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Celebrating Rod Downey's Mathematical Contributions

Ralph Waldo Emerson on the purpose of life:

It is to be useful, to be honorable, to be compassionate, to have it
make some difference that you have lived and lived well.

Cheers Rod on an exemplary mathematical life:
* Practitioner
* Expositor
* Mentor

* Leader
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Abstract

Suppose a > 2 and b € [0,2/a].

» (Generalization of Jarnik 1929 and Besicovitch 1934) There is a
Cantor-like set with Hausdorff dimension equal to b such that, with
respect to its uniform measure, almost all real numbers have irrationality
exponent equal to a.

» There is a Cantor-like set such that, with respect to its uniform measure,
almost all real numbers have effective Hausdorff dimension equal to b and
irrationality exponent equal to a.

In each case, we obtain the desired set as a distinguished path in a tree of
Cantor sets.
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Hausdorff Dimension

For a set of real numbers X and a non-negative real number s the
s-dimensional Hausdorff measure of X is defined by

o . thereis a cover of X by balls with
lim inf Z r . . .
€0 radii (rj : j > 1) and Vj(r; < €)

jz1

The Hausdorff dimension of X is the infimum of the set of non-negative reals s
such that the s-dimensional Hausdorff measure of X is zero.
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Effective Hausdorff Dimension of & € 2%

Definition

The effective Hausdorff dimension of a real number £ is the infimum of the set
of t such that there is a ¢ for which there are infinitely many ¢ such that the
prefix-free Kolmogorov complexity of the first ¢ digits in the binary expansion of
£ is less than t- ¢+ c.

Heuristic: The effective Hausdorff dimension of a real number £ is the infimum
of the algorithmic compression factors of the initial segments of the binary
expansion of &.

» Computable real numbers have effective dimension 0.
» Random real numbers have effective dimension 1.

» The set of real numbers with effective Hausdorff dimension b has
Hausdorff dimension b.

There is an equivalent formulation using effectively presented covers.



Irrationality Exponent

Definition (originating with Liouville 1855)

For a real number &, the irrationality exponent of  is the least upper bound of
the set of real numbers a such that

1
o<’§—3‘<—a
ql " q

is satisfied by an infinite number of integer pairs (p, g) with g > 0.

» When ais large and 0 < ‘g — g

1 . N
< —, then p/q is a good approximation
q
to £ when considered in the scale of 1/gq.

» The irrationality exponent of £ is a indicator for how well £ can be
approximated by rational numbers (a linear version of Kolmogorov
complexity).
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Examples

» Random real numbers have irrationality exponent equal to 2.
» (Roth 1955) Irrational algebraic real numbers have irrationality exponent
equal to 2.

» Liouville numbers are those with infinite irrationality exponent—these
were the first examples of transcendental numbers.

Example
For a > 2, {£ : € has irrationality exponent a} has Hausdorff dimension less
than or equal to 2/a.



Consequences of lrrationality Exponent for Effective
Dimension

Remark

If € has irrationality exponent equal to a, then & has effective Hausdorff
dimension less than or equal to 2/a:

Proof

» Say that |p/q —€&| < 1/q°.

» Need 2 - log, g bits to specify p and q.

» Obtain a- log, g bits in the binary expansion of &.
2-1

p 208209 2/a
a-log, q
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No Other Consequences

The second result mentioned earlier has the following corollary.

Theorem (Becher, Reimann and Slaman)

For every a > 2 and every b in [0,2/a], there is a real number § such that £
has irrationality exponent a and effective Hausdorff dimension b.
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The Jarnik-Besicovitch Theorem

Theorem (Jarnik 1929 and Besicovitch 1934)

For every real number a greater than or equal to 2, the set of numbers with
irrationality exponent equal to a has Hausdorff dimension exactly equal to 2/a.

As mentioned earlier, it is a direct application of the definitions to show that
the Hausdorff dimension of the set of numbers with irrationality exponent a is
less than or equal to 2/a. The other inequality comes from an early application
of fractal geometry.
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Jarnik’s Fractal

For each real number a greater than 2, Jarnik gave a Cantor-like construction
of a fractal J contained in [0, 1] of Hausdorff dimension 2/a such that the
uniform measure v on J satisfies the following:

» Every element of J has irrationality exponent greater than or equal to a.

» For all b greater than a, the set of numbers with irrationality exponent
greater than or equal to b has v-measure equal to 0.

Let (M; : i € N) be a rapidly increasing sequence of natural numbers.
Define (E; : i € N) as follows.

» E,=[0,1]

» Fori >0, let

s . 0<p<q,M <q<2M;q prime,
E;=U{[p/q—1/q ,p/q+1/q°]:

lp/a—1/a’,p/q+1/q°] C Ei-x

Let J = ﬂEf.

ieN
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The Mass Distribution Principle

Every element of J has irrationality exponent less than or equal to a, so the
Hausdorff dimension of J is less than or equal to 2/a.

Show that J has Hausdorff dimension at least 2/a by applying the following
fact for the uniform measure ;1 on J.

Theorem (Mass Distribution Principle)

Let v be a finite measure, d a positive real number and X a set with Hausdorff
dimension less than d. Suppose that there is a positive real number C such
that for every interval I, v(1) < C |I|?. Then v(X) = 0.
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Modifying J — Version 1

For a > 2 and b € [0,2/a], there is a Cantor-like set with Hausdorff dimension
equal to b such that, with respect to its uniform measure, almost all real
numbers have irrationality exponent equal to a.

Find J1 C J by thinning the levels of J, either by using fewer primes or by using
one prime and fewer intervals [p/q — 1/q°, p/q + 1/q°] and let p1 be the
uniform measure on Ji.

» Ensure that the intervals from E; which are retained to form J; provide
the covers needed to show that J; has Hausdorff dimension less than or
equal to b.

» Ensure the MDP for u; with exponent b, and thereby ensure that J; has
Hausdorff dimension exactly equal to b.

» Ensure that pi-almost all elements of J; have irrationality exponent equal
to a by choosing from among all possible thinnings the one that minimizes
the frequency of occurrences of rational approximation with exponent
greater than a.
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Modifying J — Version 2

For a> 2 and b € [0,2/a], there is a Cantor-like set such that, with respect to
its uniform measure, almost all elements in the set have effective Hausdorff
dimension equal to b and irrationality exponent equal to a.

Find J» C J by thinning the levels of J, either by using fewer primes or by using

one prime and fewer intervals [p/q — 1/q°, p/q + 1/q°] and let p> be the
uniform measure on J;.

» Stratify the construction of J, into extended computable blocks of
dimension close to b, thereby producing for each element of J; instances of
algorithmic compression approaching b and ensuring that po-almost every
element of J, has effective Hausdorff dimension less than or equal to b.

» Ensure the MDP for u, with exponent b. Thus, for d < b, the set of real
numbers with effective Hausdorff dimension equal to d is a u2-null set and

so pz-almost every element of J> has effective Hausdorff dimension exactly
b.

» Ensure that p2-almost all elements of J, have irrationality exponent equal
to a as before.



The End



