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Measure preserving transformations

Definition

A standard measure space is a measure space (X, µ), where X is a
Polish space and µ a non-atomic Borel probability measure on X.

All such spaces are isomorphic to the unit interval with Lebesgue
measure.

Definition

A measure preserving transformation on (X, µ) is a measurable
bijection T such that µ(T (A)) = µ(A), for any Borel set A.
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Measure preserving transformations

Examples

X = T with the usual measure; T (z) = az, where a ∈ T, i.e.,
T is a rotation.

X = 2Z, T (x)(n) = x(n− 1), i.e., the shift transformation.

Definition

A mpt T is ergodic if every T -invariant set has measure 0 or 1.

Any irrational, modulo π, rotation and the shift are ergodic.

The ergodic decomposition theorem shows that every mpt can be
canonically decomposed into a (continuous) direct sum of ergodic
mpt’s.
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Classifying measure preserving transformations

In ergodic theory one is interested in classifying ergodic mpt up to
various notions of equivalence. I will consider below two such
standard notions.

Isomorphism or conjugacy: A mpt S on (X, µ) is isomorphic
to a mpt T on (Y, ν), in symbols S ∼= T , if there is an
isomorphism ϕ of (X, µ) to (Y, ν) that sends S to T , i.e.,
S = ϕ−1Tϕ.

Unitary isomorphism: To each mpt T on (X, µ) we can assign
the unitary operator UT : L2(X, µ) → L2(X, µ) given by
UT (f)(x) = f(T−1(x)). Then S, T are unitarily isomorphic,
in symbols S ∼=u T , if US , UT are isomorphic.

Clearly ∼= implies ∼=u but the converse fails.
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Classifying measure preserving transformations

Two classical classification theorems:

(Halmos-von Neumann) An ergodic mpt has discrete
spectrum if UT has discrete spectrum , i.e., there is a basis
consisting of eigenvectors. In this case the eigenvalues are
simple and form a (countable) subgroup of T. It turns out
that up to isomorphism these are exactly the ergodic rotations
in compact metric groups G : T (g) = ag, where a ∈ G is
such that {an : n ∈ Z} is dense in G. For such T , let ΓT ≤ T
be its group of eigenvalues. Then we have:

S ∼= T ⇔ S ∼=u T ⇔ ΓS = ΓT .
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Classifying measure preserving transformations

(Ornstein) Let Y = {1, . . . , n}, p̄ = (p1, · · · , pn) a probability
distribution on Y and form the product space X = Y Z with
the product measure µ. Consider the Bernoulli shift Tp̄ on X.
Its entropy is the real number H(p̄) = −

∑
i pi log pi. Then

we have:
Tp̄
∼= Tq̄ ⇔ H(p̄) = H(q̄)

(but all the shifts are unitarily isomorphic).
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Classifying measure preserving transformations

We will now consider the following question: Is it possible to
classify, in any reasonable way, general ergodic mpt?

We will see how ideas from descriptive set theory can throw some
light on this question.
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Classification problems

I will next give a brief introduction to recent work in set theory,
developed primarily over the last 15-20 years, concerning a theory
of complexity of classification problems in mathematics, and then
discuss its implications to the above problems.
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Classification problems

A classification problem is given by:

A collection of objects X.

An equivalence relation E on X.

A complete classification of X up to E consists of:

A set of invariants I.

A map c : X → I such that xEy ⇔ c(x) = c(y).

For this to be of any interest both I, c must be as explicit and
concrete as possible.
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Classification problems

Example

Classification of Bernoulli shifts up to isomorphism (Ornstein).
Invariants: Reals

Example

Classification of ergodic measure-preserving transformations with
discrete spectrum up to isomorphism (Halmos-von Neumann).
Invariants: Countable subsets of T.

Example

Classification of unitary operators on a separable Hilbert space up
to isomorphism (Spectral Theorem).
Invariants: Measure classes, i.e., probability Borel measures on
a Polish space up to measure equivalence.
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Classification problems

Most often the collection of objects we try to classify can be
viewed as forming a “nice” space, namely a standard Borel space,
i.e., a Polish (complete separable metric) space with its associated
Borel structure and the equivalence relation E turns out to be
Borel or analytic (as a subset of X2).

For example, in studying mpt the appropriate space is the Polish
group of mpt of a fixed (X, µ), with the so-called weak topology.
Isomorphism then corresponds to conjugacy in that group, which is
an analytic equivalence relation. Similarly unitary isomorphism is
an analytic equivalence relation.

A descriptive set theoretic point of view Classification problems in ergodic theory



Classification problems

Most often the collection of objects we try to classify can be
viewed as forming a “nice” space, namely a standard Borel space,
i.e., a Polish (complete separable metric) space with its associated
Borel structure and the equivalence relation E turns out to be
Borel or analytic (as a subset of X2).

For example, in studying mpt the appropriate space is the Polish
group of mpt of a fixed (X, µ), with the so-called weak topology.
Isomorphism then corresponds to conjugacy in that group, which is
an analytic equivalence relation. Similarly unitary isomorphism is
an analytic equivalence relation.

A descriptive set theoretic point of view Classification problems in ergodic theory



Equivalence relations and reducibility

The theory of equivalence relations studies the set-theoretic nature
of possible (complete) invariants and develops a mathematical
framework for measuring the complexity of classification problems.

The following simple concept is basic in organizing this study.
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Equivalence relations and reducibility

Definition

Let (X, E), (Y, F ) be equivalence relations. E is (Borel) reducible
to F , in symbols

E ≤B F,

if there is Borel map f : X → Y such that

x E y ⇔ f(x) F f(y).

Intuitive meaning:

The classification problem represented by E is at most as
complicated as that of F .

F -classes are complete invariants for E.
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Equivalence relations and reducibility

Definition

E is bi-reducible to F if E is reducible to F and vice versa.

E ∼B F ⇔ E ≤B F and F ≤B E.

We also put:

Definition

E <B F ⇔ E ≤B F and F �B E.
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Equivalence relations and reducibility

Example

(Isomorphism of Bernoulli shifts) ∼B (=R)

Example

(Isomorphism of ergodic discrete spectrum mpt) ∼B Ec,
where Ec is the equivalence relation on TN given by

(xn) Ec (yn) ⇔ {xn : n ∈ N} = {yn : n ∈ N}

Example

(Isomorphism of unitary operators) ∼B ME,
where ME is the equivalence relation on the Polish space of
probability Borel measures on T given by

µMEν ⇔ µ � ν and µ � ν
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Borel cardinality theory

The preceding concepts can be also interpreted as the basis of a
“definable” or Borel cardinality theory for quotient spaces.

E ≤B F means that there is a Borel injection of X/E into
Y/F , i.e., X/E has Borel cardinality less than or equal to
that of Y/F , in symbols

|X/E|B ≤ |Y/F |B

E ∼B F means that X/E and Y/F have the same Borel
cardinality, in symbols

|X/E|B = |Y/F |B

E <B F means that X/E has strictly smaller Borel
cardinality than Y/F , in symbols

|X/E|B < |Y/F |B
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Types of classification

An equivalence relation E on X is called concretely classifiable if
E ≤B (=Y ), for some Polish space Y , i.e., there is a Borel map
f : X → Y such that xEy ⇔ f(x) = f(y).

Thus isomorphism of Bernoulli shifts is concretely classifiable but
isomorphism of ergodic discrete mpt is not concretely classifiable.

An equivalence relation is called classifiable by countable structures
if it can be Borel reduced to isomorphism of countable structures
(of some given type, e.g., groups, graphs, linear orderings, etc.). It
turns out that isomorphism (and unitary isomorphism) of ergodic
discrete spectrum mpt is classifiable by countable structures but
(K-Sofronidis) ME and thus isomorphism of unitary operators is
not.
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Classification of mpt

Theorem (Hjorth, 2001)

Isomorphism and unitary isomorphism of ergodic mpt cannot be
classified by countable structures.

This has been recently strengthened as follows:

Theorem (K, 2007)

Unitary isomorphism of ergodic mpt is Borel bireducible , i.e., has
exactly the same complexity, as measure equivalence. Measure
equivalence is Borel reducible to isomorphism of ergodic mpt.

Also very recently Foreman-Rudolph-Weiss, 2008, showed that
isomorphism is not Borel, and therefore isomorphism of ergodic
mpt is strictly more complicated than unitary isomorphism.
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Actions of countable groups

More generally one also considers in ergodic theory the problem of
classifying measure preserving actions of countable (discrete)
groups Γ on standard measure spaces. The case Γ = Z
corresponds to the case of single transformations. We will now
look at this problem from the point of view of the preceding theory.
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Actions of countable groups

We will consider again isomorphism (also called conjugacy) and
unitary isomorphism of actions. Two actions of the group Γ are
isomorphic if there is a measure-preserving isomorphism of the
underlying spaces that conjugates the actions. They are unitarily
isomorphic if the corresponding unitary representations (the
Koopman representations) are isomorphic.

We can form again in a canonical way a standard Borel space
A(Γ, X, µ) of all measure-preserving actions of Γ on (X, µ) and
then isomorphism and unitary isomorphism become analytic
equivalence relations on this space. We can therefore study their
complexity using the concepts introduced earlier.
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Actions of countable groups

Theorem (Foreman - Weiss, Hjorth, 2004)

For any infinite countable group Γ, isomorphism of free, ergodic,
measure-preserving actions of Γ is not classifiable by countable
structures.

Theorem (K, 2007)

For any infinite countable group Γ, unitary isomorphism of free,
ergodic, measure-preserving actions of Γ is not classifiable by
countable structures.

Except for abelian Γ, where we have the same picture as for Z, it
is unknown however how these equivalence relations relate to ME.
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Orbit equivalence

There is an additional important concept of equivalence between
actions, called orbit equivalence. The study of orbit equivalence is
a very active area today that has its origins in the connections
between ergodic theory and operator algebras and the pioneering
work of Dye.

Definition

Given an action of the group Γ on X we associate to it the orbit
equivalence relation EX

Γ , whose classes are the orbits of the action.
Given measure-preserving actions of two groups Γ and ∆ on spaces
(X, µ) and (Y, ν), resp., we say that they are orbit equivalent if
there is an isomorphism of the underlying measure spaces that
sends EX

Γ to EY
∆.

Thus isomorphism clearly implies orbit equivalence but not vice
versa.
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Orbit equivalence

Here we have the following classical result.

Theorem (Dye, 1959; Ornstein - Weiss, 1980)

Every two free, ergodic, measure-preserving actions of amenable
groups are orbit equivalent.

Thus there is a single orbit equivalence class in the space of free,
ergodic, measure-preserving actions of an amenable group Γ.
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Orbit equivalence

The situation for non-amenable groups has taken much longer to
untangle. For simplicity, below “action” will mean “free, ergodic,
measure-preserving action”. Schmidt, 1981, showed that every
non-amenable group which does not have Kazhdan’s property (T)
admits at least two non-orbit equivalent actions and Hjorth, 2005,
showed that every non-amenable (i.e., infinite) group with property
(T) has continuum many non-orbit equivalent actions. So every
non-amenable group has at least two non-orbit equivalent actions.
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Orbit equivalence

For general non-amenable groups though very little was known
about the question of how many non-orbit equivalent actions they
might have. For example, until recently only finitely many distinct
examples of non-orbit equivalent actions of the free (non-abelian)
groups were known. Gaboriau – Popa, 2005, finally showed that
the free groups have continuum many non-orbit equivalent actions.
In an important extension, Ioana, 2007, showed that every group
that contains a free subgroup has continuum many such actions.
However there are examples of non-amenable groups that contain
no free subgroups (Olshanski).
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Orbit equivalence

Finally, last year the question was completely resolved by Epstein.

Theorem (Epstein, 2007)

Every non-amenable group admits continuum many non-orbit
equivalent free, ergodic, measure-preserving actions.
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Orbit equivalence

This still leaves open the possibility that there may be a concrete
classification of actions of some non-amenable groups up to orbit
equivalence. However the following has been now proved by
combining very recent work of Ioana-K-Tsankov and the work of
Epstein.

Theorem (Epstein-Ioana-K-Tsankov, 2008)

Orbit equivalence of free, ergodic, measure preserving actions of
any non-amenable group is not classifiable by countable structures.

Thus we have a very strong dichotomy:

If a group is amenable, it has exactly one action up to orbit
equivalence.

If it non-amenable, then orbit equivalence of its actions is
unclassifiable in a strong sense.
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