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Last time we used set theoretic methods to prove the
following theorem.

Theorem

For every k, NCRk is countable.

Features of the proof:

I Applies Martin’s theorem that all arithmetic games on
2ω are determined.

I Concludes that the elements of NCRk are definable.
They belong to the least initial segment of Godel’s
universe of constructible sets Lα such that

Lα |= ZFC−k ,

where ZFC−k is Zermelo-Frankel set theory with only k
iterates of the power set of ω.
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Set Theory is Essential

Today we will show that the statement “For every k, NCRk
is countable,” cannot be proven by invoking only finitely
many iterates of the power set of ω.

Recall:

Theorem (H. Friedman 1971)

The determinacy of all arithmetic games cannot be proven
by invoking only finitely many iterates of the power set of
ω.

Essentially, we will show that the determinacy
relatively-random game requires iterations of the power set
of ω.
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Effectively Random Reals

Suppose that n ≥ 2, Y ∈ 2ω, and X is n-random relative to
μ.

I If i is less than n, Y is recursive in (X⊕ μ) and recursive
in μ(i), then Y is recursive in μ.

I If Y is recursive in X⊕ μ and not recursive in μ, then Y
is (n− 2)-random for some continuous measure μY
recursive in μ′′ (relative to μ′′). (Apply a theorem of
Demuth.)

In general, using arithmetic definitions with fewer than n
quantifiers, n-random reals do not accelerate arithmetic
definability and nontrivially define only relatively random
reals.
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Randomness and Well-Foundedness

Definition

A linear order ≺ on ω is well-founded iff every non-empty
subset of ω has a least element.

As with arithmetic definability, random reals cannot
accelerate the calculation of well-foundedness.

Theorem

Suppose that X is 5-random relative to μ, ≺ is recursive in
μ, and I is the largest initial segment of ≺ which is
well-founded. If I is recursive in X⊕ μ, then I is recursive in
μ.
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Proof

Suppose I ≤T X⊕ μ and I 6≤T μ. Then, there is a continuous
μI recursive in μ′′ such that I is 3-random for μI relative to
μ′′.

For a ∈ ω, let I(a) be the set of X’s such that X is an
initial segment of ≺ and all of X’s elements are bounded by
a. Note that I(a) is Π01(μ). Hence, there is a μ′′-effective
procedure to tell whether I(a) has positive μI-measure.

I If a ∈ I, then I(a) is countable and μI(I(a)) = 0.

I If a 6∈ I, then I ∈ I(a), I is 3-random for μI relative to
μ′′, and so μI(I(a)) 6= 0.

Thus, I is Π0
2
relative to μ′′, contradiction to I’s being

3-random for μI relative to μ′′.
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Higher Orders of Randomness
necessity of the set theoretic methods

Theorem

For every k, the statement

For every k, NCRk is countable

cannot be proven in ZFC−n

We will sketch the proof for n = 0 and indicate how to
adapt it for n >0.
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Necessity of power sets
self-constructing sets are in NCR

Example

For all k, 0(k) is not 3-random relative to any μ.

Proof

I Say 0(k) is 3-random relative to μ.
I 0′ is recursively enumerable relative to μ and recursive
in the supposedly 3-random 0(k). Hence, 0′ is recursive
in μ and so 0′′ is recursively enumerable relative to μ.

I Use induction to conclude 0(k) is recursive in μ, a
contradiction.
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Example

0ω, the first-order theory of arithmetic, is not 3-random
relative to any μ.

Proof

I Say 0ω is 3-random relative to μ.
I By the previous argument, for every k, 0(k) is recursive
in μ.

I Then 0ω is recursive in μ′′, proof sketch on next slide.
I Consequently, 0ω is not 3-random relative to μ.
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Elaboration

Proposition

Suppose for every k, 0(k) is recursive in X. Then 0ω is
recursive in X′′.

Proof

0′ satisfies,

(∀n)[n ∈ 0′ iff the nth existential sentence is true.]

Thus, 0′ is the unique set satisfying a Π0
2
property.

If X ≥T 0′, then X′′ can uniformly pick out the way to
compute 0′ from X. The rest follows by induction.
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Gödel’s L

Definition

Gödel’s hierarchy of constructible sets L is defined by the
following recursion.

I L0 = ∅
I Lα+1 = Def(Lα), the set of subsets of Lα which are first
order definable in parameters over Lα.

I Lλ = ∪α<λLα.

We focus on the least ordinal λ such that Lλ |= ZFC−. We
show that there is an n such that NCRn is cofinal in the
Turing degrees of Lλ.
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About Lλ
Let LOR be the set of limit ordinals. Note that LOR is
cofinal in λ.

I For any β <λ with β ∈ LOR, there is an X ⊂ ω such
that X ∈ Def(Lβ) \ Lβ.

I (Putnam and Enderton) For any β <λ with β ∈ LOR,
there is an E ⊂ ω×ω such that E ∈ Lβ+3 and (ω,E) is
isomorphic to (Lβ, �). E is obtained by observing that
Gödel’s Condensation Theorem implies that Lβ is the
Skolem hull of the parameters which define the previous
X in Lβ.

I (Jensen) For any β <λ with β ∈ LOR, there is a
canonical set Mβ ∈ Lβ+3 ∩ 2ω, called the master code
for Lβ, such that Mβ is the elementary diagram of a
canonical counting of Lβ.
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About the Master Codes

If α <β <λ and α, β ∈ LOR, then all of X, Y, Mα, and the
isomorphism between Lα and Mα’s representation of Lα
mentioned earlier are elements of Lβ.

For every X ∈ 2ω ∩ Lλ, there is a β ∈ LOR such that β <λ
and X is recursive in some Mβ. Hence, the set {Mβ : β <λ}
is not countable in Lλ.
We will show that there is an n such that

{Mβ : β <λ} ⊂ NCRn.
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About the Master Codes
obtaining Mβ by iterated relative definability.

In the previous frames, we defined L by iterating first order
definability from parameters and taking unions. This
iteration is reflected by the master codes.

I For α ∈ LOR, Mα+ω can be defined from Mα by
iterating Σ01-relative definability and taking uniformly
arithmetic limits.

I For a limit γ ∈ LOR, Mγ can be defined from the
sequence of smaller Mα’s by taking a uniformly
arithmetic limit and then iterating Σ01-relative definability.



About the Master Codes
recognition and comparison

There is an arithmetic formula ' as follows.

I For every β in LOR less than λ, '(Mβ).

I For every M and N satisfying ', either one belongs to
the structure coded by the other and embeds its coded
structure as an initial segment of the other’s, or there is
a Π0
3

(M⊕N) set which exhibits a failure of
well-foundedness in one of their coded structures.

For any Z there is an arithmetic ' specifying a collection of
pseudo-master codes among the sets recursive in Z and an
arithmetic method to linearly order the apparently
well-founded models they code. Moreover, the arithemtic
formulas do not depend on Z, and the well-founded codes
form an initial segment of the ordering.
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To be continued


