Randomness for Continuous Measures

Theodore A. Slaman

University of California, Berkeley

January 2009

Motivation

Joint work with Jan Reimann.

Question

For which sequences $X \in 2^{\omega}$ do there exist (representations of) continuous probability measures μ such that X is random for μ ?

Motivation

Joint work with Jan Reimann.

Question

For which sequences $X \in 2^{\omega}$ do there exist (representations of) continuous probability measures μ such that X is random for μ ?

Example

Different measures give different notions of randomness. Student scores on a calculus exam do not produce a random sequence for the uniform probability distribution, but they do give a random sequence for an appropriately weighted distribution.

Randomness

There is a detailed and robust theory characterizing effective randomness relative to Lebesgue measure. Equivalently:

- ▶ (Martin-Löf) X is random if and only if X does not belong to any effectively presented set of measure 0.
- ► (Kolmogorov et al) X is random if and only if all of its initial segments are effectively incompressible.

Randomness

We will consider effective aspects of X's being random as applied to a variety of measures μ .

Definition

 μ is continuous iff for every $X \in 2^{\omega}$, $\mu(\{X\}) = 0$.

The cases of discontinuous and continuous measures are quite different.

Notation

We will use finite binary sequences σ and subsets A of 2^{ω} to define open subsets of 2^{ω} :

$$[\sigma] = \{X : \sigma \text{ is an initial segment of } X\}$$

$$[A] = \{X : \exists \sigma \in A(X \in [\sigma])\}$$

Representing Measures

Let μ be a probability measure on 2^{ω} .

Definition

A representation m of a probability measure μ on 2^{ω} provides, for each $\sigma \in 2^{<\omega}$, a sequence of intervals with rational endpoints, each interval containing $\mu([\sigma])$, and with lengths converging monotonically to 0.

Effective μ -Randomness

Let m represent μ .

Definition

- 1. A Martin-Löf test for μ relative to m is a sequence $(A_n:n\geq 1)$ of subsets of $2^{<\omega}$ such that $(A_n:n\geq 1)$ is uniformly recursively enumerable relative to m and for each n, $\mu([A_n])\leq 1/2^n$.
- 2. For $X \in 2^{\omega}$, X is effectively μ -random relative to m iff for every Martin-Löf test $(A_n : n \ge 1)$ for μ relative to m, $X \notin \cap_{n \ge 1} [A_n]$.

When m is understood, we will just speak of X's being μ random.

Higher Levels of Randomness

Definition

 $X\in 2^\omega$ is n-random relative to a representation m of μ if and only if X passes every Martin-Löf test relative to $m^{(n-1)}$ (the (n-1)st Turing jump of m), in which the measures of the open sets of the test are evaluated using μ .

Higher Levels of Randomness

Definition

 $X \in 2^{\omega}$ is *n*-random relative to a representation m of μ if and only if X passes every Martin-Löf test relative to $m^{(n-1)}$ (the (n-1)st Turing jump of m), in which the measures of the open sets of the test are evaluated using μ .

We now have the basic definitions in place.

The Discontinuous Case

Now, we consider discontinuous probability measures. According to the previous definition, if μ concentrates on X then X is μ -random. However, this only occurs trivially.

Proposition

If $\mu(\{X\}) > 0$, then X is recursive relative to any representation of μ .

The Discontinuous Case

Now, we consider discontinuous probability measures. According to the previous definition, if μ concentrates on X then X is μ -random. However, this only occurs trivially.

Proposition

If $\mu(X) > 0$, then X is recursive relative to any representation of μ .

Question

When is $X \in 2^{\omega}$ random relative to some μ for which X is not an atom?

General Measures

Theorem

For $X \in 2^{\omega}$, the following conditions are equivalent.

- 1. There is a probability measure μ on 2^{ω} such that X is not a μ -atom and X is random relative to μ .
- 2. X is not recursive.

General Measures

Positive. The only way to avoid being recursive is to have random content.

Negative. Relative recursive randomness can only distinguish between recursive and not recursive.

Fix X to be not recursive. In the next few frames, we will sketch the main ingredients of the construction of the measure μ from X.

Posner and Robinson

Theorem (Posner and Robinson)

For any nonrecursive X, there is a G such that $X + G \equiv_T G'$.

Fix G so that, relative to G, X has the same Turing degree as the Turing jump of G.

Kučera

Theorem (Kučera)

There is a 1-random set R such that $R \equiv_T 0'$.

Kučera's proof relativizes.

Relative to G, X has the same Turing degree as a random real R.

Let Ψ and Φ be Turing functionals recursive relative to G such that $\Phi(R) = X$ and $\Psi(X) = R$.

If Φ were a homeomorphism with inverse Ψ , then there would be a measure μ obtained by pulling back to Lebesgue measure using $\Phi^{-1} = \Psi$. R's being random would ensure X's being μ -random.

We adapt this paradigm to the partial continuous Φ and Ψ , which are inverses on X and R.

For $\sigma\in 2^{<\omega}$, let $\mathit{Pre}(\sigma)$ be the set of minimal elements of $\{ au: \Phi(au)=\sigma \text{ and } \Psi(\sigma)\subseteq au\}.$

When X extends σ , $Pre(\sigma)$ is a recursively enumerable antichain of possible initial segments of R. In the previous slide, τ_1 and τ_2 are elements of $Pre(\sigma)$.

Let λ denote Lebesgue measure. Consider the following consistency requirements $\mathcal R$ on a measure μ .

- 1. $\mu([\sigma]) \ge \lambda([Pre(\sigma)])$. Thus, μ dominates the measure of pulling back Φ on those strings for which $\Psi(\Phi)$ is the identity.
- 2. $\mu([\sigma]) \leq \lambda([\Psi(\sigma)])$. Thus, μ does not concentrate on reals in the domain of Ψ .

There is an infinite G-recursive, G-recursively-bounded tree T such that any infinite path in T is a rational representation m of a measure μ satisfying \mathcal{R} .

Lemma (Downey-Hirschfeldt-Miller-Nies, Reimann-Slaman)

Any infinite G-recursive, G-recursively-bounded tree has an infinite path m such that R is random relative to m.

Fix a path m in T such that R is random relative to m. X's failing an m-recursive Martin-Löf test relative to μ would pull back to R's failing an m-recursive Martin-Löf test relative to λ , an impossibility.

Conclusion: X is μ -random.

From this point on, we restrict ourselves to continuous measures.

From this point on, we restrict ourselves to continuous measures.

In the continuous case, a similar argument gives the recursion theoretic analogue to classical theorems on transformations of measure.

From this point on, we restrict ourselves to continuous measures.

In the continuous case, a similar argument gives the recursion theoretic analogue to classical theorems on transformations of measure.

Definition

- ▶ For X, Y, and Z in 2^{ω} , we write $X \equiv_{T,Z} Y$ to indicate that there are Turing reductions Φ and Ψ which are recursive in Z such that $\Phi(X) = Y$ and $\Psi(Y) = X$.
- ▶ When Φ and Ψ are total, we write $X \equiv_{tt,Z} Y$.

From this point on, we restrict ourselves to continuous measures.

In the continuous case, a similar argument gives the recursion theoretic analogue to classical theorems on transformations of measure.

Definition

- ▶ For X, Y, and Z in 2^{ω} , we write $X \equiv_{T,Z} Y$ to indicate that there are Turing reductions Φ and Ψ which are recursive in Z such that $\Phi(X) = Y$ and $\Psi(Y) = X$.
- ▶ When Φ and Ψ are total, we write $X \equiv_{tt,Z} Y$.

Turing reductions correspond to continuous functions defined on subsets of 2^{ω} . Truth-table (tt) reductions correspond to continuous functions defined on all of 2^{ω} .

degree theoretically characterizing relative randomness

Proposition

For X and Z in 2^{ω} , the following conditions are equivalent.

▶ There is α continuous measure μ which is recursive in Z such that X is n-random for μ and Z.

degree theoretically characterizing relative randomness

Proposition

For X and Z in 2^{ω} , the following conditions are equivalent.

- ▶ There is α continuous measure μ which is recursive in Z such that X is n-random for μ and Z.
- There is α continuous dyαdic measure μ which is recursive in Z such that X is n-random for μ and Z.

degree theoretically characterizing relative randomness

Proposition

For X and Z in 2^{ω} , the following conditions are equivalent.

- ▶ There is α continuous measure μ which is recursive in Z such that X is n-random for μ and Z.
- ▶ There is α continuous dyadic measure μ which is recursive in Z such that X is n-random for μ and Z.
- ▶ There is an R such that R is n-random relative to Z and an order preserving homeomorphism $f: 2^{\omega} \to 2^{\omega}$ such that f is recursive in Z and f(R) = X.

degree theoretically characterizing relative randomness

Proposition

For X and Z in 2^{ω} , the following conditions are equivalent.

- ▶ There is α continuous measure μ which is recursive in Z such that X is n-random for μ and Z.
- ▶ There is α continuous dyadic measure μ which is recursive in Z such that X is n-random for μ and Z.
- ▶ There is an R such that R is n-random relative to Z and an order preserving homeomorphism $f: 2^{\omega} \to 2^{\omega}$ such that f is recursive in Z and f(R) = X.
- ► There is an R such that R is n-random relative to Z and $X \equiv_{tt,Z} R$.

When Ψ and Φ are partial recursive, $Pre(\sigma)$ is a recursively enumerable set.

 $X \equiv_{tt} R$

When Ψ and Φ are total recursive, $Pre(\sigma)$ is a recursive set as is the set $\{\tau : \Psi(\Phi(\tau)) \not\subseteq \tau\}$. The former contributes to $\mu(\sigma)$ and the latter can be distributed as it appears. Since Ψ is total, μ is continuous.

Recursive Closed Sets

Definition

For T is a recursive subtree of $2^{<\omega}$, then the set P of infinite paths through T is a Π_1^0 -class.

Theorem (Well-known)

Suppose that R is 1-random, P is a Π_1^0 -class, and $R \in P$. Then $\lambda(P) > 0$.

Failures of Continuous Randomness

Theorem (Kjos-Hanssen and Montalbán)

Suppose that P is a countable Π_1^0 -class and $X \in P$. Then there is no continuous μ such that X is $1-\mu$ -random.

Failures of Continuous Randomness

Theorem (Kjos-Hanssen and Montalbán)

Suppose that P is a countable Π_1^0 -class and $X \in P$. Then there is no continuous μ such that X is $1-\mu$ -random.

Definition

 $X \in NCR_k$ if and only if there is no representation m of a continuous measure μ such that X is k-random relative to the representation m of μ .

Failures of Continuous Randomness

Theorem (Kjos-Hanssen and Montalbán)

Suppose that P is a countable Π_1^0 -class and $X \in P$. Then there is no continuous μ such that X is $1-\mu$ -random.

Definition

 $X \in NCR_k$ if and only if there is no representation m of a continuous measure μ such that X is k-random relative to the representation m of μ .

By Kjos-Hanssen and Montalbán, every element of a countable Π_1^0 -class belongs to NCR_1 .