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Question

For which sequences X € 2¥ do there exist (representations

of ) continuous probability measures u such that X is
random for pu?



Failures of Continuous Randomness

Theorem (Kjos-Hanssen and Montalban)

Suppose that P is a countable T1%-class and X € P. Then
there 1s no continuous u such that X is 1-u-random.

Definition

X € NCRy, if and only if there is no representation m of a
continuous measure u such that X is k-random relative to the
representation m of u.

By Kjos-Hanssen and Montalban, every element of a countable
T19-class belongs to NCR;.



The Hyperarithmetic Sets

Definition

Suppose that < is a linear ordering of w. A jump hierarchy
along < is a function J from w to 2% such that

» If m is the immediate successor of n in <, then
J(m) = J(n)'".
» If I is a limit in <, then J(I) = {2"3" : n <l and i € J(n)}.

If < is a well-ordering, then there is a unique jump hierarchy
along <.

Definition

A set X is hyperarithmetic iff there is a recursive well-ordering
of w with jump hierarchy J and an n such that X <r J(n).



Theorem (Kreisel, 1959)

» If X s an element of a countable 119 set, then X 1is
hyperarithmetic.

» EBuvery hyperarithmetic Y 1s recursive in some H which
is an element of a countable II9 set.

Consequently, the Turing degrees of the elements of NCR; are
cofinal in the Turing degrees of the hyperarithmetic sets.



Corollary
There 15 a set X such that the following conditions hold

» X 1is not hyperarithmetic.

» There 1s no continuous u with a representation m
hyperarithmetic in X such that X 1s 1-u-random
relative to m.



Corollary

There 15 a set X such that the following conditions hold

» X 1is not hyperarithmetic.

» There 1s no continuous u with a representation m
hyperarithmetic in X such that X 1s 1-u-random
relative to m.

Take a nonstandard version of one of Kreisel’s P’s and H's.




Higher orders of randomness

basic observations

Fact (Well-known)

Suppose that k > 1 and X s k-random for u.
> u' is not recursive i X.

» Bvery function recursiwe in X 1s dominated by a
function recursive in u'.



Higher orders of randomness

basic observations

Fact (Well-known)

Suppose that k > 1 and X s k-random for u.
> u' is not recursive i X.

» Bvery function recursiwe in X 1s dominated by a
function recursive in u'.

Corollary

Ifk>1, R s (k+ 1)-random relative to Z, and X =7z R,
then X =4 7 R. Hence, X 1s k-random for some continuous
measure.
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For every k, NCRy 1s countable.




Higher orders of randomness
NCRy,

Theorem
For every k, NCRy 1s countable.

We will show that every element of NCRj is definable.
However, as k increases the envelope of definability increases
dramatically.
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Lemma

There 1s a B € 2%, such that X >7 B implies X Z NCR;.




Higher orders of randomness
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Lemma

There 1s a B € 2%, such that X >7 B implies X Z NCR;.

Proof

A Borel subset of ~-NCRy. Suppose Z €2“, Ris

(k + 1)-random relative to Z, and X =7 R & Z. Then,

X =#,7z2 R, R is k-random relative to Z', and so X is k-random
relative to some continuous measure.



Higher orders of randomness
a cone of Turing degrees disjoint from NCRj

Lemma

There 1s a B € 2%, such that X >7 B implies X Z NCR;.

Proof

A Borel subset of ~-NCRy. Suppose Z €2“, Ris

(k + 1)-random relative to Z, and X =7 R & Z. Then,

X =#,7z2 R, R is k-random relative to Z', and so X is k-random
relative to some continuous measure.

- NCRy contains a cone in D. By the above, ~NCR
contains the cofinal and degree-invariant set

{Y : 3Z3R(R is 3-random in Z and Y =7 Z ® R).}

This set is clearly cofinal in D. By Borel Determinacy, it
contains a cone in D.



Higher orders of randomness

an observation about Borel Determinacy

» Martin’s proof of Borel Determinacy starts with a
description of a Borel game and produces a winning
strategy for one of the players.
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the more iterates of the power set of the continuum are
used in producing the strategy.
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» Martin’s proof of Borel Determinacy starts with a
description of a Borel game and produces a winning
strategy for one of the players.

» The more complicated the game is in the Borel hierarchy,
the more iterates of the power set of the continuum are
used in producing the strategy.

» The absoluteness of II} sentences between well-founded
models and the direct nature of Martin’s proof imply that
if G is a real parameter used to define a Borel game, then
the winning strategy for that game belongs to the smallest
Lg|G] such that Lg[G] is a model of a sufficiently large
subset of ZFC.
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an observation about Borel Determinacy

» Martin’s proof of Borel Determinacy starts with a
description of a Borel game and produces a winning
strategy for one of the players.

» The more complicated the game is in the Borel hierarchy,
the more iterates of the power set of the continuum are
used in producing the strategy.

» The absoluteness of II} sentences between well-founded
models and the direct nature of Martin’s proof imply that
if G is a real parameter used to define a Borel game, then
the winning strategy for that game belongs to the smallest
Lg|G] such that Lg[G] is a model of a sufficiently large
subset of ZFC.

We will work with models of ZFC\, which is ZFC with only &k
iterates of the power set of w. Let Lg be the smallest
well-founded model of ZFC/. Note, Lg is countable.



Higher orders of randomness

a join theorem

Lemma

Suppose that X ¢ Lg. Then there s a G such that
> Lg[G] 1s a model of ZFC}, .
> Ewvery element of 2 (| Lg[G] 1s recursive in X & G.




Higher orders of randomness

a join theorem

Lemma

Suppose that X ¢ Lg. Then there s a G such that
> Lg[G] 1s a model of ZFC}, .
> Ewvery element of 2 (| Lg[G] 1s recursive in X & G.

Use Kumabe-Slaman forcing P to generically extend Lg. This
forcing builds a functional €4 by finite approximation.




Higher orders of randomness

Kumabe-Slaman forcing in detail

» The elements p of the forcing partial order P are pairs
(®p, Yp) in which &, is a finite use-monotone functional
and X, is a finite subset of 2.

» If p and g are elements of P, then p > ¢ if and only if

» &, C &, and for all (zq,yq,04) € ¥4\ ® and all

(zp,Yp, 0p) € ®p, the length of o, is greater than the length
o

- X, C R,

» for every z, y, and X € ?p, if 4(z, X) = y then
®,(z,X) =v.



Higher orders of randomness

a join theorem

The definability of forcing and compactness show that if
D € Lg is dense and p € P, then there is a ¢ in D extending p
such that ¢ makes no additional commitments about ®4(X).

Thus, for each term 7 in the forcing language and each n € w, it
is possible to decide n € 7 and then extend our commitment on
®c(X) to record this decision.

We construct G in w-many steps so that G is P-generic for Lg
and so that ®5(X) records what is forced during our
construction. [



Higher orders of randomness
NCRy C Lg.

Corollary

NCR;, C Lg. Hence, NCRy 1s countable.

Proof

Suppose X ¢ Lg and apply the previous lemma to obtain a G
such that Lg[G] is a model of ZF'C and every element of
2“ N Lg|G] is recursive in X & G.

Relative to G, X belongs to every cone with base in Lg[G]. By
a quantifier count for the randomness game, X belongs to the
cone avoiding NCRj, relative to G.

Thus, there is a continuous measure p such that X is k-random
for u relative to G.

But then, X is k-random for a continuous y, as required.



Higher orders of randomness
obtaining u from X

Given X ¢ Lg, we showed that there is a continuous p such
that X is k-random for u. We can define such a y using X and
a presentation of the elementary diagram of Lg as a countable
model.



NCR;

» L,cx denotes the collection of sets which are
hyperarithmetically represented.

» O denotes the existential theory of Lwlcx—the complete
I} -subset of w.

Proposition (Well-known)

Every recurswe closed game on w* for which the closed
player wins, has a winning strateqy recursive in O.



NCR; — Optimized Cone Argument

Lemma
The set

{Y : 3Z3R(R s 2-random in Z and Y =r Z ® R).}

contains a closed subset of w* whose degrees are cofinal in
D.



NCR; — Optimized Cone Argument

Lemma
The set

{Y : 3Z3R(R s 2-random in Z and Y =r Z ® R).}

contains a closed subset of w* whose degrees are cofinal in
D.

Consequently, by the previous argument, if Y >¢ O,
JZ3R(Ris 2-random in Z and Y =r Z & R).}

and so Y ¢ NCR;.



NCR; — Optimized Countability Argument

Theorem (Woodin)

If X € 2¥ 1s not hyperarithmetic, then there is a G € 2¥
such that X & G > OF.



NCR; — Optimized Countability Argument

Theorem (Woodin)

If X € 2¥ 1s not hyperarithmetic, then there is a G € 2¥
such that X & G > OF.

Theorem

If X € 2¥ 15 not hyperarithmetic, then there is o
representation m of a continuous measure u such that X s
1-p-random relative to m.



