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Generic properties

Let X be a topological space and P ⊆ X a subset of X viewed as a
property of elements of X. As usual, we say that P is generic if it is
comeager in X.

Example

Nowhere differentiability is a generic property in C([0, 1]).

But what does it mean to say that an individual element x0 ∈ X is
generic?
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Generic elements

Suppose now X is a topological space equipped with a natural
equivalence relation E. Then we view the relation xEy as “identifying”
in some sense x and y.

We then say that x0 ∈ X is generic (relative to E) if the E-equivalence
class of x is comeager, i.e., the generic element of X is E-equivalent,
i.e., “identical”, to x0.

Examples

Suppose a topological group G acts on X. Then an element x0 ∈ X
is generic (for this action) if its orbit G · x0 is comeager.

Consider the particular case when a topological group G acts on
itself by conjugation. Then g0 ∈ G is generic if its conjugacy class is
comeager.
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Generic symmetries

Most often G is the group of symmetries of a mathematical structure.

Examples

H(X)
U(H)
Iso(X, d)
Aut(X, µ)
Aut(K)

Then we talk about a generic symmetry of the structure.
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Generic symmetries

When does G have generic elements?

We have here a vague dichotomy.

“big groups”, like U(H), Aut(X, µ), . . . do not have generic
elements.

“small groups”, like Aut(K), K a countable structure, often have
generic elements.

I will describe now recent work of K-Rosendal (2007) that studies the
problem of generic automorphisms of Fräıssé structures and its
implications.

This kind of problem was first studied by Lascar, Truss in model theory.

It also arose in topological dynamics, e.g., in work of
Akin-Hurley-Kennedy (Memoirs of the AMS, 2003), who studied generic
properties of homeomorphisms of the Cantor space and asked whether it
has a generic homeomorphism. By Stone duality this is of course the
same as asking whether there is a generic automorphism of B∞.
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Generic automorphisms of Fräıssé structures

Let K be a Fräıssé class of finite structures and K = Frlim(K) its limit.
Truss has associated to K a new class of finite objects Kp consisting of
all pairs

(A, ϕ : B → C),

where B,C ⊆ A ∈ K and ϕ is an isomorphism of B,C.

A

B C
ϕ
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Generic automorphisms of Fräıssé structures

Truss found a sufficient condition for the existence of generic
automorphisms in terms of properties of Kp.

Theorem (Truss)

If a cofinal class in Kp has the JEP and the AP, then there is a generic
automorphism of K.

Truss also asked for necessary and sufficient conditions.
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Generic automorphisms of Fräıssé structures

Using a dynamical point of view (applying Hjorth’s concept of turbulence
to the conjugacy action of the group) leads to an answer to this question.

We say that Kp has the weak amalgamation property (WAP) if it
satisfies the following:

C

C?

A B

D
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Generic automorphisms of Fräıssé structures

Theorem (KR)

The structure K has a generic automorphism iff Kp has the JEP and the
WAP.

This result was also proved by Ivanov (1999) for ℵ0-categorical structures
using different techniques.
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Generic automorphisms of Fräıssé structures

We can now apply these to show the existence of generic automorphisms
for many Fräıssé structures:

(Truss, Kuske-Truss) The groups S∞, Aut(P ), Aut(〈Q, <〉) have
generic automorphisms.

(KR) The countable atomless Boolean algebra has a generic
automorphism and thus the Cantor space has a generic
homeomorphism.

More examples below ...

Very recently, Akin-Glasner-Weiss found another, topological, proof of
the existence of generic homeomorphisms of the Cantor space and gave a
characterization of its properties.

Note: There are Polish groups not contained in S∞ that have generic
elements, e.g., the group of increasing homeomorphisms of the interval
[0,1].
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(Truss, Kuske-Truss) The groups S∞, Aut(P ), Aut(〈Q, <〉) have
generic automorphisms.

(KR) The countable atomless Boolean algebra has a generic
automorphism and thus the Cantor space has a generic
homeomorphism.

More examples below ...

Very recently, Akin-Glasner-Weiss found another, topological, proof of
the existence of generic homeomorphisms of the Cantor space and gave a
characterization of its properties.

Note: There are Polish groups not contained in S∞ that have generic
elements, e.g., the group of increasing homeomorphisms of the interval
[0,1].

Logic, Combinatorics and Topological Dynamics, II



Generic automorphisms of Fräıssé structures
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(Truss, Kuske-Truss) The groups S∞, Aut(P ), Aut(〈Q, <〉) have
generic automorphisms.

(KR) The countable atomless Boolean algebra has a generic
automorphism and thus the Cantor space has a generic
homeomorphism.

More examples below ...

Very recently, Akin-Glasner-Weiss found another, topological, proof of
the existence of generic homeomorphisms of the Cantor space and gave a
characterization of its properties.

Note: There are Polish groups not contained in S∞ that have generic
elements, e.g., the group of increasing homeomorphisms of the interval
[0,1].

Logic, Combinatorics and Topological Dynamics, II



Generic automorphisms of Fräıssé structures
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Ample generics

We will now discuss a multidimensional notion of genericity.

Definition

Let a group G act on a topological space X. Then G also acts on Xn

coordinatewise

g · (x1, . . . , xn) = (g · x1, . . . , g · xn).

We say that (x1, . . . , xn) is generic if it is generic for this action, i.e., its
orbit is comeager. We finally say that the action of G on X has ample
generics if for each n, there is a generic element of Xn. Applying this to
the conjugacy action of a topological group on itself, we say that G has
ample generics if for each n, there is (g1, . . . , gn) such that

{(gg1g
−1, . . . , ggng−1) : g ∈ G}

is comeager in Gn.

For automorphism groups of countable structures, this concept first came
up in model theory (more about that later ...).
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Ample generics

There are now many examples of countable structures whose
automorphism groups are known to have ample generics.

Examples

1 S∞
2 Aut(R) (Hrushovski)

3 Many automorphism groups of ω-stable, ℵ0-categorical structures
(Hodges-Hodkinson-Lascar-Shelah)

4 Aut(U0) (Solecki, Vershik)

5 Aut(F∞) (Bryant-Evans)

6 The group of measure-preserving homeomorphisms of the Cantor
space (KR)

7 The automorphism group of the infinite-splitting rooted tree (KR)
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Ample generics

There are however structures whose automorphism groups have generic
elements but not ample generics.

Theorem (Hodkinson)

The automorphism group of 〈Q, <〉 has generic elements but not ample
generics.

The following is a very interesting open problem:

Does the automorphism group of the countable atomless Boolean algebra
have ample generics? (It does have generic elements.) Equivalently does
the homeomorphism group of the Cantor space have ample generics?

Another important open problem is to find examples of Polish groups
with ample generics that are not closed subgroups of S∞.
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Ample generics

It turns out that Polish groups with ample generics have remarkable
properties and I will discuss these in the rest of this lecture.
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The small index property

Definition

A Polish group has the small index property (SIP) if every subgroup of
index less than 2ℵ0 is open.

Thus for closed subgroups G of S∞, SIP implies that the topology of G
is determined by its algebra.

Hodges-Hodkinson-Lascar-Shelah used (special types of) ample generics
to prove SIP for the automorphism groups of certain structures. It turns
out that this is a general phenomenon.

Theorem (KR)

If a Polish group G has ample generics, then G has the SIP.
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Automatic continuity

Automatic continuity results are known for certain types of algebras but
the next result appears to produce the first instance of this phenomenon,
in a general framework, in the context of groups.

Theorem (KR)

If a Polish group G has ample generics, then any (algebraic)
homomorphism of G into a separable group is continuous.

In particular, such groups have a unique Polish (group) topology. For S∞
one has actually a stronger result.

Theorem (KR)

The group S∞ has a unique non-trivial separable (group) topology.
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Automatic continuity

This automatic continuity phenomenon has been extended by
Rosendal-Solecki to other kinds of groups that are only known to admit
(single) generics. These include:

Aut(〈Q, <〉)
H(2N)
H+(R)

In particular, this implies that Aut(〈Q, <〉) as a discrete group is
extremely amenable relative to compact metric spaces!

Finally, Rosendal recently proved automatic continuity for the
homeomorphism group of any 2-dimensional compact manifold.
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Uncountable cofinality

Definition

A group G has uncountable cofinality if it cannot be written as a union
of an increasing sequence of proper subgroups.

Theorem (KR)

If a Polish group has ample generics, then G cannot be written as a
union of an increasing sequence of non-open subgroups.

So, for example, if such a group is either connected or topologically
finitely generated or an oligomorphic closed subgroup of S∞, then it has
uncountable cofinality.
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The Bergman property, isometric actions and actions on
trees

Definition

A group G has the Bergman property if for any sequence
En ⊆ En+1 ⊆ G with G =

⋃
n En, there is some n, k with G = (En)k.

Each of the following are equivalent descriptions of the Bergman
property:

1 (a) For every symmetric generating set S of G containing 1, there is
n with G = Sn and (b) G has uncountable cofinality.

2 Every action of G by isometries on a metric space has bounded
orbits.
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The Bergman property, isometric actions and actions on
trees

Bergman (2004) introduced this property and proved that S∞ has the
Bergman property.

Theorem (KR)

If G is an oligomorphic closed subgroup of S∞ with ample generics, then
G has the Bergman property.

Recently, de Cornulier, using results of Calegari and Freedman, proved
that the homeomorphism group of Sn has the Bergman property. Also
Ricard and Rosendal showed that the unitary group of the separable
infinite-dimensional Hilbert space has the Bergman property. Finally, B.
Miller showed that Aut(X, µ) has the Bergman property.
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The Bergman property, isometric actions and actions on
trees

Definition

A group G has Serre’s property (FA) if any action of G on a tree has a
fixed vertex or edge.

Theorem (KR)

If a Polish group is either connected or topologically finitely generated or
an oligomorphic closed subgroup of S∞ and has ample generics, then G
has property (FA).
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Some problems

Problem

Are there Polish groups with ample generics that are not closed
subgroups of S∞?

Problem

Are there Polish locally compact groups with generics?

Problem

Does the homeomorphism group of the Cantor space have ample
generics?
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