Randomness for Continuous Measures 4

Theodore A. Slaman (joint with Jan Reimann)

University of California, Berkeley

January 2009

Higher Orders of Randomness

necessity of the set theoretic methods

Theorem

The statement

For every k, NCR_k is countable

cannot be proven in ZFC_n^-

Higher Orders of Randomness

necessity of the set theoretic methods

Theorem

The statement

For every k, NCR_k is countable

cannot be proven in ZFC_n^-

We are discussing the proof for n = 0.

Gödel's L

Definition

Gödel's hierarchy of constructible sets L is defined by the following recursion.

- $ightharpoonup L_0 = \emptyset$
- ▶ $L_{\alpha+1} = Def(L_{\alpha})$, the set of subsets of L_{α} which are first order definable in parameters over L_{α} .
- $\blacktriangleright L_{\lambda} = \cup_{\alpha < \lambda} L_{\alpha}.$

We focus on the least ordinal λ such that $L_{\lambda} \models ZFC^{-}$.

Master Codes

Associated with the sequence of L_{β} with $\beta < \lambda$ is a parallel sequence of countings M_{β} of L_{β} called the *Master Codes*. Each Master Code is definable in a simple way from the sequence of its predecessors.

Master Codes

Associated with the sequence of L_{β} with $\beta < \lambda$ is a parallel sequence of countings M_{β} of L_{β} called the $M\alpha$ ster Codes. Each Master Code is definable in a simple way from the sequence of its predecessors.

We show that there is an n such that the Master Codes in L_{λ} are in NCR_n .

Pseudo Master Code Sequences

For any Z, Z can arithmetically define a sequence \mathcal{M} consisting of a linear ordering < of pseudo-master-codes.

- ▶ If M is in the well-founded part of \mathcal{M} , then M is a master-code.
- ▶ If M is not in the well-founded part of \mathcal{M} , then M is not well-founded.

Finding n so that the Master Codes belong to NCR_n

Choose n much larger than the propagating definitions of Master Codes and much larger than the definition mapping a real Z to its sequence \mathcal{M} .

Let M_{β} be a Master Code and suppose that M_{β} is n-random relative to μ .

- 1. Fix the sequence \mathcal{M} for μ .
 - ▶ The well-founded part \mathcal{M}_0 of \mathcal{M} must have length less than or equal to β .
 - ► Then, it is recursive in M_{β} and hence simply arithmetic in μ . (Randoms do not accelerate computing well-foundedness.)

- 1. Fix the sequence \mathcal{M} for μ .
 - ▶ The well-founded part \mathcal{M}_0 of \mathcal{M} must have length less than or equal to β .
 - Then, it is recursive in M_{β} and hence simply arithmetic in μ . (Randoms do not accelerate computing well-foundedness.)
- 2. Let γ be least Master Code not in \mathcal{M}_0 . But M_{γ} is simply arithmetic in \mathcal{M}_0 and recursive in M_{β} . Hence M_{γ} is recursive in μ . (Randoms do not accelerate computing simple arithmetic sets.)

- 1. Fix the sequence \mathcal{M} for μ .
 - ▶ The well-founded part \mathcal{M}_0 of \mathcal{M} must have length less than or equal to β .
 - Then, it is recursive in M_{β} and hence simply arithmetic in μ . (Randoms do not accelerate computing well-foundedness.)
- 2. Let γ be least Master Code not in \mathcal{M}_0 . But M_{γ} is simply arithmetic in \mathcal{M}_0 and recursive in M_{β} . Hence M_{γ} is recursive in μ . (Randoms do not accelerate computing simple arithmetic sets.)
- 3. Contradiction!

- 1. Fix the sequence \mathcal{M} for μ .
 - ▶ The well-founded part \mathcal{M}_0 of \mathcal{M} must have length less than or equal to β .
 - Then, it is recursive in M_{β} and hence simply arithmetic in μ . (Randoms do not accelerate computing well-foundedness.)
- 2. Let γ be least Master Code not in \mathcal{M}_0 . But M_{γ} is simply arithmetic in \mathcal{M}_0 and recursive in M_{β} . Hence M_{γ} is recursive in μ . (Randoms do not accelerate computing simple arithmetic sets.)
- 3. Contradiction!
- 4. So $M_{\beta} \in NCR_n$.

Definition

A Π_1^{\dagger} -subset P of 2^{ω} is one with a definition of the form $X \in P \iff (\forall Y \in \omega^{\omega})(\exists n)\varphi(n,X \upharpoonright n,Y \upharpoonright n)$, in which φ has only bounded quantifiers.

Definition

A Π_1^1 -subset P of 2^ω is one with a definition of the form $X \in P \iff (\forall Y \in \omega^\omega)(\exists n)\varphi(n,X \upharpoonright n,Y \upharpoonright n)$, in which φ has only bounded quantifiers.

 NCR_n has this form: $X \in NCR_n$ if and only if for all $m \in 2^{\omega}$, m does not represent a continuous measure for which X is k-random.

Definition

A Π_1^1 -subset P of 2^ω is one with a definition of the form $X \in P \iff (\forall Y \in \omega^\omega)(\exists n)\varphi(n,X \upharpoonright n,Y \upharpoonright n)$, in which φ has only bounded quantifiers.

 NCR_n has this form: $X \in NCR_n$ if and only if for all $m \in 2^{\omega}$, m does not represent a continuous measure for which X is k-random.

Theorem

For each n, NCR_n is a countable Π_1 -subset of 2^{ω} which is not Δ_1^1 .

Understanding NCR_n

Definition

A Π_1^1 -subset P of 2^ω is one with a definition of the form $X \in P \iff (\forall Y \in \omega^\omega)(\exists n)\varphi(n,X \upharpoonright n,Y \upharpoonright n)$, in which φ has only bounded quantifiers.

 NCR_n has this form: $X \in NCR_n$ if and only if for all $m \in 2^{\omega}$, m does not represent a continuous measure for which X is k-random.

Theorem

For each n, NCR_n is a countable Π_1^1 -subset of 2^{ω} which is not Δ_1^1 .

We should understand NCR_n as $\alpha \Pi_1^1$ -set.

Understanding Π_1^1 -sets

 Π_1^1 -sets have an ordinal analysis.

Understanding Π_1^1 -sets

 Π_1^1 -sets have an ordinal analysis.

Suppose that P is defined by $X \in P \iff (\forall Y \in \omega^{\omega})(\exists n)\varphi(n, X \upharpoonright n, Y \upharpoonright n).$

▶ Let T_X be the set of $\tau \in \omega^{\omega}$, such that for all n less than the length of τ , $\neg \varphi(n, X \upharpoonright n, \tau \upharpoonright n)$.

Understanding Π_1^1 -sets

 Π_1^1 -sets have an ordinal analysis.

Suppose that P is defined by $X \in P \iff (\forall Y \in \omega^{\omega})(\exists n)\varphi(n, X \upharpoonright n, Y \upharpoonright n).$

- ▶ Let T_X be the set of $\tau \in \omega^{\omega}$, such that for all n less than the length of τ , $\neg \varphi(n, X \upharpoonright n, \tau \upharpoonright n)$.
- ▶ Then $X \in P$ if and only if T_X is well-founded, if and only if T_X has an ordinal rank.

Understanding NCR_n

Question

Is there a natural Π_1^1 -norm (ordinal ranking) of NCR_n, explaining the connection between definability (constructibility) and failure of continuous randomness?

Question

Is there a natural Π_1^1 -norm (ordinal ranking) of NCR_n, explaining the connection between definability (constructibility) and failure of continuous randomness?

This question is open, though we have some information about the special case NCR_1 .

NCR_1

▶ Kjos-Hanssen and Montalbán showed that the elements of countable Π_1^0 classes belong to NCR_1 .

NCR_1

- ▶ Kjos-Hanssen and Montalbán showed that the elements of countable Π_1^0 classes belong to NCR_1 .
- ► The Cantor-Bendixson analysis of countable closed sets gives a natural ordinal ranking.

NCR_1

- ▶ Kjos-Hanssen and Montalbán showed that the elements of countable Π_1^0 classes belong to NCR_1 .
- ► The Cantor-Bendixson analysis of countable closed sets gives a natural ordinal ranking.

Theorem

There is an X in NCR_1 which is not in any countable Π_1^0 -class.

Other Examples

Theorem

 NCR_1 contains elements of the following types.

- ▶ 1 generic
- pαcking dimension 1
- recursively enumerαble
- minimαl

Theorem (Montalbán and Slaman)

NCR₁ contains all K-trivial sequences.

A specific question

Theorem.

 $NCR_1 \cap \Delta_2^0$ is arithmetically definable.

A specific question

Theorem

 $NCR_1 \cap \Delta_2^0$ is arithmetically definable.

Question

Is $NCR_1 \cap \Delta_3^0$ hyperarithmetically definable?

