
Randomness for Continuous Measures 4

Theodore A. Slaman
(joint with Jan Reimann)

University of California, Berkeley

C
January 2009



Higher Orders of Randomness
necessity of the set theoretic methods

Theorem

The statement

For every k, NCRk is countable

cannot be proven in ZFC−n

We are discussing the proof for n = 0.
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Gödel’s L

Definition

Gödel’s hierarchy of constructible sets L is defined by the
following recursion.

I L0 = ∅
I Lα+1 = Def(Lα), the set of subsets of Lα which are first
order definable in parameters over Lα.

I Lλ = ∪α<λLα.

We focus on the least ordinal λ such that Lλ |= ZFC−.



Master Codes

Associated with the sequence of Lβ with β <λ is a parallel
sequence of countings Mβ of Lβ called the Master Codes.
Each Master Code is definable in a simple way from the
sequence of its predecessors.

We show that there is an n such that the Master Codes in
Lλ are in NCRn.
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Pseudo Master Code Sequences

For any Z, Z can arithmetically define a sequence M
consisting of a linear ordering < of pseudo-master-codes.

I If M is in the well-founded part of M, then M is a
master-code.

I If M is not in the well-founded part of M, then M is
not well-founded.



Finding n so that the Master Codes belong to NCRn

Choose n much larger than the propagating definitions of
Master Codes and much larger than the definition mapping
a real Z to its sequence M.
Let Mβ be a Master Code and suppose that Mβ is
n-random relative to μ.



Finishing

1. Fix the sequence M for μ.
I The well-founded part M0 of M must have length less
than or equal to β.

I Then, it is recursive in Mβ and hence simply arithmetic
in μ. (Randoms do not accelerate computing
well-foundedness.)

2. Let γ be least Master Code not in M0. But Mγ is
simply arithmetic in M0 and recursive in Mβ. Hence
Mγ is recursive in μ. (Randoms do not accelerate
computing simple arithmetic sets.)

3. Contradiction!

4. So Mβ ∈ NCRn.
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Understanding NCRn

Definition

A Π11-subset P of 2ω is one with a definition of the form
X ∈ P ⇐⇒ (∀Y ∈ ωω)(∃n)'(n,X � n, Y � n), in which ' has
only bounded quantifiers.

NCRn has this form: X ∈ NCRn if and only if for all
m ∈ 2ω, m does not represent a continuous measure for
which X is k-random.

Theorem

For each n, NCRn is a countable Π11-subset of 2ω which is
not ∆11.

We should understand NCRn as a Π11-set.



Understanding NCRn

Definition

A Π11-subset P of 2ω is one with a definition of the form
X ∈ P ⇐⇒ (∀Y ∈ ωω)(∃n)'(n,X � n, Y � n), in which ' has
only bounded quantifiers.

NCRn has this form: X ∈ NCRn if and only if for all
m ∈ 2ω, m does not represent a continuous measure for
which X is k-random.

Theorem

For each n, NCRn is a countable Π11-subset of 2ω which is
not ∆11.

We should understand NCRn as a Π11-set.



Understanding NCRn

Definition

A Π11-subset P of 2ω is one with a definition of the form
X ∈ P ⇐⇒ (∀Y ∈ ωω)(∃n)'(n,X � n, Y � n), in which ' has
only bounded quantifiers.

NCRn has this form: X ∈ NCRn if and only if for all
m ∈ 2ω, m does not represent a continuous measure for
which X is k-random.

Theorem

For each n, NCRn is a countable Π11-subset of 2ω which is
not ∆11.

We should understand NCRn as a Π11-set.



Understanding NCRn

Definition

A Π11-subset P of 2ω is one with a definition of the form
X ∈ P ⇐⇒ (∀Y ∈ ωω)(∃n)'(n,X � n, Y � n), in which ' has
only bounded quantifiers.

NCRn has this form: X ∈ NCRn if and only if for all
m ∈ 2ω, m does not represent a continuous measure for
which X is k-random.

Theorem

For each n, NCRn is a countable Π11-subset of 2ω which is
not ∆11.

We should understand NCRn as a Π11-set.



Understanding Π11-sets

Π11-sets have an ordinal analysis.

Suppose that P is defined by
X ∈ P ⇐⇒ (∀Y ∈ ωω)(∃n)'(n,X � n, Y � n).

I Let TX be the set of τ ∈ ωω, such that for all n less
than the length of τ, ¬'(n,X � n, τ � n).

I Then X ∈ P if and only if TX is well-founded, if and
only if TX has an ordinal rank.
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Understanding NCRn

Question

Is there a natural Π11-norm (ordinal ranking) of NCRn,
explaining the connection between definability
(constructibility) and failure of continuous randomness?

This question is open, though we have some information
about the special case NCR1.
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NCR1

I Kjos-Hanssen and Montalbán showed that the elements
of countable Π01 classes belong to NCR1.

I The Cantor-Bendixson analysis of countable closed sets
gives a natural ordinal ranking.

Theorem

There is an X in NCR1 which is not in any countable
Π01-class.
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Other Examples

Theorem

NCR1 contains elements of the following types.
I 1-generic
I packing dimension 1
I recursively enumerable
I minimal

Theorem (Montalbán and Slaman)

NCR1 contains all K-trivial sequences.



A specific question

Theorem

NCR1 ∩∆0
2
is arithmetically definable.

Question

Is NCR1 ∩∆0
3
hyperarithmetically definable?
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Finis


