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Introduction

During the last few years there has been considerable activity in the study
of the dynamics of automorphism groups of countable structures (in the
sense of model theory). This work has led to intriguing interactions
between logic, combinatorics, topological dynamics, group theory (both
in the topological and algebraic context) and ergodic theory. In the last
two lectures, I will give an introduction to this new area of research.
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Automorphism groups

Definition

A structure A = 〈A, f, g, . . . , R, S, . . . , c, d, . . . 〉 is a set A together with
families of distinguished functions (of several variables) with arguments
and values in A, relations (of several arguments) on A and individual
elements of A. In these lectures, I am always assuming that there only
countably many such functions, relations and individual elements.

Examples

linear orders: L = 〈L,<〉.
graphs: G = 〈G, E〉.
groups: H = 〈H, ·, 1〉.
vector spaces over a field F : V = 〈V,+, fa〉a∈F .

Definition

A structure A as above is countable (resp., finite) if the set A is
countable (resp., finite).
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Fräıssé structures

Certain countable structures play a crucial role in this theory.

Definition

A countable structure K is a Fräıssé structure if it satisfies the following
properties:

It is infinite.

It is locally finite.

It is ultrahomogeneous (i.e., an isomorphism between finite
substructures can be extended to an automorphism of the whole
structure).

Examples

〈Q, <〉.
The random graph.

The (countable) atomless Boolean algebra.

The (countable) infinite-dimensional vector space over a finite field.
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A countable structure K is a Fräıssé structure if it satisfies the following
properties:

It is infinite.

It is locally finite.

It is ultrahomogeneous (i.e., an isomorphism between finite
substructures can be extended to an automorphism of the whole
structure).

Examples

〈Q, <〉.
The random graph.

The (countable) atomless Boolean algebra.

The (countable) infinite-dimensional vector space over a finite field.

Logic, Combinatorics and Topological Dynamics, I
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Fräıssé structures

Definition

The age, Age(K), of a Fräıssé structure K is the family of its finite
substructures.

Definition

A class K of finite structures is called a Fräıssé class if it satisfies the
following properties:

(HP) Hereditary property.

(JEP) Joint embedding property.

(AP) Amalgamation property.

It is countable (up to ∼=).

It is unbounded.

It is easy to check that Age(K) is a Fräıssé class.
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Fräıssé structures

Joint embedding property (JEP)
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C

Amalgamation property (AP)
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Fräıssé structures

Fräıssé showed that one can associate to each Fräıssé class K a canonical
Fräıssé structure K = Frlim(K), called its Fräıssé limit, which is the
unique Fräıssé structure whose age is equal to K and therefore one has a
canonical one-to-one correspondence:

K 7→ Frlim(K)

between Fräıssé classes and Fräıssé structures whose inverse is:

K 7→ Age(K).

Examples

finite graphs � random graph

finite linear orderings � 〈Q, <〉
f.d. vector spaces � infinite-dimensional vector space (over a finite
field)

finite Boolean algebras � countable atomless Boolean algebra

Logic, Combinatorics and Topological Dynamics, I
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Fräıssé structures
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unique Fräıssé structure whose age is equal to K and therefore one has a
canonical one-to-one correspondence:

K 7→ Frlim(K)
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Fräıssé structures
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unique Fräıssé structure whose age is equal to K and therefore one has a
canonical one-to-one correspondence:

K 7→ Frlim(K)
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Aut(A) as a topological group

For a countable structure A, we view Aut(A) as a topological group
with the pointwise convergence topology. It is not hard to check then
that it becomes a Polish group. In fact we can characterize these groups
as follows:

Theorem

For any Polish group G, the following are equivalent:

G is isomorphic to a closed subgroup of S∞, the permutation group
of N with the pointwise convergence topology.

G admits a countable basis at 1 consisting of open subgroups.

G ∼= Aut(A), for a countable structure A.

G ∼= Aut(K), for a Fräıssé structure K.
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Dynamics of Aut(A)

We will see how the study of the dynamics of these automorphism groups
is connected with finite combinatorics, topological dynamics, group
theory (topological and algebraic), and ergodic theory.

The applicability of this work also extends to the study of other
important Polish groups via dense embeddings.

Example

Let K be the class of finite measure algebras with measure taking dyadic
rational values. Its (Fräıssé) limit K is the measure algebra of clopen
subsets of the Cantor space 2N with the usual product measure µ. Then
there is a canonical dense embedding of the group Aut(K) into the
group Aut(2N, µ) of measure-preserving automorphisms, an important
group in ergodic theory.
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Part I. Universal minimal flows and structural Ramsey
theory
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Universal minimal flows

Below G is a (Hausdorff) topological group. A G-flow is a continuous
action of G on a (Hausdorff, nonempty) compact space X. A subflow of
X is a compact invariant set with the restriction of the action. A flow is
minimal if there are no proper subflows or equivalently every orbit is
dense. Every G-flow contains a minimal subflow. A homomorphism
between two G-flows X, Y is a continuous G-map π : X → Y . If Y is
minimal, then π must be onto. An isomorphism is a bijective
homomorphism.

Theorem

For any G, there is a minimal G-flow, M(G), with the following
property: For any minimal G-flow X, there is a homomorphism
π : M(G) → X. Moreover M(G) is uniquely determined up to
isomorphism by this property.

Logic, Combinatorics and Topological Dynamics, I



Universal minimal flows

Below G is a (Hausdorff) topological group. A G-flow is a continuous
action of G on a (Hausdorff, nonempty) compact space X. A subflow of
X is a compact invariant set with the restriction of the action. A flow is
minimal if there are no proper subflows or equivalently every orbit is
dense. Every G-flow contains a minimal subflow. A homomorphism
between two G-flows X, Y is a continuous G-map π : X → Y . If Y is
minimal, then π must be onto. An isomorphism is a bijective
homomorphism.

Theorem

For any G, there is a minimal G-flow, M(G), with the following
property: For any minimal G-flow X, there is a homomorphism
π : M(G) → X. Moreover M(G) is uniquely determined up to
isomorphism by this property.

Logic, Combinatorics and Topological Dynamics, I



Universal minimal flows

If G is compact, then M(G) = G. If G is non-compact but locally
compact, then M(G) is very big, e.g., it is non-metrizable. However, it is
a remarkable phenomenon that for non-locally compact groups G, M(G)
can even trivialize (i.e., can be a singleton)!

This leads to two general problems in topological dynamics:

When is M(G) trivial?

Even if it is not trivial, can one explicitly determine M(G) and show
that it is manageable, in particular metrizable?

There has been an extensive study of these problems in the last 20 years
or so in the work of Gromov, Milman, Glasner, Weiss, Giordano, Pestov,
Uspenskii and others.

This primarily involves two ingredients:

asymptotic geometric analysis (concentration of measure
phenomena): Gromov, Milman, Pestov.

Ramsey theoretic phenomena: Pestov, Glasner-Weiss.
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Extreme amenability

Definition

A group G is called extremely amenable if its universal minimal flow
M(G) is trivial.

This is equivalent to saying that G has an extremely strong fixed point
property: Every G-flow has a fixed point. For that reason, sometimes
extremely amenable groups are also said to have the fixed point on
compacta property.

T. Mitchell (1966) raised the question of their existence. Granirer-Lau
and Veech showed in the 1970’s that no locally compact group can be
extremely amenable. The first examples of extremely amenable groups
were produced by Herer-Christensen (1975), who, apparently unaware of
Mitchell’s question, showed that there are Polish abelian groups that are
“exotic”, i.e., admit no non-trivial unitary representations. Such groups
are extremely amenable.
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Extreme amenability

The first natural example of an extremely amenable group was produced
by Gromov-Milman (1983): U(H). The proof used concentration of
measure techniques. By such methods other important examples were
discovered later:

Furstenberg-Weiss, Glasner (1998): L(X, µ, T).
Pestov (2002): Iso(U).
Giordano-Pestov (2002): Aut(X, µ).

Pestov (1998) also produced another example: Aut(〈Q, <〉). His proof
however did not use concentration of measure techniques but rather finite
combinatorics, more specifically the classical Ramsey Theorem. From this
it also follows that H+([0, 1]) is extremely amenable.
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however did not use concentration of measure techniques but rather finite
combinatorics, more specifically the classical Ramsey Theorem. From this
it also follows that H+([0, 1]) is extremely amenable.
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Metrizable universal minimal flows

The first example of calculation of a metrizable but non-trivial universal
minimal flow is due to Pestov (1998): The universal minimal flow of
H+(T) is T. Two more examples were found later by Glasner-Weiss
(2002,2003): The universal minimal flow of S∞ is the space LO of linear
orderings of N. The universal minimal flow of H(2N) is the Uspenskii
space of maximal chains of closed subsets of the Cantor space. These all
used Ramsey techniques.
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Universal minimal flows of automorphism groups

We will next discuss the study of extreme amenability and calculation of
universal minimal flows for automorphism groups of countable structures.
This was undertaken in a paper of K-Pestov-Todorcevic (GAFA, 2005).
The main result of this theory is the development of a duality theory
which shows that there is an equivalence between the structure of the
universal minimal flow of the automorphism group of a Fräıssé structure
and the Ramsey theory of its finite “approximations”, i.e., its age.
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Structural Ramsey theory

We first recall the classical Ramsey Theorem.

Theorem (Ramsey 1930)

For each n, m, k ≥ 1, with m ≥ k, there is M ≥ m, such that if we color
the k-element subsets of {1, . . . ,M} with n colors, there is a subset X of
{1, . . . ,M} of size m which is monochromatic, i.e., all k-element subsets
of X have the same color.

We abbreviate by:
M → (m)k

n

this last assertion, so that Ramsey’s theorem says that: For each
n, m, k ≥ 1, with m ≥ k, there is M ≥ m such that M → (m)k

n.

Equivalent formulation: For n, m, k as above, there is M such that if we
color all increasing k-tuples in {1, . . . ,M} with n colors, there is an
increasing m-tuple X in {1, . . . ,M}, such that all increasing k-tuples
from X have the same color.
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Structural Ramsey theory

Structural Ramsey theory is a vast generalization of the classical Ramsey
theorem to classes of finite structures. It was developed primarily in the
1970’s by: Graham, Leeb, Rothchild, Nešeťril-Rödl, Prömel, Voigt,
Abramson-Harrington, ...

Definition

A class K of finite structures has the Ramsey property if for any A ≤ B
in K, and any n ≥ 1, there is C ≥ B in K, such that

C → (B)A
n .

Examples of classes with Ramsey property:

finite linear orderings (Ramsey)

finite Boolean algebras (Graham-Rothchild)

finite-dimensional vector spaces over a given finite field
(Graham-Leeb-Rothchild)

finite ordered graphs (Nešeťril-Rödl)

However, the class of finite graphs does not have the Ramsey property!
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Duality theory

We can now summarize in general terms the main point of the duality
theory alluded to earlier:

Let K be a Fräıssé class of finite structures and K = Frlim(K) its Fräıssé
limit. Then we have a canonical correspondence:

structure of the u.m.f. of Aut(K) ↔ Ramsey theory of K

It would take too long to try to explain this in detail, so I illustrate this
correspondence with some representative results and then discuss
applications of this theory.
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Extreme amenability of automorphism groups

We will first consider the problem of characterizing the extremely
amenable closed subgroups G of S∞. We have seen they are all of the
form G = Aut(K) for a Fräıssé structure K. If G is e.a., look at its
action on LO. It leaves some order < invariant, so we can assume that
K = 〈K, <, . . . 〉 is an ordered Fräıssé structure. So K = Frlim(K), for
an order Fräıssé class K, i.e., each A has the form A = 〈A,<, . . . 〉.

Examples

finite ordered graphs

finite ordered metric spaces with rational distances

“lexicographically ordered” f.d. vector spaces over a fixed finite field

“lexicographically ordered” finite Boolean algebras

finite posets with linear extensions
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Extreme amenability of automorphism groups

So we have seen that the extremely amenable closed subgroups of S∞
are to be found among the Aut(K), where K is the limit of an order
Fräıssé class K. But which ones?

Theorem (KPT)

Let K be an order Fräıssé class and K its limit. Then the following are
equivalent:

Aut(K) is extremely amenable.

K has the Ramsey property.

Using the results of the structural Ramsey theory gives now a plethora of
new examples of interesting extremely amenable groups.
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Extreme amenability of automorphism groups

Below we consider only Fräıssé order classes.

Fräıssé classes of finite structures K

Ramsey property of K

linear orders
ordered graphs
lex. ordered vector spaces
lex. ordered Boolean algebras
ordered rational metric spaces

Fräıssé structures K

extreme amenability of Aut(K)

Aut(〈Q, <〉)
Aut(〈R, <〉)
Aut(〈V ∞, <〉)
Aut(〈B∞, <〉)
Aut(〈UQ, <〉)
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Calculation of universal minimal flows

This duality theory also extends to the calculation of metrizable minimal
flows for automorphism groups. Roughly speaking one can assign to each
Fräıssé class K with limit K = 〈K, . . . 〉 certain canonical expansions L
consisting of structures of the form 〈A, <〉, obtained by adding to each
structure in K appropriate “canonical orderings”, and for each such L a
canonical flow XL of the automorphism group of K, which is a compact
metrizable space of “canonical orderings” on K. Then we have the
following:

Theorem (KPT)

For each Fräıssé class K with limit K, the following are equivalent:

XL is the universal minimal flow of the automorphism group of K.

L has the Ramsey property and the ordering property.
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For each Fräıssé class K with limit K, the following are equivalent:

XL is the universal minimal flow of the automorphism group of K.

L has the Ramsey property and the ordering property.

Logic, Combinatorics and Topological Dynamics, I



Calculation of universal minimal flows

Examples

K = finite graphs, K = R; L = finite ordered graphs. Then XL is
the space of all linear orderings on the vertices of the random graph.

K = finite sets, K = 〈N〉; L = finite orderings. Then XL is the
space of all linear orderings on N (Glasner-Weiss).

K = f.d. vector spaces over a fixed finite field, K = V ∞; L = lex.
ordered f.d. vector spaces. Then XL is the space of all “canonical
orderings” on V ∞.

K = finite posets, K = P ; L = finite posets with linear extensions.
Then XL is the space of all linear extensions of the random poset.
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Summary of applications of the duality theory

Establishes the equivalence between the structure of the universal
minimal flow of the automorphism group of the limit of a Fräıssé
class and its Ramsey properties and therefore can use the extensive
structural Ramsey theory to analyze such universal minimal flows
and discover many new examples of extremely amenable groups.
This application goes from Ramsey theory to topological dynamics.
The following is an interesting question:

Can one go in the other direction: use topological dynamics
methods to prove Ramsey theorems?

Only a couple of rather simple results are known in this direction.

However this duality has had an interesting indirect effect on
structural Ramsey theory. In trying to applying duality theory to
various Fräıssé classes that occur naturally, it led to the discovery of
new structural Ramsey theorems:

1 (Nešeťril, 2007) finite ordered metric spaces. (Nguyen Van The,
2008) other classes of finite ordered metric spaces.

2 (K-Todorcevic) lex. ordered finite measure algebras (with dyadic
rational measure).
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rational measure).
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Summary of applications of the duality theory

Establishes the equivalence between the structure of the universal
minimal flow of the automorphism group of the limit of a Fräıssé
class and its Ramsey properties and therefore can use the extensive
structural Ramsey theory to analyze such universal minimal flows
and discover many new examples of extremely amenable groups.
This application goes from Ramsey theory to topological dynamics.
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1 (Nešeťril, 2007) finite ordered metric spaces. (Nguyen Van The,
2008) other classes of finite ordered metric spaces.

2 (K-Todorcevic) lex. ordered finite measure algebras (with dyadic
rational measure).

Logic, Combinatorics and Topological Dynamics, I



Summary of applications of the duality theory

Establishes the equivalence between the structure of the universal
minimal flow of the automorphism group of the limit of a Fräıssé
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Summary of applications of the duality theory

Automorphism groups of Fräıssé structures often admit dense
embeddings into other “larger” Polish groups. If G is extremely
amenable and can be densely embedded in H, then H is also
extremely amenable. Thus results concerning extreme amenability of
automorphism groups, which use combinatorial methods, can be
used to establish extreme amenability of other groups which were
originally established by concentration of measure techniques
(which, by the way, fail in the context of automorphism groups).
Here are some examples:

1 The isometry group of the Urysohn space (originally proved by
Pestov).

2 The automorphism group of a standard measure space (originally
established by Giordano-Pestov).

3 Question: Can that be done for the unitary group?

Connection with infinite Ramsey theory, distortion phenomena in
Banach spaces.
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