is a topological space with basis {[σ] : σ ∈ 2<ω}.

The uniform measure on 2ω is given by µ([σ]) = 2−|σ|.

For B ⊆ 2<ω, let [B] =
⋃
σ∈B [σ]. Every open set in 2ω is of this form.

We call B a set of generators for [B].

A Σ0
1 class is a set of the form [B] for a c.e. B ⊆ 2<ω.

Equivalently, a Σ0
1 class is a set of the form [B] for a computable B ⊆ 2<ω.

C0, C1, . . . are uniformly Σ0
1 classes if Cn = [Bn] for uniformly c.e. B0,B1, . . .
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Martin-Löf Randomness

A Martin-Löf test is a sequence of uniformly Σ0
1 classes C0, C1, . . . s.t.

µ(Cn) 6 2−n.

What really matters is that the measures tend effectively to 0.

We can assume without loss of generality that C0 ⊇ C1 ⊇ · · · .

We call any subset of
⋂

n Cn Martin-Löf null.

α ∈ 2ω passes this test if α /∈
⋂

n Cn.

α is Martin-Löf random, or 1-random, if it passes every Martin-Löf test.

There are countably many ML-tests, each passed by all but measure 0
many sequences, so there are measure 1 many 1-random sequences.

No computable sequence can be 1-random.
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A Martin-Löf test is a sequence of uniformly Σ0
1 classes C0, C1, . . . s.t.

µ(Cn) 6 2−n.

What really matters is that the measures tend effectively to 0.

We can assume without loss of generality that C0 ⊇ C1 ⊇ · · · .

We call any subset of
⋂

n Cn Martin-Löf null.
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Universal Martin-Löf Tests

We can list all ML-tests as

C0
0 , C0

1 , C0
2 · · ·

C1
0 , C1

1 , C1
2 · · ·

C2
0 , C2

1 , C2
2 · · ·

...

s.t. the whole collection {C i
n : i , n ∈ N} is uniformly Σ0

1.

Let Un =
⋃

i C i
i+n+1.

Then U0,U1, . . . is a ML-test, and α is 1-random iff it passes this single
test.

We call U0,U1, . . . a universal Martin-Löf test.
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Part 1: Three Approaches to Defining Randomness

Computability Theory

A First Look at Randomness

The Statistician’s Approach: Martin-Löf Randomness
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Kolmogorov Complexity

Although 010000 is much longer than
010101110110111101110010011010110111001101101000011011110111,
it is easier to describe.

Intuitively, the Kolmogorov complexity of an object is its shortest
description.

But what counts as a description?

Berry’s Paradox: The smallest natural number that cannot be described in
fewer than twenty words.

The idea is to think of partial computable functions as systems of
descriptions.
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Plain Kolmogorov Complexity

Let f : 2<ω → 2<ω be partial computable.

The Kolmogorov complexity of σ relative to f is

Cf (σ) = min{|τ | : f (τ) = σ}.

Cf (σ) depends on f , but there is a “best” choice of f : Let f be a
universal partial computable function.

The plain Kolmogorov complexity of σ is C (σ) = Cf (σ).

For every partial computable g , we have C (σ) 6 Cg (σ) + O(1).

In particular, if f and g are both universal partial computable functions,
then Cf (σ) = Cg (σ)± O(1), so the definition of C does not depend on
the choice of f , up to an additive constant.
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Random Strings

There are 2n strings of length n, but only 2n− 1 descriptions of length < n.

So there exist σ s.t. C (σ) > |σ|.

Such σ are incompressible, and it makes sense to consider them random.

We might expect every initial segment of a random sequence to be
random, and indeed want to characterize randomness of α by

C (α � n) > n − O(1).

However:

Thm (Martin-Löf). There is no α ∈ 2ω s.t. C (α � n) > n − O(1).
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Thm (Martin-Löf). There is no α ∈ 2ω s.t. C (α � n) > n − O(1).



Random Strings

There are 2n strings of length n, but only 2n− 1 descriptions of length < n.

So there exist σ s.t. C (σ) > |σ|.

Such σ are incompressible, and it makes sense to consider them random.

We might expect every initial segment of a random sequence to be
random, and indeed want to characterize randomness of α by

C (α � n) > n − O(1).

However:
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random, and indeed want to characterize randomness of α by

C (α � n) > n − O(1).

However:

Thm (Martin-Löf). There is no α ∈ 2ω s.t. C (α � n) > n − O(1).



A Criticism of Plain Kolmogorov Complexity

The length of a string represents additional information beyond that
contained in the bits of the string.

Even 000000 . . . has initial segments with moderately high information
content: those of the form 0n where n has high information content.

Put another way, to describe binary strings, we use binary strings plus
termination information.

A partial function f : 2<ω → 2<ω is prefix-free if its domain is an
antichain, that is, if f (σ)↓ and σ ≺ τ or τ ≺ σ, then f (τ)↑.

Using only prefix-free partial computable functions as description systems
gets around the above criticism.
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Prefix-free Kolmogorov Complexity

List the prefix-free partial computable functions f0, f1, . . . and let

U(0e1σ) = fe(σ).

Then U is a universal prefix-free partial computable function

The prefix-free Kolmogorov complexity of σ is

K (σ) = CU(σ) = min{|τ | : U(τ) = σ}.

As with C , the choice of universal U does not matter up to a constant.

K is not computable, but it is computably approximable from above, i.e.,
there is a computable g : 2<ω × N→ N s.t. g(σ, n) > g(σ, n + 1) and
limn g(σ, n) = K (σ).
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Prefix-Free Sets of Generators

Every open set C can be written as [B] for some prefix-free B ⊂ 2<ω.

If C is a Σ0
1 class then B can be chosen to be c.e.

In any case, µ(C) =
∑

σ∈B 2−|σ|.

So for any prefix free set B, we have
∑

σ∈B 2−|σ| 6 1.

In particular, for each σ, let σ∗ be a minimal length string s.t. U(σ∗) = σ.

Then
∑

σ 2−K(σ) =
∑

σ 2−|σ
∗| 6

∑
τ∈dom U 2−|τ | 6 1.
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1-randomness via Kolmogorov Complexity

Thm (Schnorr). α ∈ 2ω is 1-random iff K (α � n) > n − O(1).

Proof of the ⇒ direction. Suppose that ∀i ∃n (K (α � n) < n − i).

Let Ci =
⋃
{[σ] : K (σ) < |σ| − i}. Note that α ∈ Ci for all i .

C0, C1, . . . are uniformly Σ0
1 classes.

Let σ0, σ1, . . . be a prefix-free set of generators for Ci .

Then 1 >
∑

j 2−K(σj ) >
∑

j 2−(|σj |−i) = 2i
∑

j 2−|σj | = 2iµ(Ci ).

So µ(Ci ) 6 2−i , and hence C0, C1, . . . is an ML-test.

Since α ∈
⋂

i Ci , we see that α is not 1-random.
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Bespoke Description Systems

For the other direction of Schnorr’s Theorem, we need the following result.

KC Thm. Let 〈ni , σi 〉i∈N be a computable sequence s.t.
∑

i 2−ni 6 1.

There is a prefix-free partial computable f s.t.

∀i ∃τi (|τi | = ni ∧ f (τi ) = σi ).

Then Cf (σi ) 6 ni , whence K (σi ) 6 ni + O(1).

The proof is a little messy, but f is easy to specify:

For each i , let τi be the leftmost string of length ni incomparable with
every τj for j < i , and let f (τi ) = σi .
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1-randomness via Kolmogorov Complexity Revisited

Thm (Schnorr). α ∈ 2ω is 1-random iff K (α � n) > n − O(1).

Proof of the ⇐ direction. Let U0,U1, . . . be a universal ML-test.

There are uniformly c.e. sets {σ0
0, σ

0
1, . . .}, {σ1

1, σ
1
1, . . .}, . . . s.t.

{σi
0, σ

i
1, . . .} is a prefix-free set of generators for Ui .

Consider the set of requests 〈|σ2i+1
j | − i , σ2i+1

j 〉 for all i and j .

∑
i ,j 2−(|σ2i+1

j |−i) =
∑

i 2i
∑

j 2−|σ
2i+1
j | =

∑
i 2iµ(U2i+1) 6∑

i 2i2−(2i+1) =
∑

i 2−(i+1) = 1.

So by the KC Thm, K (σ2i+1
j ) 6 |σ2i+1

j | − i + O(1) for all i and j .
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Part 1: Three Approaches to Defining Randomness

Computability Theory

A First Look at Randomness

The Statistician’s Approach: Martin-Löf Randomness

The Coder’s Approach: Kolmogorov complexity

The Gambler’s Approach: Martingales



Martingales and Supermartingales

A martingale is a function d : 2<ω → R>0 s.t.

d(σ0) + d(σ1)

2
= d(σ).

The martingale d succeeds on α if lim supn d(α � n) =∞.

The success set Sd of d is the set of all sequences on which d succeeds.

We can replace d by a closely related martingale d̂ s.t. Sd̂ = Sd and
lim infn d(α � n) =∞ for all α ∈ Sd̂ .

A supermartingale is a function d : 2<ω → R>0 s.t.

d(σ0) + d(σ1)

2
6 d(σ).
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An Example

Recall that Rn(α) =
|{m < n : α(m) = 1}|

n
.

Suppose that lim infn Rn(α) > 2
3 .

Let d(λ) = 1, where λ is the empty sequence.

Given d(σ), let d(σ0) = d(σ)
2 and d(σ1) = 3d(σ)
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Left-c.e. Reals and Functions

A real number x is left-c.e. if it can be computably approximated from
below.

That is, there is a computable f : N→ Q s.t. f (n) 6 f (n + 1) and
limn f (n) = x .

Equivalently, x is left-c.e. if it is the measure of a Σ0
1 class.

Equivalently, x is left-c.e. if it is
∑

f (σ)↓ 2−|σ| for a prefix-free partial
computable f .

A function d : 2<ω → R is left-c.e. if there is a computable
f : 2<ω × N→ Q s.t. f (σ, n) 6 f (σ, n + 1) and limn f (σ, n) = d(σ).

In other words, the values d(σ) are uniformly left-c.e.
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1-randomness via Martingales

Thm (Schnorr). The following are equivalent.

α ∈ 2ω is 1-random.

No left-c.e. martingale succeeds on α.

No left-c.e. supermartingale succeeds on α.

There is a universal left-c.e. martingale, i.e., a left-c.e. martingale u s.t. for
every left-c.e. martingale d , we have Sd ⊆ Su.

Easier to see for supermartingales, because we can nicely list all left-c.e.
supermartingales d0, d1, . . . and let

u(σ) =
∑

n 2−n dn(σ)
dn(λ) .
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Strengthening 1-randomness

Highly Nonrandom Sequences
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Schnorr’s Critique

Schnorr pointed out that 1-randomness is a notion of c.e. randomness,
rather than computable randomness.

Recall that α is 1-random if no left-c.e. martingale succeeds on α.

A martingale d is computable if the values d(σ) are uniformly computable.

α is computably random if no computable martingale succeeds on α.

Schnorr thought that computable randomness is not effective enough.

An order is an unbounded, nondecreasing computable f : N→ Q+.

A martingale d succeeds f -fast on α if d(α � n) > f (n).

α is Schnorr random if there is no computable martingale d and order f
s.t. d succeeds f -fast on α.
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Comparing Randomness Notions

Thm (Schnorr). α is Schnorr random iff it passes every ML-test
C0, C1, . . . s.t. the µ(Cn) are uniformly computable.

1-randomness implies computable randomness implies Schnorr randomness.

Thm (Schnorr). There are computably random sequences that are not
1-random.

Thm (Wang). There are Schnorr random sequences that are not
computably random.
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Nonmonotonic Randomness

A nonmonotonic betting strategy is one that, given α:

picks a bit n0 and

bets some fraction p0 of its initial capital on α(n0) = 0 and 1− p0 of that
capital on α(n0) = 1,

then based on the value α(n0), picks a new bit n1 and

bets some fraction p1 of its remaining capital on α(n1) = 0 and 1− p1 of
that capital on α(n1) = 1,

and so on.

This concept can be formalized using a nonmonotonic version of
martingales.

α is nonmonotonically random if no computable nonmonotonic betting
strategy makes arbitrarily much money betting on α.
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A Fundamental Open Question

Nonmonotonic randomness implies computable randomness.

Thm (Muchnik, Semenov, and Uspensky). There are computably
random sequences that are not nonmonotonically random.

Every 1-random sequence is nonmonotonically random.

Open Question. Is every nonmonotonically random sequence 1-random?
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Relative Computability

f is g -computable if there is an algorithm for computing f using
information from g . We write f 6T g .

Example: Recall that ∅′ = {(e, n) : Φe(n)↓}.

Let TOT = {e : Φe(n)↓ for all n}.

Here is an algorithm showing that ∅′ 6T TOT.

On input (e, n), find an i s.t. on any input m,
Φi (m) simulates Φe(n).

[So Φi (m) = Φe(n) if Φe(n)↓,
and Φi (m)↑ if Φe(n)↑.]

Then (e, n) ∈ ∅′ iff i ∈ TOT,
so return 1 if i ∈ TOT and 0 otherwise.

If f 6T g and g 6T f , then we say that f and g are Turing equivalent and
write f ≡T g .



Relative Computability

f is g -computable if there is an algorithm for computing f using
information from g . We write f 6T g .

Example: Recall that ∅′ = {(e, n) : Φe(n)↓}.

Let TOT = {e : Φe(n)↓ for all n}.

Here is an algorithm showing that ∅′ 6T TOT.

On input (e, n), find an i s.t. on any input m,
Φi (m) simulates Φe(n).

[So Φi (m) = Φe(n) if Φe(n)↓,
and Φi (m)↑ if Φe(n)↑.]

Then (e, n) ∈ ∅′ iff i ∈ TOT,
so return 1 if i ∈ TOT and 0 otherwise.

If f 6T g and g 6T f , then we say that f and g are Turing equivalent and
write f ≡T g .



Relative Computability

f is g -computable if there is an algorithm for computing f using
information from g . We write f 6T g .

Example: Recall that ∅′ = {(e, n) : Φe(n)↓}.

Let TOT = {e : Φe(n)↓ for all n}.

Here is an algorithm showing that ∅′ 6T TOT.

On input (e, n), find an i s.t. on any input m,
Φi (m) simulates Φe(n).

[So Φi (m) = Φe(n) if Φe(n)↓,
and Φi (m)↑ if Φe(n)↑.]

Then (e, n) ∈ ∅′ iff i ∈ TOT,
so return 1 if i ∈ TOT and 0 otherwise.

If f 6T g and g 6T f , then we say that f and g are Turing equivalent and
write f ≡T g .



Relative Computability

f is g -computable if there is an algorithm for computing f using
information from g . We write f 6T g .

Example: Recall that ∅′ = {(e, n) : Φe(n)↓}.

Let TOT = {e : Φe(n)↓ for all n}.

Here is an algorithm showing that ∅′ 6T TOT.

On input (e, n), find an i s.t. on any input m,
Φi (m) simulates Φe(n).

[So Φi (m) = Φe(n) if Φe(n)↓,
and Φi (m)↑ if Φe(n)↑.]

Then (e, n) ∈ ∅′ iff i ∈ TOT,
so return 1 if i ∈ TOT and 0 otherwise.

If f 6T g and g 6T f , then we say that f and g are Turing equivalent and
write f ≡T g .



Relativization

We can relativize other computability theoretic concepts.

For instance, A is B-c.e. if there is an algorithm for enumerating A using
information from B.

Similarly, we can list all the A-partial computable functions ΦA
0 ,Φ

A
1 , . . .

and define the Halting Problem relative to A as A′ = {(e, n) : ΦA
e (n)↓}.

A is low if A′ ≡T ∅′.

We can also relativize the notions of ML-test, prefix-free Kolmogorov
complexity, and left-c.e. martingale and use these to define a notion of
relativized 1-randomness.

For example: An A-Martin-Löf Test is a sequence of uniformly ΣA
1 classes

C0, C1, . . . s.t. µ(Cn) 6 2−n.

α is A-1-random if α /∈
⋂

n Cn for every such test.
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The Arithmetical Hierarchy

A Σ0
1 set is one of the form {n : ∃x R(n, x)} with R a computable

predicate.

A Π0
1 set is one of the form {n : ∀x R(n, x)} with R a computable

predicate.

The Σ0
1 sets are the c.e. sets, and the Π0

1 sets are their complements.

A Σ0
n set is one of the form {n : ∃x R(n, x)} with R a Π0

n−1 predicate.

A Π0
n set is one of the form {n : ∀x R(n, x)} with R a Σ0

n−1 predicate.

Every c.e. set is ∅′-computable.

Let ∅(n) = (∅(n−1))′.

∅(n) is Σ0
n, and every Σ0

n set is ∅(n)-computable.
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An Example of a 1-random Sequence

Let U be a universal prefix-free partial computable function.

Let Ω =
∑

σ∈dom U 2−|σ|.

Ω is the halting probability of U.

Ω is a left-c.e. real, and Ω ≡T ∅′.

Indeed, Ω can be seen as a highly compressed version of ∅′.

Ω is 1-random.
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The Kučera-Gács Theorem

Thm (Kučera; Gács). For each α there is a 1-random β s.t. α 6T β.

These 1-random sequences, like Ω, are computationally powerful.

In a sense, they are “fake 1-random sequences”.

Intuitively, we should not be able to extract information from random
sequences, so they should be computationally weak.

Indeed, computing a given noncomputable set is a rare property.

Thm (de Leeuw, Moore, Shannon, and Shapiro; Sacks). If A is not
computable then µ({B : A 6T B}) = 0.
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Strengthening 1-randomness

α is n-random if it is ∅(n−1)-1-random.

Higher order randomness gets us closer to our intuitions about random
sequences.

For example, the only c.e. sets computable from a 2-random sequence are
the computable ones.

There are also interesting notions of randomness strictly between
1-randomness and 2-randomness.

A generalized test is a sequence of uniformly Σ0
1 classes C0, C1, . . . s.t.

limn µ(Cn) = 0.

α ∈ 2ω passes this test if α /∈
⋂

n Cn.

α is weakly 2-random if it passes every generalized test.
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n-randomness and Kolmogorov complexity

It is possible to characterize 2-randomness using Kolmogorov complexity.

Thm (Nies, Stephan, and Terwijn; Miller). α is 2-random iff
∃∞n (C (α � n) > n − O(1)).

There is a similar characterization using prefix-free complexity.

Open Problem. Are there characterizations along these lines for higher
levels of randomness?
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K -triviality

If α is computable then we can describe α � n by describing n and giving
an algorithm for α, which does not depend on n.

So C (α � n) 6 C (n) + O(1) and K (α � n) 6 K (n) + O(1).

Thm (Chaitin). If C (α � n) 6 C (n) + O(1) then α is computable.

Thm (Solovay). There is a noncomputable α s.t.
K (α � n) 6 K (n) + O(1).

We say that α is K -trivial if K (α � n) 6 K (n) + O(1).
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Other Notions of Randomness Theoretic Weakness

Having no derandomization power:
α is low for 1-randomness if every 1-random sequence is α-1-random.

Having no compression power:
α is low for K if Kα(σ) = K (σ)± O(1).

Thm (de Leeuw, Moore, Shannon, and Shapiro; Sacks). If α is not
computable then µ({β : α 6T β}) = 0.

By the Kučera-Gács Theorem, {β : α 6T β} always contains a 1-random
sequence, and so is never ML-null.

α is a base for 1-randomness if there is a β >T α s.t. β is α-1-random
(equivalently, if {β : α 6T β} is not α-ML-null).
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Easy Implications

α is K -trivial if K (α � n) 6 K (n) + O(1).

α is low for 1-randomness if every 1-random is α-1-random.

α is low for K if Kα(σ) = K (σ)± O(1).

α is a base for 1-randomness if there is a β >T α s.t. β is α-1-random.

K -trivial

low for K
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low for 1-randomness +3 base for 1-randomness



A Remarkable Coincidence

Thm (Nies). A sequence is K -trivial iff it is low for 1-randomness.

Thm (Nies and Hirschfeldt). A sequence is K -trivial iff it is low for K .

Thm (Hirschfeldt, Nies, and Stephan). A sequence is K -trivial iff it is
a base for 1-randomness.

Thus all four notions of randomness theoretic weakness coincide.
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A musical example.
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How Chaos Resembles Order

Highly random objects can resemble highly patterned ones.

A musical example.

Excerpt A: from Music of Changes by John Cage

Excerpt B: from Structures for Two Pianos by Pierre Boulez

Cage’s piece is an example of aleatory music.

Boulez’s piece is an example of total serialism.



How Chaos Resembles Order: Mathematical Examples

α is low for Ω if Ω is α-1-random.

α is weakly low for K if ∃∞σ (Kα(σ) = K (σ)± O(1)).

Thm (Nies, Stephan, and Terwijn). A 1-random sequence is low for Ω
iff it is 2-random.

Thm (Miller). Every 3-random sequence is weakly low for K .

Open Problem. Give a precise characterization of a notion of “useless
information” that explains these and similar phenomena.
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Van Lambalgen’s Theorem

Thm (Nies, Stephan, and Terwijn). A 1-random sequence is low for Ω
iff it is 2-random.

The “if” direction follows from the following key result.

Thm (van Lambalgen). If α is 1-random and β is α-1-random then α is
β-1-random.

Proof that every 2-random sequence if low for Ω.

If α is 2-random then it is ∅′-1-random, and so Ω-1-random.

By van Lambalgen’s Theorem, Ω is α-1-random, so α is low for Ω.
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