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Probability measure

Definition
A measure ρ over 2ω is probability measure if

1 ρ(∅) = 1; and
2 For any σ ∈ 2<ω, ρ(σ) = ρ(σ⌢0) + ρ(σ⌢1).
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Continuous measure

Definition
Given a measure ρ, a real x is an atomic respect to ρ if ρ({x}) > 0.

Definition
A measure ρ is continuous if ∀xρ({x}) = 0.
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Representing measures

A measure ρ can be represented by
{(p, q, σ) ∈ Q2 × 2<ω | p ≤ ρ(σ) ≤ q}.

A measure ρ is recursive if its representation is recursive.
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Randomness under general probability measures

For a fixed probability measure ρ, we may define Martin-Löf
randomness respect to ρ.
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NCR

Definition
A real x is never continuous random (or NCR), if x cannot be random
respect to any continuous measure.
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NCR is countable

Theorem (Reimann and Slaman)
Every real in NCR is hyperarithmetic.

The proof is based on Woodin’s result that every nonhyperarithmetic
real tt-cups a real z to Oz, the hyperjump relative to z.
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Higher randomness

Definition
1 A real x is ∆1

1-random if it does not belong to any ∆1
1-null set.

2 A real x is Π1
1-random if it does not belong to any Π1

1-null set.
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Some basic facts

Theorem (Sacks)
{x | x ≥h O} is a Π1

1 null set.

Theorem (Kechris; Stern; Hjorth and Nies)
There is a largest Π1

1-null set.

Theorem (Stern; Chong, Nies and Yu)
A real x is Π1

1-random iff x is ∆1
1-random and ωx

1 = ωCK
1 iff x is

∆1
1-random and every function ∆1

1 in x is dominated by a ∆1
1-function.
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On NCRΠ1
1

Theorem (Chong and Yu)
NCRΠ1

1
= {x | x ∈ Lωx

1
}.

Proof.
NCRΠ1

1
is a Π1

1-set.
NCRΠ1

1
does not contain a perfect subset.

If x ∈ Lωx
1
, then for any continuous measure ρ, either ρ ≥h x or

x ⊕ ρ ≥h Oρ.
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To fully understand these facts
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L-randomness

Definition
A real x is L-random if for any L-coded sequence open sets {Un}n∈ω
with ∀nµ(Un) < 2−n, x ̸∈

∩
n Un.

So an L-random real is exactly a Solovay real.
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NCRL

Proposition (Yu and Zhu)
NCRL is a Π1

3-set.
If NCRL ̸= 2ω, then it is not Π1

2.
If x is L-random and y ∈ L[x] \ L, then y ̸∈ NCRL.
If V = L[r] for some L-random real r, then NCRL is a proper
Σ1

2-set.
If for any real x, (2ω)L[x] is countable, then

NCRL does not contain a perfect subset.
NCRL is Σ1

2 if and only if NCRL ⊆ L.

The third item follows from a set theoretic version of Demuth
Theorem.
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Under PD

Proposition
Every Π1

2-singleton belongs to NCRL. Actually if A is a countable
Π1

2-set, then A ⊆ NCRL.

Proof.
By Shoenfield absoluteness.
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Some examples

Theorem (Solovay)
0♯ is a Π1

2-singleton.

Theorem (Friedman)
There is a nonconstructible Π1

2-singleton x <L 0♯.

By Friedman, there exists a non-Π1
2-singleton belonging to a countable

Π1
2-set.
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L-jumps

Let κx = ((ℵ1)
+)L[x]. Note that ℵ1 is weakly compact in L[x].

So κx < κx⊕y implies L[x ⊕ y] |= ∃x♯.

Definition
P2 = {x | ∀y(κx ≤ κy =⇒ x ≤L y)}.

Note that x ∈ P2 =⇒ x♯ ∈ P2.
0, 0♯, (0♯)♯, · · · ∈ P2.
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P2 ⊆ NCRL.

Proposition (Yu and Zhu)
P2 ⊆ NCRL.

Proof.
If x is L-random respect to ρ, then κx ≤ κρ. So x ∈ L[ρ], a
contradiction.
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Q3

Definition
Q3 = {x | ∃α < ω1∀z(|z| = α =⇒ x ≤∆1

3
z)}.

By the previous result, Q3 ̸⊆ NCRL.
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NCRL ⊆ Q3 (I)

Theorem (Yu and Zhu)
NCRL ⊆ Q3.

Lemma
For any real x, there is a real y ≥T x so that there is a continuous
measure ρ ≤T y so that y is L-random respect to ρ.

Let

B = {y | ∃ρ ≤T y(ρ is continuous and y is L-random respect to ρ)}.

Then B is a Π1
2 set and has cofinally many L-degrees.

B is co-uncountable.
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NCRL ⊆ Q3 (II)

Let D = {y0 | ∀y(y ≥T y0 → y ∈ B)} be a nonempty Π1
2-set.

B contains the Q3-complete real y0,3 which is a base for D.

The relativized version is read as that for any real z, the set Bz = {y |
∃ρ ≤T y ⊕ z(ρ is continuous and y is L[z]-random respect to ρ)}
contains an upper cone with the base yz,3.
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NCRL ⊆ Q3 (III)

A higher version of Posner-Robinson Theorem.

Theorem (Woodin)
If x ̸∈ Q3, then there is a real z so that x ⊕ z ≥tt yz,3.

Then for any real x ̸∈ Q3, there is a real z so that x ⊕ z is L[z]-random
respect to some continuous measure ρ ≤T x ⊕ z.

Applying Demuth’s technique, we have that x is L[z]-random respect
to some continuous measure ρ0 ≤L z ⊕ ρ.

So NCRL ⊆ Q3.
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M1

Theorem (Steel)
1 There exists the least inner model, denoted by M1, containing a

Woodin cardinal.
2 The reals in M1 are precisely Q3.
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P̃2

Definition
P̃2 = {x | ∃y(x ≡L y ∧ y is a master code in M1)}.

Obviously P̃2 has cofinally many L-degrees in M1.

Proposition (Y and Zhu)
P̃2 ⊆ P2.

So NCRL has cofinally many L-degrees in Q3 and so is properly Π1
3.
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A conjecture

Conjecture
P̃2 = P2?
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Thanks
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