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Motivation

Joint work with Jan Reimann.

Question

For which sequences X ∈ 2ω do there exist (representations
of) continuous probability measures μ such that X is
random for μ?

Example

Different measures give different notions of randomness.
Student scores on a calculus exam do not produce a
random sequence for the uniform probability distribution, but
they do give a random sequence for an appropriately
weighted distribution.
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Randomness

There is a detailed and robust theory characterizing effective
randomness relative to Lebesgue measure. Equivalently:

I (Martin-Löf) X is random if and only if X does not
belong to any effectively presented set of measure 0.

I (Kolmogorov et al) X is random if and only if all of its
initial segments are effectively incompressible.



Randomness

We will consider effective aspects of X’s being random as
applied to a variety of measures μ.

Definition

μ is continuous iff for every X ∈ 2ω, μ({X}) = 0.

The cases of discontinuous and continuous measures are
quite different.



Notation

We will use finite binary sequences σ and subsets A of 2<ω
to define open subsets of 2ω:

[σ] = {X : σ is an initial segment of X}

[A] = {X : ∃σ ∈ A(X ∈ [σ])}



Representing Measures

Let μ be a probability measure on 2ω.

Definition

A representation m of a probability measure μ on 2ω
provides, for each σ ∈ 2<ω, a sequence of intervals with
rational endpoints, each interval containing μ([σ]), and with
lengths converging monotonically to 0.



Effective μ-Randomness

Let m represent μ.

Definition

1. A Martin-Löf test for μ relative to m is a sequence
(An : n ≥ 1) of subsets of 2<ω such that (An : n ≥ 1) is
uniformly recursively enumerable relative to m and for
each n, μ([An]) ≤ 1/2n.

2. For X ∈ 2ω, X is effectively μ-random relative to m iff
for every Martin-Löf test (An : n ≥ 1) for μ relative to
m, X 6∈ ∩n≥1[An].

When m is understood, we will just speak of X’s being μ
random.



Higher Levels of Randomness

Definition

X ∈ 2ω is n-random relative to a representation m of μ if
and only if X passes every Martin-Löf test relative to
m(n−1) (the (n− 1)st Turing jump of m), in which the
measures of the open sets of the test are evaluated using μ.

We now have the basic definitions in place.
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The Discontinuous Case

Now, we consider discontinuous probability measures.
According to the previous definition, if μ concentrates on X
then X is μ-random. However, this only occurs trivially.

Proposition

If μ({X}) >0, then X is recursive relative to any
representation of μ.

Question

When is X ∈ 2ω random relative to some μ for which X is
not an atom?
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General Measures

Theorem

For X ∈ 2ω, the following conditions are equivalent.
1. There is a probability measure μ on 2ω such that X is
not a μ-atom and X is random relative to μ.

2. X is not recursive.



General Measures

Positive. The only way to avoid being recursive is to have
random content.

Negative. Relative recursive randomness can only distinguish
between recursive and not recursive.

Fix X to be not recursive. In the next few frames, we will
sketch the main ingredients of the construction of the
measure μ from X.



Posner and Robinson

Theorem (Posner and Robinson)

For any nonrecursive X, there is a G such that X+G ≡T G′.

Fix G so that, relative to G, X has the same Turing degree
as the Turing jump of G.



Kučera

Theorem (Kučera)

There is a 1-random set R such that R ≡T 0′.

Kučera’s proof relativizes.

Relative to G, X has the same Turing degree as a random
real R.



Pushing Randomness from R to X

Let Ψ and Φ be Turing functionals recursive relative to G
such that Φ(R) = X and Ψ(X) = R.
If Φ were a homeomorphism with inverse Ψ, then there
would be a measure μ obtained by pulling back to
Lebesgue measure using Φ−1 = Ψ. R’s being random would
ensure X’s being μ-random.
We adapt this paradigm to the partial continuous Φ and Ψ,
which are inverses on X and R.
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Pushing Randomness from R to X

For σ ∈ 2<ω, let Pre(σ) be the set of minimal elements of

{τ : Φ(τ) = σ and Ψ(σ) ⊆ τ}.

When X extends σ, Pre(σ) is a recursively enumerable
antichain of possible initial segments of R.
In the previous slide, τ1 and τ2 are elements of Pre(σ).



Pushing Randomness from R to X

Let λ denote Lebesgue measure. Consider the following
consistency requirements R on a measure μ.
1. μ([σ]) ≥ λ([Pre(σ)]). Thus, μ dominates the measure of
pulling back Φ on those strings for which Ψ(Φ) is the
identity.

2. μ([σ]) ≤ λ([Ψ(σ)]). Thus, μ does not concentrate on
reals in the domain of Ψ.



Pushing Randomness from R to X

There is an infinite G-recursive, G-recursively-bounded tree T
such that any infinite path in T is a rational representation
m of a measure μ satisfying R.

Lemma (Downey-Hirschfeldt-Miller-Nies, Reimann-Slaman)

Any infinite G-recursive, G-recursively-bounded tree has an
infinite path m such that R is random relative to m.



Pushing Randomness from R to X

Fix a path m in T such that R is random relative to m. X’s
failing an m-recursive Martin-Löf test relative to μ would
pull back to R’s failing an m-recursive Martin-Löf test
relative to λ, an impossibility.
Conclusion: X is μ-random.



The Continuous Case

From this point on, we restrict ourselves to continuous
measures.

In the continuous case, a similar argument gives the
recursion theoretic analogue to classical theorems on
transformations of measure.

Definition

I For X, Y, and Z in 2ω, we write X ≡T,Z Y to indicate
that there are Turing reductions Φ and Ψ which are
recursive in Z such that Φ(X) = Y and Ψ(Y) = X.

I When Φ and Ψ are total, we write X ≡tt,Z Y.

Turing reductions correspond to continuous functions defined
on subsets of 2ω. Truth-table (tt) reductions correspond to
continuous functions defined on all of 2ω.
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Continuous Measures
degree theoretically characterizing relative randomness

Proposition

For X and Z in 2ω, the following conditions are
equivalent.

I There is a continuous measure μ which is recursive in Z
such that X is n-random for μ and Z.

I There is a continuous dyadic measure μ which is
recursive in Z such that X is n-random for μ and Z.

I There is an R such that R is n-random relative to Z
and an order preserving homeomorphism f : 2ω → 2ω
such that f is recursive in Z and f(R) = X.

I There is an R such that R is n-random relative to Z
and X ≡tt,Z R.
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When Ψ and Φ are partial recursive, Pre(σ) is a recursively
enumerable set.
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When Ψ and Φ are total recursive, Pre(σ) is a recursive set
as is the set {τ : Ψ(Φ(τ)) 6⊆ τ}. The former contributes to
μ(σ) and the latter can be distributed as it appears. Since Ψ
is total, μ is continuous.



Recursive Closed Sets

Definition

For T is a recursive subtree of 2<ω, then the set P of
infinite paths through T is a Π01-class.

Theorem (Well-known)

Suppose that R is 1-random, P is a Π01-class, and R ∈ P.
Then λ(P) >0.



Failures of Continuous Randomness

Theorem (Kjos-Hanssen and Montalbán)

Suppose that P is a countable Π01-class and X ∈ P. Then
there is no continuous μ such that X is 1-μ-random.

Definition

X ∈ NCRk if and only if there is no representation m of a
continuous measure μ such that X is k-random relative to
the representation m of μ.

By Kjos-Hanssen and Montalbán, every element of a
countable Π01-class belongs to NCR1.
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