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Question

For which sequences X 2 2! do there exist (representations

of) continuous probability measures � such that X is

random for �?



Failures of Continuous Randomness

Theorem (Kjos-Hanssen and Montalbán)

Suppose that P is a countable �0
1
-class and X 2 P . Then

there is no continuous � such that X is 1-�-random.

De�nition

X 2 NCRk if and only if there is no representation m of a

continuous measure � such that X is k-random relative to the

representation m of �.

By Kjos-Hanssen and Montalbán, every element of a countable

�0
1
-class belongs to NCR1.



The Hyperarithmetic Sets

De�nition

Suppose that < is a linear ordering of !. A jump hierarchy

along < is a function J from ! to 2! such that

I If m is the immediate successor of n in <, then

J(m) = J(n)0.

I If l is a limit in <, then J(l) = f2n3i : n < l and i 2 J(n)g.

If < is a well-ordering, then there is a unique jump hierarchy

along <.

De�nition

A set X is hyperarithmetic i� there is a recursive well-ordering

of ! with jump hierarchy J and an n such that X �T J(n).



Theorem (Kreisel, 1959)

I If X is an element of a countable �0
1
set, then X is

hyperarithmetic.

I Every hyperarithmetic Y is recursive in some H which

is an element of a countable �0
1
set.

Consequently, the Turing degrees of the elements of NCR1 are

co�nal in the Turing degrees of the hyperarithmetic sets.



Corollary

There is a set X such that the following conditions hold

I X is not hyperarithmetic.

I There is no continuous � with a representation m

hyperarithmetic in X such that X is 1-�-random

relative to m.

Proof

Take a nonstandard version of one of Kreisel's P 's and H's.
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Higher orders of randomness
basic observations

Fact (Well-known)

Suppose that k > 1 and X is k-random for �.

I �0 is not recursive in X.

I Every function recursive in X is dominated by a

function recursive in �0.

Corollary

If k � 1, R is (k + 1)-random relative to Z, and X �T;Z R,

then X �tt;Z0 R. Hence, X is k-random for some continuous

measure.
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Higher orders of randomness
NCRk

Theorem

For every k, NCRk is countable.

We will show that every element of NCRk is de�nable.

However, as k increases the envelope of de�nability increases

dramatically.
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Higher orders of randomness
a cone of Turing degrees disjoint from NCRk

Lemma

There is a B 2 2!, such that X �T B implies X 62 NCRk.

Proof

A Borel subset of :NCRk. Suppose Z 2 2!, R is

(k + 1)-random relative to Z, and X �T R� Z. Then,

X �tt;Z0 R, R is k-random relative to Z 0, and so X is k-random

relative to some continuous measure.

:NCRk contains a cone in D. By the above, :NCRk

contains the co�nal and degree-invariant set

fY : 9Z9R(R is 3-random in Z and Y �T Z �R):g

This set is clearly co�nal in D. By Borel Determinacy, it

contains a cone in D.
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Higher orders of randomness
an observation about Borel Determinacy

I Martin's proof of Borel Determinacy starts with a

description of a Borel game and produces a winning

strategy for one of the players.

I The more complicated the game is in the Borel hierarchy,

the more iterates of the power set of the continuum are

used in producing the strategy.

I The absoluteness of �1
1
sentences between well-founded

models and the direct nature of Martin's proof imply that

if G is a real parameter used to de�ne a Borel game, then

the winning strategy for that game belongs to the smallest

L� [G] such that L� [G] is a model of a su�ciently large

subset of ZFC .

We will work with models of ZFC�

k , which is ZFC with only k

iterates of the power set of !. Let L� be the smallest

well-founded model of ZFC�

k . Note, L� is countable.
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Higher orders of randomness
a join theorem

Lemma

Suppose that X 62 L�. Then there is a G such that

I L� [G] is a model of ZFC�

k .

I Every element of 2!
T
L� [G] is recursive in X �G.

Proof

Use Kumabe�Slaman forcing P to generically extend L� . This

forcing builds a functional �G by �nite approximation.
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Higher orders of randomness
Kumabe-Slaman forcing in detail

I The elements p of the forcing partial order P are pairs

(�p;
�!
X p) in which �p is a �nite use-monotone functional

and
�!
X p is a �nite subset of 2

!.

I If p and q are elements of P , then p � q if and only if

I �p � �q and for all (xq; yq; �q) 2 �q n �p and all

(xp; yp; �p) 2 �p, the length of �q is greater than the length

�p,

I
�!
X p �

�!
X q,

I for every x, y, and X 2
�!
X p, if �q(x;X) = y then

�p(x;X) = y.



Higher orders of randomness
a join theorem

The de�nability of forcing and compactness show that if

D 2 L� is dense and p 2 P , then there is a q in D extending p

such that q makes no additional commitments about �G(X).

Thus, for each term � in the forcing language and each n 2 !, it
is possible to decide n 2 � and then extend our commitment on

�G(X) to record this decision.

We construct G in !-many steps so that G is P -generic for L�
and so that �G(X) records what is forced during our

construction.



Higher orders of randomness
NCRk � L� .

Corollary

NCRk � L�. Hence, NCRk is countable.

Proof

Suppose X 62 L� and apply the previous lemma to obtain a G

such that L� [G] is a model of ZFC
�

k and every element of

2!
T
L� [G] is recursive in X �G.

Relative to G, X belongs to every cone with base in L� [G]. By
a quanti�er count for the randomness game, X belongs to the

cone avoiding NCRk relative to G.

Thus, there is a continuous measure � such that X is k-random

for � relative to G.

But then, X is k-random for a continuous �, as required.



Higher orders of randomness
obtaining � from X

Given X 62 L� , we showed that there is a continuous � such

that X is k-random for �. We can de�ne such a � using X and

a presentation of the elementary diagram of L� as a countable

model.



NCR1

De�nition

I L!CK
1

denotes the collection of sets which are

hyperarithmetically represented.

I O denotes the existential theory of L!CK
1

�the complete

�1
1
-subset of !.

Proposition (Well-known)

Every recursive closed game on !! for which the closed

player wins, has a winning strategy recursive in O.



NCR1 � Optimized Cone Argument

Lemma

The set

fY : 9Z9R(R is 2-random in Z and Y �T Z �R):g

contains a closed subset of !! whose degrees are co�nal in

D.

Consequently, by the previous argument, if Y �T O,

9Z9R(R is 2-random in Z and Y �T Z �R):g

and so Y 62 NCR1.
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Theorem (Woodin)

If X 2 2! is not hyperarithmetic, then there is a G 2 2!

such that X �G � OG.

Theorem

If X 2 2! is not hyperarithmetic, then there is a

representation m of a continuous measure � such that X is

1-�-random relative to m.
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