Randomness for Continuous Measures 4 Theodore A. Slaman (joint with Jan Reimann) University of California, Berkeley January 2009 ## Higher Orders of Randomness necessity of the set theoretic methods #### **Theorem** The statement For every k, NCR_k is countable cannot be proven in ZFC_n^- ## Higher Orders of Randomness necessity of the set theoretic methods #### **Theorem** The statement For every k, NCR_k is countable cannot be proven in ZFC_n^- We are discussing the proof for n = 0. ## Gödel's L #### **Definition** Gödel's hierarchy of constructible sets L is defined by the following recursion. - $ightharpoonup L_0 = \emptyset$ - ▶ $L_{\alpha+1} = Def(L_{\alpha})$, the set of subsets of L_{α} which are first order definable in parameters over L_{α} . - $\blacktriangleright L_{\lambda} = \cup_{\alpha < \lambda} L_{\alpha}.$ We focus on the least ordinal λ such that $L_{\lambda} \models ZFC^{-}$. ### Master Codes Associated with the sequence of L_{β} with $\beta < \lambda$ is a parallel sequence of countings M_{β} of L_{β} called the *Master Codes*. Each Master Code is definable in a simple way from the sequence of its predecessors. ### Master Codes Associated with the sequence of L_{β} with $\beta < \lambda$ is a parallel sequence of countings M_{β} of L_{β} called the $M\alpha$ ster Codes. Each Master Code is definable in a simple way from the sequence of its predecessors. We show that there is an n such that the Master Codes in L_{λ} are in NCR_n . # Pseudo Master Code Sequences For any Z, Z can arithmetically define a sequence \mathcal{M} consisting of a linear ordering < of pseudo-master-codes. - ▶ If M is in the well-founded part of \mathcal{M} , then M is a master-code. - ▶ If M is not in the well-founded part of \mathcal{M} , then M is not well-founded. # Finding n so that the Master Codes belong to NCR_n Choose n much larger than the propagating definitions of Master Codes and much larger than the definition mapping a real Z to its sequence \mathcal{M} . Let M_{β} be a Master Code and suppose that M_{β} is n-random relative to μ . - 1. Fix the sequence \mathcal{M} for μ . - ▶ The well-founded part \mathcal{M}_0 of \mathcal{M} must have length less than or equal to β . - ► Then, it is recursive in M_{β} and hence simply arithmetic in μ . (Randoms do not accelerate computing well-foundedness.) - 1. Fix the sequence \mathcal{M} for μ . - ▶ The well-founded part \mathcal{M}_0 of \mathcal{M} must have length less than or equal to β . - Then, it is recursive in M_{β} and hence simply arithmetic in μ . (Randoms do not accelerate computing well-foundedness.) - 2. Let γ be least Master Code not in \mathcal{M}_0 . But M_{γ} is simply arithmetic in \mathcal{M}_0 and recursive in M_{β} . Hence M_{γ} is recursive in μ . (Randoms do not accelerate computing simple arithmetic sets.) - 1. Fix the sequence \mathcal{M} for μ . - ▶ The well-founded part \mathcal{M}_0 of \mathcal{M} must have length less than or equal to β . - Then, it is recursive in M_{β} and hence simply arithmetic in μ . (Randoms do not accelerate computing well-foundedness.) - 2. Let γ be least Master Code not in \mathcal{M}_0 . But M_{γ} is simply arithmetic in \mathcal{M}_0 and recursive in M_{β} . Hence M_{γ} is recursive in μ . (Randoms do not accelerate computing simple arithmetic sets.) - 3. Contradiction! - 1. Fix the sequence \mathcal{M} for μ . - ▶ The well-founded part \mathcal{M}_0 of \mathcal{M} must have length less than or equal to β . - Then, it is recursive in M_{β} and hence simply arithmetic in μ . (Randoms do not accelerate computing well-foundedness.) - 2. Let γ be least Master Code not in \mathcal{M}_0 . But M_{γ} is simply arithmetic in \mathcal{M}_0 and recursive in M_{β} . Hence M_{γ} is recursive in μ . (Randoms do not accelerate computing simple arithmetic sets.) - 3. Contradiction! - 4. So $M_{\beta} \in NCR_n$. #### **Definition** A Π_1^{\dagger} -subset P of 2^{ω} is one with a definition of the form $X \in P \iff (\forall Y \in \omega^{\omega})(\exists n)\varphi(n,X \upharpoonright n,Y \upharpoonright n)$, in which φ has only bounded quantifiers. #### **Definition** A Π_1^1 -subset P of 2^ω is one with a definition of the form $X \in P \iff (\forall Y \in \omega^\omega)(\exists n)\varphi(n,X \upharpoonright n,Y \upharpoonright n)$, in which φ has only bounded quantifiers. NCR_n has this form: $X \in NCR_n$ if and only if for all $m \in 2^{\omega}$, m does not represent a continuous measure for which X is k-random. #### **Definition** A Π_1^1 -subset P of 2^ω is one with a definition of the form $X \in P \iff (\forall Y \in \omega^\omega)(\exists n)\varphi(n,X \upharpoonright n,Y \upharpoonright n)$, in which φ has only bounded quantifiers. NCR_n has this form: $X \in NCR_n$ if and only if for all $m \in 2^{\omega}$, m does not represent a continuous measure for which X is k-random. #### **Theorem** For each n, NCR_n is a countable Π_1 -subset of 2^{ω} which is not Δ_1^1 . # Understanding NCR_n #### Definition A Π_1^1 -subset P of 2^ω is one with a definition of the form $X \in P \iff (\forall Y \in \omega^\omega)(\exists n)\varphi(n,X \upharpoonright n,Y \upharpoonright n)$, in which φ has only bounded quantifiers. NCR_n has this form: $X \in NCR_n$ if and only if for all $m \in 2^{\omega}$, m does not represent a continuous measure for which X is k-random. #### **Theorem** For each n, NCR_n is a countable Π_1^1 -subset of 2^{ω} which is not Δ_1^1 . We should understand NCR_n as $\alpha \Pi_1^1$ -set. # Understanding Π_1^1 -sets Π_1^1 -sets have an ordinal analysis. # Understanding Π_1^1 -sets Π_1^1 -sets have an ordinal analysis. Suppose that P is defined by $X \in P \iff (\forall Y \in \omega^{\omega})(\exists n)\varphi(n, X \upharpoonright n, Y \upharpoonright n).$ ▶ Let T_X be the set of $\tau \in \omega^{\omega}$, such that for all n less than the length of τ , $\neg \varphi(n, X \upharpoonright n, \tau \upharpoonright n)$. # Understanding Π_1^1 -sets Π_1^1 -sets have an ordinal analysis. Suppose that P is defined by $X \in P \iff (\forall Y \in \omega^{\omega})(\exists n)\varphi(n, X \upharpoonright n, Y \upharpoonright n).$ - ▶ Let T_X be the set of $\tau \in \omega^{\omega}$, such that for all n less than the length of τ , $\neg \varphi(n, X \upharpoonright n, \tau \upharpoonright n)$. - ▶ Then $X \in P$ if and only if T_X is well-founded, if and only if T_X has an ordinal rank. # Understanding NCR_n #### Question Is there a natural Π_1^1 -norm (ordinal ranking) of NCR_n, explaining the connection between definability (constructibility) and failure of continuous randomness? #### Question Is there a natural Π_1^1 -norm (ordinal ranking) of NCR_n, explaining the connection between definability (constructibility) and failure of continuous randomness? This question is open, though we have some information about the special case NCR_1 . ## NCR_1 ▶ Kjos-Hanssen and Montalbán showed that the elements of countable Π_1^0 classes belong to NCR_1 . ## NCR_1 - ▶ Kjos-Hanssen and Montalbán showed that the elements of countable Π_1^0 classes belong to NCR_1 . - ► The Cantor-Bendixson analysis of countable closed sets gives a natural ordinal ranking. ## NCR_1 - ▶ Kjos-Hanssen and Montalbán showed that the elements of countable Π_1^0 classes belong to NCR_1 . - ► The Cantor-Bendixson analysis of countable closed sets gives a natural ordinal ranking. #### Theorem There is an X in NCR_1 which is not in any countable Π_1^0 -class. ## Other Examples #### **Theorem** NCR_1 contains elements of the following types. - ▶ 1 generic - pαcking dimension 1 - recursively enumerαble - minimαl ## Theorem (Montalbán and Slaman) NCR₁ contains all K-trivial sequences. ## A specific question ### Theorem. $NCR_1 \cap \Delta_2^0$ is arithmetically definable. # A specific question #### **Theorem** $NCR_1 \cap \Delta_2^0$ is arithmetically definable. #### Question Is $NCR_1 \cap \Delta_3^0$ hyperarithmetically definable?