Randomness for Continuous Measures 3

Theodore A. Slaman (joint with Jan Reimann)

University of California, Berkeley

January 2009

Theorem

For every k, NCR_k is countable.

Theorem

For every k, NCR_k is countable.

Features of the proof:

Theorem

For every k, NCR_k is countable.

Features of the proof:

• Applies Martin's theorem that all arithmetic games on 2^{ω} are determined.

Theorem

For every k, NCR_k is countable.

Features of the proof:

- Applies Martin's theorem that all arithmetic games on 2^{ω} are determined.
- ▶ Concludes that the elements of NCR_k are definable. They belong to the least initial segment of Godel's universe of constructible sets L_{α} such that

$$L_{\alpha} \models ZFC_{k}^{-}$$
,

where ZFC_k^- is Zermelo-Frankel set theory with only k iterates of the power set of ω .

Set Theory is Essential

Today we will show that the statement "For every k, NCR_k is countable," cannot be proven by invoking only finitely many iterates of the power set of ω .

Set Theory is Essential

Today we will show that the statement "For every k, NCR_k is countable," cannot be proven by invoking only finitely many iterates of the power set of ω .

Recall:

Theorem (H. Friedman 1971)

The determinacy of all arithmetic games cannot be proven by invoking only finitely many iterates of the power set of ω .

Set Theory is Essential

Today we will show that the statement "For every k, NCR_k is countable," cannot be proven by invoking only finitely many iterates of the power set of ω .

Recall:

Theorem (H. Friedman 1971)

The determinacy of all arithmetic games cannot be proven by invoking only finitely many iterates of the power set of ω .

Essentially, we will show that the determinacy relatively-random game requires iterations of the power set of ω .

Suppose that $n \geq 2$, $Y \in 2^{\omega}$, and X is n-random relative to μ .

Suppose that $n \ge 2$, $Y \in 2^{\omega}$, and X is n-random relative to μ .

▶ If *i* is less than *n*, *Y* is recursive in $(X \oplus \mu)$ and recursive in $\mu^{(i)}$, then *Y* is recursive in μ .

Suppose that $n \ge 2$, $Y \in 2^{\omega}$, and X is n-random relative to μ .

- ▶ If *i* is less than *n*, *Y* is recursive in $(X \oplus \mu)$ and recursive in $\mu^{(i)}$, then *Y* is recursive in μ .
- ▶ If Y is recursive in $X \oplus \mu$ and not recursive in μ , then Y is (n-2)-random for some continuous measure μ_Y recursive in μ'' (relative to μ''). (Apply a theorem of Demuth.)

Suppose that $n \ge 2$, $Y \in 2^{\omega}$, and X is n-random relative to μ .

- ▶ If *i* is less than *n*, *Y* is recursive in $(X \oplus \mu)$ and recursive in $\mu^{(i)}$, then *Y* is recursive in μ .
- If Y is recursive in $X \oplus \mu$ and not recursive in μ , then Y is (n-2)-random for some continuous measure μ_Y recursive in μ'' (relative to μ''). (Apply a theorem of Demuth.)

In general, using arithmetic definitions with fewer than n quantifiers, n-random reals do not accelerate arithmetic definability and nontrivially define only relatively random reals.

Randomness and Well-Foundedness

Definition

A linear order \prec on ω is well-founded iff every non-empty subset of ω has a least element.

Randomness and Well-Foundedness

Definition

A linear order \prec on ω is well-founded iff every non-empty subset of ω has a least element.

As with arithmetic definability, random reals cannot accelerate the calculation of well-foundedness.

Randomness and Well-Foundedness

Definition

A linear order \prec on ω is *well-founded* iff every non-empty subset of ω has a least element.

As with arithmetic definability, random reals cannot accelerate the calculation of well-foundedness.

Theorem

Suppose that X is 5-random relative to μ , \prec is recursive in μ , and I is the largest initial segment of \prec which is well-founded. If I is recursive in $X \oplus \mu$, then I is recursive in μ .

Suppose $I \leq_T X \oplus \mu$ and $I \not\leq_T \mu$. Then, there is a continuous μ_I recursive in μ'' such that I is 3-random for μ_I relative to μ'' .

Suppose $I \leq_T X \oplus \mu$ and $I \not\leq_T \mu$. Then, there is a continuous μ_I recursive in μ'' such that I is 3-random for μ_I relative to μ'' .

For $\alpha \in \omega$, let $\mathcal{I}(\alpha)$ be the set of X's such that X is an initial segment of \prec and all of X's elements are bounded by α . Note that $\mathcal{I}(\alpha)$ is $\Pi^0_{\downarrow}(\mu)$. Hence, there is a μ'' -effective procedure to tell whether $\mathcal{I}(\alpha)$ has positive μ_l -measure.

Suppose $I \leq_T X \oplus \mu$ and $I \not\leq_T \mu$. Then, there is a continuous μ_I recursive in μ'' such that I is 3-random for μ_I relative to μ'' .

For $\alpha \in \omega$, let $\mathcal{I}(\alpha)$ be the set of X's such that X is an initial segment of \prec and all of X's elements are bounded by α . Note that $\mathcal{I}(\alpha)$ is $\Pi_1^0(\mu)$. Hence, there is a μ'' -effective

▶ If $\alpha \in I$, then $\mathcal{I}(\alpha)$ is countable and $\mu_I(\mathcal{I}(\alpha)) = 0$.

procedure to tell whether $\mathcal{I}(\alpha)$ has positive μ_l -measure.

▶ If $\alpha \notin I$, then $I \in \mathcal{I}(\alpha)$, I is 3-random for μ_I relative to μ'' , and so $\mu_I(\mathcal{I}(\alpha)) \neq 0$.

Suppose $I \leq_T X \oplus \mu$ and $I \not\leq_T \mu$. Then, there is a continuous μ_I recursive in μ'' such that I is 3-random for μ_I relative to μ'' .

For $\alpha \in \omega$, let $\mathcal{I}(\alpha)$ be the set of X's such that X is an initial segment of \prec and all of X's elements are bounded by α . Note that $\mathcal{I}(\alpha)$ is $\Pi_1^0(\mu)$. Hence, there is a μ'' -effective

procedure to tell whether
$$\mathcal{I}(\alpha)$$
 has positive μ_l -measure.
• If $\alpha \in I$, then $\mathcal{I}(\alpha)$ is countable and $\mu_l(\mathcal{I}(\alpha)) = 0$.

Thus, I is Π_2^0 relative to μ'' , contradiction to I's being 3-random for μ_I relative to μ'' .

Higher Orders of Randomness

necessity of the set theoretic methods

Theorem

For every k, the statement

For every k, NCR_k is countable

cannot be proven in ZFC_n^-

Higher Orders of Randomness

necessity of the set theoretic methods

Theorem

For every k, the statement

For every k, NCR_k is countable

cannot be proven in ZFC_n^-

We will sketch the proof for n = 0 and indicate how to adapt it for n > 0.

self-constructing sets are in NCR

Example

For all k, $O^{(k)}$ is not 3-random relative to any μ .

self-constructing sets are in NCR

Example

For all k, $O^{(k)}$ is not 3-random relative to any μ .

Proof

▶ Say $0^{(k)}$ is 3-random relative to μ .

self-constructing sets are in NCR

Example

For all k, $O^{(k)}$ is not 3-random relative to any μ .

- Say $O^{(k)}$ is 3-random relative to μ .
- ▶ 0' is recursively enumerable relative to μ and recursive in the supposedly 3-random $0^{(k)}$. Hence, 0' is recursive in μ and so 0" is recursively enumerable relative to μ .

self-constructing sets are in NCR

Example

For all k, $O^{(k)}$ is not 3-random relative to any μ .

- ▶ Say $O^{(k)}$ is 3-random relative to μ .
- ▶ 0' is recursively enumerable relative to μ and recursive in the supposedly 3-random $0^{(k)}$. Hence, 0' is recursive in μ and so 0" is recursively enumerable relative to μ .
- Use induction to conclude $0^{(k)}$ is recursive in μ , a contradiction.

self-constructing sets are in NCR

Example

 0^{ω} , the first-order theory of arithmetic, is not 3-random relative to any μ .

self-constructing sets are in NCR

Example

 0^{ω} , the first-order theory of arithmetic, is not 3-random relative to any μ .

Proof

▶ Say 0^{ω} is 3-random relative to μ .

self-constructing sets are in NCR

Example

 0^{ω} , the first-order theory of arithmetic, is not 3-random relative to any μ .

- ▶ Say 0^{ω} is 3-random relative to μ .
- ▶ By the previous argument, for every k, $0^{(k)}$ is recursive in μ .

self-constructing sets are in NCR

Example

 0^{ω} , the first-order theory of arithmetic, is not 3-random relative to any μ .

- ▶ Say 0^{ω} is 3-random relative to μ .
- ▶ By the previous argument, for every k, $0^{(k)}$ is recursive in μ .
- ▶ Then 0^{ω} is recursive in μ'' , proof sketch on next slide.

self-constructing sets are in NCR

Example

 0^{ω} , the first-order theory of arithmetic, is not 3-random relative to any μ .

- ▶ Say 0^{ω} is 3-random relative to μ .
- ▶ By the previous argument, for every k, $0^{(k)}$ is recursive in μ .
- ▶ Then 0^{ω} is recursive in μ'' , proof sketch on next slide.
- ▶ Consequently, 0^{ω} is not 3-random relative to μ .

Elaboration

Proposition

Suppose for every k, $0^{(k)}$ is recursive in X. Then 0^{ω} is recursive in X''.

Elaboration

Proposition

Suppose for every k, $0^{(k)}$ is recursive in X. Then 0^{ω} is recursive in X''.

Proof

O' satisfies,

 $(\forall n)[n \in O' \text{ iff the } n\text{th existential sentence is true.}]$

Thus, 0' is the unique set satisfying a Π_2^0 property.

Elaboration

Proposition

Suppose for every k, $0^{(k)}$ is recursive in X. Then 0^{ω} is recursive in X''.

Proof

O' satisfies,

 $(\forall n)[n \in O' \text{ iff the } n\text{th existential sentence is true.}]$

Thus, 0' is the unique set satisfying a Π_2^0 property.

If $X \ge_T 0'$, then X'' can uniformly pick out the way to compute 0' from X. The rest follows by induction.

Gödel's L

Definition

Gödel's hierarchy of constructible sets L is defined by the following recursion.

- $L_0 = \emptyset$
- ▶ $L_{\alpha+1} = Def(L_{\alpha})$, the set of subsets of L_{α} which are first order definable in parameters over L_{α} .
- $\blacktriangleright L_{\lambda} = \cup_{\alpha < \lambda} L_{\alpha}.$

Gödel's L

Definition

Gödel's hierarchy of constructible sets L is defined by the following recursion.

- $ightharpoonup L_0 = \emptyset$
- ▶ $L_{\alpha+1} = Def(L_{\alpha})$, the set of subsets of L_{α} which are first order definable in parameters over L_{α} .
- $\blacktriangleright L_{\lambda} = \cup_{\alpha < \lambda} L_{\alpha}.$

We focus on the least ordinal λ such that $L_{\lambda} \models ZFC^{-}$. We show that there is an n such that NCR_{n} is cofinal in the Turing degrees of L_{λ} .

About L_{λ}

Let LOR be the set of limit ordinals. Note that LOR is cofinal in λ .

About L_{λ}

Let LOR be the set of limit ordinals. Note that LOR is cofinal in λ .

▶ For any $\beta < \lambda$ with $\beta \in LOR$, there is an $X \subset \omega$ such that $X \in Def(L_{\beta}) \setminus L_{\beta}$.

About L_{λ}

Let LOR be the set of limit ordinals. Note that LOR is cofinal in λ .

- ▶ For any $\beta < \lambda$ with $\beta \in LOR$, there is an $X \subset \omega$ such that $X \in Def(L_{\beta}) \setminus L_{\beta}$.
- ▶ (Putnam and Enderton) For any $\beta < \lambda$ with $\beta \in LOR$, there is an $E \subset \omega \times \omega$ such that $E \in L_{\beta+3}$ and (ω, E) is isomorphic to (L_{β}, ϵ) . E is obtained by observing that Gödel's Condensation Theorem implies that L_{β} is the Skolem hull of the parameters which define the previous X in L_{β} .

About L_{λ}

Let LOR be the set of limit ordinals. Note that LOR is cofinal in λ .

- ▶ For any $\beta < \lambda$ with $\beta \in LOR$, there is an $X \subset \omega$ such that $X \in Def(L_{\beta}) \setminus L_{\beta}$.
- ▶ (Putnam and Enderton) For any $\beta < \lambda$ with $\beta \in LOR$, there is an $E \subset \omega \times \omega$ such that $E \in L_{\beta+3}$ and (ω, E) is isomorphic to (L_{β}, ϵ) . E is obtained by observing that Gödel's Condensation Theorem implies that L_{β} is the Skolem hull of the parameters which define the previous X in L_{β} .
- ▶ (Jensen) For any $\beta < \lambda$ with $\beta \in LOR$, there is a canonical set $M_{\beta} \in L_{\beta+3} \cap 2^{\omega}$, called the master code for L_{β} , such that M_{β} is the elementary diagram of a canonical counting of L_{β} .

If $\alpha < \beta < \lambda$ and $\alpha, \beta \in LOR$, then all of X, Y, M_{α} , and the isomorphism between L_{α} and M_{α} 's representation of L_{α} mentioned earlier are elements of L_{β} .

If $\alpha < \beta < \lambda$ and $\alpha, \beta \in LOR$, then all of X, Y, M_{α} , and the isomorphism between L_{α} and M_{α} 's representation of L_{α} mentioned earlier are elements of L_{β} .

For every $X \in 2^{\omega} \cap L_{\lambda}$, there is a $\beta \in LOR$ such that $\beta < \lambda$ and X is recursive in some M_{β} . Hence, the set $\{M_{\beta} : \beta < \lambda\}$ is not countable in L_{λ} .

If $\alpha < \beta < \lambda$ and $\alpha, \beta \in LOR$, then all of X, Y, M_{α} , and the isomorphism between L_{α} and M_{α} 's representation of L_{α} mentioned earlier are elements of L_{β} .

For every $X \in 2^{\omega} \cap L_{\lambda}$, there is a $\beta \in LOR$ such that $\beta < \lambda$ and X is recursive in some M_{β} . Hence, the set $\{M_{\beta} : \beta < \lambda\}$ is not countable in L_{λ} .

We will show that there is an n such that

$$\{M_{\beta}: \beta < \lambda\} \subset NCR_n.$$

obtaining M_{β} by iterated relative definability.

In the previous frames, we defined L by iterating first order definability from parameters and taking unions. This iteration is reflected by the master codes.

- ▶ For $\alpha \in LOR$, $M_{\alpha+\omega}$ can be defined from M_{α} by iterating Σ_1^0 -relative definability and taking uniformly arithmetic limits.
- ▶ For a limit $\gamma \in LOR$, M_{γ} can be defined from the sequence of smaller M_{α} 's by taking a uniformly arithmetic limit and then iterating Σ_1^0 -relative definability.

recognition and comparison

There is an arithmetic formula φ as follows.

recognition and comparison

There is an arithmetic formula φ as follows.

▶ For every β in LOR less than λ , $\varphi(M_{\beta})$.

recognition and comparison

There is an arithmetic formula φ as follows.

- ▶ For every β in LOR less than λ , $\varphi(M_{\beta})$.
- For every M and N satisfying φ , either one belongs to the structure coded by the other and embeds its coded structure as an initial segment of the other's, or there is a $\Pi_3^0(M \oplus N)$ set which exhibits a failure of well-foundedness in one of their coded structures.

recognition and comparison

There is an arithmetic formula φ as follows.

- ▶ For every β in LOR less than λ , $\varphi(M_{\beta})$.
- For every M and N satisfying φ , either one belongs to the structure coded by the other and embeds its coded structure as an initial segment of the other's, or there is a $\Pi_3^0(M \oplus N)$ set which exhibits a failure of well-foundedness in one of their coded structures.

For any Z there is an arithmetic φ specifying a collection of pseudo-master codes among the sets recursive in Z and an arithmetic method to linearly order the apparently well-founded models they code. Moreover, the arithemtic formulas do not depend on Z, and the well-founded codes form an initial segment of the ordering.

