On the reals never continuous random

Liang Yu

Institute of Mathematical Sciences Nanjing University

January 6, 2017

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017 1 / 25

Probability measure

Definition

A measure ρ over 2^{ω} is probability measure if

•
$$\rho(\emptyset) = 1$$
; and

2 For any
$$\sigma \in 2^{<\omega}$$
, $\rho(\sigma) = \rho(\sigma^{0}) + \rho(\sigma^{1})$.

Yu (IMS of Nanjing University)

< E

э

Continuous measure

Definition

Given a measure ρ , a real x is an *atomic* respect to ρ if $\rho(\{x\}) > 0$.

Definition

A measure ρ is *continuous* if $\forall x \rho(\{x\}) = 0$.

Yu (IMS of Nanjing University)

On the reals never continuous random

Representing measures

A measure ρ can be represented by $\{(p, q, \sigma) \in \mathbb{Q}^2 \times 2^{<\omega} \mid p \le \rho(\sigma) \le q\}.$

Yu (IMS of Nanjing University)

On the reals never continuous random

- 3 January 6, 2017 4 / 25

- 4 同 ト 4 ヨ ト 4 ヨ ト

Representing measures

A measure ρ can be represented by $\{(p, q, \sigma) \in \mathbb{Q}^2 \times 2^{<\omega} \mid p \leq \rho(\sigma) \leq q\}.$

A measure ρ is recursive if its representation is recursive.

Yu (IMS of Nanjing University) On the reals never continuous random

Randomness under general probability measures

For a fixed probability measure ρ , we may define Martin-Löf randomness respect to ρ .

Definition

A real x is never continuous random (or *NCR*), if x cannot be random respect to any continuous measure.

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017 6 / 25

NCR is countable

Theorem (Reimann and Slaman) Every real in NCR is hyperarithmetic.

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017 7 / 25

NCR is countable

Theorem (Reimann and Slaman)

Every real in NCR is hyperarithmetic.

The proof is based on Woodin's result that every nonhyperarithmetic real *tt*-cups a real *z* to \mathcal{O}^z , the hyperjump relative to *z*.

Higher randomness

Definition

- A real x is Δ_1^1 -random if it does not belong to any Δ_1^1 -null set.
- **2** A real x is Π_1^1 -random if it does not belong to any Π_1^1 -null set.

Some basic facts

Theorem (Sacks) $\{x \mid x \ge_h \mathcal{O}\}$ is a Π_1^1 null set.

Theorem (Kechris; Stern; Hjorth and Nies) There is a largest Π_1^1 -null set.

Theorem (Stern; Chong, Nies and Yu)

A real x is Π_1^1 -random iff x is Δ_1^1 -random and $\omega_1^x = \omega_1^{CK}$ iff x is Δ_1^1 -random and every function Δ_1^1 in x is dominated by a Δ_1^1 -function.

Yu (IMS of Nanjing University)

Theorem (Chong and Yu) $NCR_{\Pi_1^1} = \{x \mid x \in L_{\omega_1^x}\}.$

Proof.

- $NCR_{\Pi_1^1}$ is a Π_1^1 -set.
- $NCR_{\Pi_1^1}$ does not contain a perfect subset.
- If $x \in L_{\omega_1^x}$, then for any continuous measure ρ , either $\rho \ge_h x$ or $x \oplus \rho \ge_h \mathcal{O}^{\rho}$.

3

To fully understand these facts

DE GRUYTER

RECURSION THEORY

COMPUTATIONAL ASPECTS OF DEFINABILITY

Yu (IMS of Nanjing University)

On the reals never continuous random

→ < ∃→ January 6, 2017

- 3

11 / 25

A ►

L-randomness

Definition

A real x is L-random if for any L-coded sequence open sets $\{U_n\}_{n \in \omega}$ with $\forall n \mu(U_n) < 2^{-n}$, $x \notin \bigcap_n U_n$.

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017

L-randomness

Definition

A real x is L-random if for any L-coded sequence open sets $\{U_n\}_{n\in\omega}$ with $\forall n\mu(U_n) < 2^{-n}$, $x \notin \bigcap_n U_n$.

So an *L*-random real is exactly a Solovay real.

NCR_L

Proposition (Yu and Zhu)

- NCR_L is a Π_3^1 -set.
- If $NCR_L \neq 2^{\omega}$, then it is not Π_2^1 .
- If x is L-random and $y \in L[x] \setminus L$, then $y \notin NCR_L$.
- If V = L[r] for some L-random real r, then NCR_L is a proper Σ_2^1 -set.
- If for any real x, $(2^{\omega})^{L[x]}$ is countable, then
 - NCR_L does not contain a perfect subset.
 - NCR_L is Σ_2^1 if and only if $NCR_L \subseteq L$.

The third item follows from a set theoretic version of Demuth Theorem.

- 3

Proposition

Every Π_2^1 -singleton belongs to NCR_L. Actually if A is a countable Π_2^1 -set, then $A \subseteq NCR_L$.

Proof.

By Shoenfield absoluteness.

Yu (IMS of Nanjing University)

э

Theorem (Solovay)

 0^{\sharp} is a Π_2^1 -singleton.

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017 15 / 25

э

<ロト < 同ト < ヨト < ヨト

Theorem (Solovay)

 0^{\sharp} is a Π_2^1 -singleton.

Theorem (Friedman)

There is a nonconstructible Π_2^1 -singleton $x <_L 0^{\sharp}$.

Yu (IMS of Nanjing University)

On the reals never continuous random

3 🕨 🖌 3 🕨 January 6, 2017

3



Theorem (Solovay)

 0^{\sharp} is a Π_2^1 -singleton.

Theorem (Friedman)

There is a nonconstructible Π_2^1 -singleton $x <_L 0^{\sharp}$.

By Friedman, there exists a non- Π_2^1 -singleton belonging to a countable Π_2^1 -set.

B + + B + - B

Let $\kappa^{\times} = ((\aleph_1)^+)^{L[x]}$. Note that \aleph_1 is weakly compact in L[x].

L-jumps

Let $\kappa^{\times} = ((\aleph_1)^+)^{L[x]}$. Note that \aleph_1 is weakly compact in L[x]. So $\kappa^x < \kappa^{x \oplus y}$ implies $L[x \oplus y] \models \exists x^{\sharp}$.

Definition

$$P_2 = \{x \mid \forall y (\kappa^x \leq \kappa^y \implies x \leq_L y)\}.$$

L-jumps

Let $\kappa^x = ((\aleph_1)^+)^{L[x]}$. Note that \aleph_1 is weakly compact in L[x]. So $\kappa^x < \kappa^{x \oplus y}$ implies $L[x \oplus y] \models \exists x^{\sharp}$.

Definition

$$P_2 = \{x \mid \forall y (\kappa^x \leq \kappa^y \implies x \leq_L y)\}.$$

Note that $x \in P_2 \implies x^{\sharp} \in P_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのの

L-jumps

Let $\kappa^x = ((\aleph_1)^+)^{L[x]}$. Note that \aleph_1 is weakly compact in L[x]. So $\kappa^x < \kappa^{x \oplus y}$ implies $L[x \oplus y] \models \exists x^{\sharp}$.

Definition

$$P_2 = \{x \mid \forall y (\kappa^x \leq \kappa^y \implies x \leq_L y)\}.$$

Note that $x \in P_2 \implies x^{\sharp} \in P_2$. $0, 0^{\sharp}, (0^{\sharp})^{\sharp}, \dots \in P_2$.

Proposition (Yu and Zhu) $P_2 \subseteq NCR_L$.

Proof.

If x is L-random respect to ρ , then $\kappa^x \leq \kappa^{\rho}$. So $x \in L[\rho]$, a contradiction.

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017

3

17 / 25

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition $Q_3 = \{ x \mid \exists \alpha < \omega_1 \forall z (|z| = \alpha \implies x \leq_{\Delta_3^1} z) \}.$

Yu (IMS of Nanjing University)

On the reals never continuous random

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで January 6, 2017

Definition

$$Q_3 = \{ x \mid \exists \alpha < \omega_1 \forall z (|z| = \alpha \implies x \leq_{\Delta_3^1} z) \}.$$

By the previous result, $Q_3 \not\subseteq NCR_L$.

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017

э

18 / 25

<ロト < 同ト < ヨト < ヨト

$NCR_{I} \subset Q_{3}$ (I)

Theorem (Yu and Zhu) $NCR_{I} \subset Q_{3}$.

Lemma

For any real x, there is a real $y \ge_T x$ so that there is a continuous measure $\rho \leq_T \gamma$ so that γ is L-random respect to ρ .

l et

 $B = \{y \mid \exists \rho <_{\tau} y(\rho \text{ is continuous and } y \text{ is } L\text{-random respect to } \rho)\}.$

Then B is a Π_2^1 set and has cofinally many L-degrees.

$NCR_{I} \subset Q_{3}$ (I)

Theorem (Yu and Zhu) $NCR_{I} \subset Q_{3}$.

Lemma

For any real x, there is a real $y \ge_T x$ so that there is a continuous measure $\rho \leq_T \gamma$ so that γ is L-random respect to ρ .

l et

 $B = \{y \mid \exists \rho <_{\tau} y(\rho \text{ is continuous and } y \text{ is } L\text{-random respect to } \rho)\}.$

Then B is a Π_2^1 set and has cofinally many L-degrees. B is co-uncountable

$NCR_L \subseteq Q_3$ (II)

Let $D = \{y_0 \mid \forall y (y \ge_T y_0 \rightarrow y \in B)\}$ be a nonempty Π_2^1 -set. B contains the Q_3 -complete real $y_{0,3}$ which is a base for D.

$NCR_{I} \subset Q_{3}$ (II)

Let $D = \{y_0 \mid \forall y (y \ge_T y_0 \rightarrow y \in B)\}$ be a nonempty Π_2^1 -set. B contains the Q_3 -complete real $y_{0,3}$ which is a base for D.

The relativized version is read as that for any real z, the set $B_z = \{y \mid z\}$ $\exists \rho <_{\tau} y \oplus z(\rho \text{ is continuous and } y \text{ is } L[z]\text{-random respect to } \rho) \}$ contains an upper cone with the base $y_{z,3}$.

 $NCR_L \subseteq Q_3$ (III)

A higher version of Posner-Robinson Theorem.

Theorem (Woodin)

If $x \notin Q_3$, then there is a real z so that $x \oplus z \ge_{tt} y_{z,3}$.

3

$NCR_L \subseteq Q_3$ (III)

A higher version of Posner-Robinson Theorem.

Theorem (Woodin)

If $x \notin Q_3$, then there is a real z so that $x \oplus z \ge_{tt} y_{z,3}$.

Then for any real $x \notin Q_3$, there is a real z so that $x \oplus z$ is L[z]-random respect to some continuous measure $\rho \leq_T x \oplus z$.

21 / 25

(4月) (4日) (4日) 日

$NCR_L \subseteq Q_3$ (III)

A higher version of Posner-Robinson Theorem.

Theorem (Woodin) If $x \notin Q_3$, then there is a real z so that $x \oplus z \ge_{tt} y_{z,3}$.

Then for any real $x \notin Q_3$, there is a real z so that $x \oplus z$ is L[z]-random respect to some continuous measure $\rho \leq_T x \oplus z$.

Applying Demuth's technique, we have that x is L[z]-random respect to some continuous measure $\rho_0 \leq_L z \oplus \rho$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

$NCR_L \subseteq Q_3$ (III)

A higher version of Posner-Robinson Theorem.

Theorem (Woodin) If $x \notin Q_3$, then there is a real z so that $x \oplus z \ge_{tt} y_{z,3}$.

Then for any real $x \notin Q_3$, there is a real z so that $x \oplus z$ is L[z]-random respect to some continuous measure $\rho \leq_T x \oplus z$.

Applying Demuth's technique, we have that x is L[z]-random respect to some continuous measure $\rho_0 \leq_L z \oplus \rho$.

So $NCR_L \subseteq Q_3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem (Steel)

There exists the least inner model, denoted by M₁, containing a Woodin cardinal.

2 The reals in M_1 are precisely Q_3 .

Yu (IMS of Nanjing University)

Definition

$$ilde{P}_2 = \{x \mid \exists y (x \equiv_L y \land y ext{ is a master code in } \mathrm{M}_1)\}.$$

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017

Definition

$$ilde{\mathcal{P}}_2 = \{x \mid \exists y (x \equiv_L y \land y \text{ is a master code in } \mathrm{M}_1)\}.$$

Obviously \tilde{P}_2 has cofinally many *L*-degrees in M_1 .

Proposition (Y and Zhu)

 $\tilde{P}_2 \subseteq P_2.$

So NCR_L has cofinally many L-degrees in Q_3 and so is properly Π_3^1 .

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Conjecture

$$\tilde{P}_2 = P_2$$
?

Yu (IMS of Nanjing University)

On the reals never continuous random

January 6, 2017

э

24 / 25

< 同 > < 国 > < 国 >

Thanks

Yu (IMS of Nanjing University)

On the reals never continuous random

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの January 6, 2017