Computable linear orders

Keng Meng Ng

Nanyang Technological University, Singapore

January 2017

Selwyn Ng

< □ > < 同 > < 回 > .

< 3

- Study how computation interacts with various mathematical concepts.
- Measure how regular an algebraic object is by automorphisms.
- Rigidity / Symmetry.
- We're going to look at *computable* linear orders and their *effective* automorphisms.

< ロ > < 同 > < 回 > < 回 >

- Study how computation interacts with various mathematical concepts.
- Measure how regular an algebraic object is by automorphisms.
- Rigidity / Symmetry.
- We're going to look at *computable* linear orders and their *effective* automorphisms.

< □ > < 同 > < 回 > .

- Refining the classical notion: the number of automorphisms of a structure is the same in every copy.
- Invariance no longer holds if we look at the number of effective automorphisms of different computable copies of *A*.

Example: It is easy to construct a computable copy of $(\mathbb{Z}, <)$ with no computable automorphism (other than *id*). Yet \mathbb{Z} is (classically) not rigid.

• It's better to quantify over computable copies.

- Refining the classical notion: the number of automorphisms of a structure is the same in every copy.
- Invariance no longer holds if we look at the number of effective automorphisms of different computable copies of *A*.

Example: It is easy to construct a computable copy of $(\mathbb{Z}, <)$ with no computable automorphism (other than *id*). Yet \mathbb{Z} is (classically) not rigid.

• It's better to quantify over computable copies.

- Let's look at the nicest linear order, \mathbb{Q} , denoted by η .
- (Remmel) A linear order is computably categorical iff it has finitely many successivities.
- What automorphisms does each copy of η have?
 - Each computable copy of η has a nontrivial computable automorphism.
 - In fact, each automorphism *F* of η is also strongly nontrivial in the sense that for some x, the interval (x, F(x)) is infinite.
- Obviously, this is true as well for any \mathcal{L} which contains an η -interval.

< □ > < □ > < □ > < □ >

- Let's look at the nicest linear order, \mathbb{Q} , denoted by η .
- (Remmel) A linear order is computably categorical iff it has finitely many successivities.
- What automorphisms does each copy of η have?
 - Each computable copy of η has a nontrivial computable automorphism.
 - In fact, each automorphism *F* of η is also strongly nontrivial in the sense that for some x, the interval (x, F(x)) is infinite.
- Obviously, this is true as well for any \mathcal{L} which contains an η -interval.

- Let's look at the nicest linear order, \mathbb{Q} , denoted by η .
- (Remmel) A linear order is computably categorical iff it has finitely many successivities.
- What automorphisms does each copy of η have?
 - Each computable copy of η has a nontrivial computable automorphism.
 - In fact, each automorphism *F* of η is also strongly nontrivial in the sense that for some x, the interval (x, F(x)) is infinite.
- Obviously, this is true as well for any \mathcal{L} which contains an η -interval.

< □ > < 同 > < 三 >

• The two examples we have:

If \mathcal{L} contains an η -interval: *Every* computable copy of \mathcal{L} has a (strongly) nontrivial computable automorphism. If $\mathcal{L} \cong \mathbb{Z}$: \mathcal{L} has a computable copy with no computable automorphisms.

Theorem (Schwartz)

Every computable copy of \mathcal{L} has a nontrivial computable automorphism if and only if \mathcal{L} contains an η -interval.

• The two examples we have:

If \mathcal{L} contains an η -interval: *Every* computable copy of \mathcal{L} has a (strongly) nontrivial computable automorphism. If $\mathcal{L} \cong \mathbb{Z}$: \mathcal{L} has a computable copy with no computable automorphisms.

Theorem (Schwartz)

Every computable copy of \mathcal{L} has a nontrivial computable automorphism if and only if \mathcal{L} contains an η -interval.

Computable rigidity is thus completely classified. What else can we say?

Definition

We say that \mathcal{L} is Π_1^0 -rigid if there is a computable copy $\mathcal{A} \cong \mathcal{L}$ such that \mathcal{A} has no strongly nontrivial Π_1^0 -automorphism.

- Note that Σ_1^0 -rigidity is the same as computable-rigidity.
- Note also that \mathcal{L} has no \mathbb{Z} -interval if and only if every non-trivial automorphism is strongly non-trivial.
 - So it comes down to studying strongly non-trivial automorphisms.

< ロ > < 同 > < 回 > < 回

• Computable rigidity is thus completely classified. What else can we say?

Definition

We say that \mathcal{L} is Π_1^0 -rigid if there is a computable copy $\mathcal{A} \cong \mathcal{L}$ such that \mathcal{A} has no strongly nontrivial Π_1^0 -automorphism.

- Note that Σ_1^0 -rigidity is the same as computable-rigidity.
- Note also that *L* has no Z-interval if and only if every non-trivial automorphism is strongly non-trivial.
 - So it comes down to studying strongly non-trivial automorphisms.

- Kierstead (1987) investigated the very similar $\mathcal{L} \cong 2 \cdot \eta$.
- By Schwartz's criterion, $k \cdot \eta$ is computably-rigid.
- Obviously, $k \cdot \eta$ is *not* Δ_2^0 -rigid.
- Kierstead proved that it is Π_1^0 -rigid.

< □ > < @ > <

- Kierstead (1987) investigated the very similar $\mathcal{L} \cong 2 \cdot \eta$.
- By Schwartz's criterion, $k \cdot \eta$ is computably-rigid.
- Obviously, $k \cdot \eta$ is not Δ_2^0 -rigid.
- Kierstead proved that it is Π_1^0 -rigid.

< □ > < @ > <

- Kierstead (1987) investigated the very similar $\mathcal{L} \cong 2 \cdot \eta$.
- By Schwartz's criterion, $k \cdot \eta$ is computably-rigid.
- Obviously, $k \cdot \eta$ is *not* Δ_2^0 -rigid.
- Kierstead proved that it is Π_1^0 -rigid.

< D > < A >

• This led Kierstead to conjecture:

Conjecture (Kierstead 1987)

 \mathcal{L} is Π_1^0 -rigid if and only if \mathcal{L} does not contain an η -interval.

- Note that the conjecture is obviously false if we do not require the automorphism to be strongly nontrivial. For example, every copy of Z has a Π⁰₁ non-identity automorphism x → S(x).
- Kierstead verified his conjecture for the case $\mathcal{L} \cong 2 \cdot \eta$.
- Downey and Moses verified the conjecture for discrete linear orders.

A (1) × (1) ×

• This led Kierstead to conjecture:

Conjecture (Kierstead 1987)

 \mathcal{L} is Π_1^0 -rigid if and only if \mathcal{L} does not contain an η -interval.

- Note that the conjecture is obviously false if we do not require the automorphism to be strongly nontrivial. For example, every copy of Z has a Π⁰₁ non-identity automorphism x → S(x).
- Kierstead verified his conjecture for the case $\mathcal{L} \cong 2 \cdot \eta$.
- Downey and Moses verified the conjecture for discrete linear orders.

- Cooper, Harris and Lee verified the conjecture for a large subclass of η-like linear orders.
- \mathcal{L} is η -like if

$$\mathcal{L}\cong \sumig\{ F(q)\mid q\in \mathbb{Q}ig\}$$

for some function $F : \mathbb{Q} \mapsto \mathbb{N} \setminus \{0\}$. Call F block function for \mathcal{L} .

- Since every block is finite, every non-identity automorphism is strongly nontrivial.
- These linear orders are useful in testing general properties of linear orders.
- (McCoy) Any linear order with no interval of type ω or ω* is η-like (except for finitely many points).

э

- Cooper, Harris and Lee verified the conjecture for a large subclass of η-like linear orders.
- \mathcal{L} is η -like if

$$\mathcal{L}\cong \sumig\{ \mathsf{F}(q)\mid q\in\mathbb{Q}ig\}$$

for some function $F : \mathbb{Q} \mapsto \mathbb{N} \setminus \{0\}$. Call F block function for \mathcal{L} .

- Since every block is finite, every non-identity automorphism is strongly nontrivial.
- These linear orders are useful in testing general properties of linear orders.
- (McCoy) Any linear order with no interval of type ω or ω* is η-like (except for finitely many points).

э

- (Folklore) If *L* is η-like and computable, then clearly we can choose a block function *F* ≤_T Ø".
- (Frolov, Zubkov) It is easy to see that if *F* is **0'**-limitwise monotonic, then there is a computable *L* with block function *F*.
 - *F* is **0'**-limitwise monotonic if there is a $g \leq_T \mathbf{0}'$ such that $F(n) = \lim_s g(n, s)$ and *g* is non-decreasing in *s*.
- (Harris) On the other hand every η-like with no strongly η-like subinterval L has a 0'-limitwise monotonic block function.

Theorem (Cooper, Harris, Lee)

Every η -like linear order with a **0'**-limitwise monotonic block function and no η -interval is Π_1^0 -rigid.

- (Folklore) If *L* is η-like and computable, then clearly we can choose a block function *F* ≤_T Ø".
- (Frolov, Zubkov) It is easy to see that if F is 0'-limitwise monotonic, then there is a computable L with block function F.
 - *F* is **0'**-limitwise monotonic if there is a $g \leq_T \mathbf{0}'$ such that $F(n) = \lim_s g(n, s)$ and *g* is non-decreasing in *s*.
- (Harris) On the other hand every η-like with no strongly η-like subinterval L has a 0'-limitwise monotonic block function.

Theorem (Cooper, Harris, Lee)

Every η -like linear order with a **0'**-limitwise monotonic block function and no η -interval is Π_1^0 -rigid.

- (Folklore) If *L* is η-like and computable, then clearly we can choose a block function *F* ≤_T Ø".
- (Frolov, Zubkov) It is easy to see that if F is 0'-limitwise monotonic, then there is a computable L with block function F.
 - *F* is **0'**-limitwise monotonic if there is a $g \leq_T \mathbf{0}'$ such that $F(n) = \lim_s g(n, s)$ and *g* is non-decreasing in *s*.
- (Harris) On the other hand every η-like with no strongly η-like subinterval L has a 0'-limitwise monotonic block function.

Theorem (Cooper, Harris, Lee)

Every η -like linear order with a **0'**-limitwise monotonic block function and no η -interval is Π_1^0 -rigid.

- (Folklore) If *L* is η-like and computable, then clearly we can choose a block function *F* ≤_T Ø".
- (Frolov, Zubkov) It is easy to see that if F is 0'-limitwise monotonic, then there is a computable L with block function F.
 - *F* is **0'**-limitwise monotonic if there is a $g \leq_T \mathbf{0}'$ such that $F(n) = \lim_s g(n, s)$ and *g* is non-decreasing in *s*.
- (Harris) On the other hand every η-like with no strongly η-like subinterval L has a 0'-limitwise monotonic block function.

Theorem (Cooper, Harris, Lee)

Every η -like linear order with a **0'**-limitwise monotonic block function and no η -interval is Π_1^0 -rigid.

< ロ > < 同 > < 三 >

 Wu and Zubkov extended this result to the class of linear orders of order-type

$$\sum ig\{ F(q) \mid q \in \mathbb{Q} ig\}$$

where $F : \mathbb{Q} \mapsto \mathbb{N} \cup \{\zeta\} \setminus \{0\}$ is **0'**-limitwise monotonic. Here ζ represents the ordering \mathbb{Z} and $\zeta > n$ for every $n \in \mathbb{N}$.

4

- Note that this is not η -like.
- Kierstead's conjecture has been verified for a large class of linear

 Wu and Zubkov extended this result to the class of linear orders of order-type

$$\sum ig\{ F(q) \mid q \in \mathbb{Q} ig\}$$

where $F : \mathbb{Q} \mapsto \mathbb{N} \cup \{\zeta\} \setminus \{0\}$ is **0**'-limitwise monotonic. Here ζ represents the ordering \mathbb{Z} and $\zeta > n$ for every $n \in \mathbb{N}$.

- Note that this is not η -like.
- Kierstead's conjecture has been verified for a large class of linear orders (without an η-interval).

• However, Kierstead's Conjecture is false:

Theorem (N, Zubkov)

There is a computable linear order with no η -intervals and is not Π_1^0 -rigid.

 The linear order constructed is not η-like, but has order type ∑{F(q) | q ∈ Q}, where F : Q ↦ N \ {0} is a partial 0'-limitwise monotonic function. Here F(q) ↑ stands for the order-type Z.

I I > I A A >

- First prove a uniform version: Given L^{*} we construct L with no η-interval and φ such that either L ≇ L^{*} or φ is a (strongly nontrivial) Π⁰₁-automorphism of L^{*}.
- Some issues:
 - Since L* might not be Δ₂⁰-categorical there is no hope of guessing for an approximation to an isomorphism L → L*. The trick then is to make L look like k · η while waiting for block sizes in L* to go down.
 - 2) To make arphi strongly nontrivial.
 - To ensure that φ is Π_1^0 .

< □ > < □ > < □ > < □ >

- First prove a uniform version: Given L^{*} we construct L with no η-interval and φ such that either L ≇ L^{*} or φ is a (strongly nontrivial) Π⁰₁-automorphism of L^{*}.
- Some issues:
 - Since *L*^{*} might not be Δ₂⁰-categorical there is no hope of guessing for an approximation to an isomorphism *L* → *L*^{*}. The trick then is to make *L* look like *k* · η while waiting for block sizes in *L*^{*} to go down.
 To make φ strongly nontrivial.
 - To ensure that ω is Π^0

- First prove a uniform version: Given L^{*} we construct L with no η-interval and φ such that either L ≇ L^{*} or φ is a (strongly nontrivial) Π⁰₁-automorphism of L^{*}.
- Some issues:
 - Since L^{*} might not be Δ₂⁰-categorical there is no hope of guessing for an approximation to an isomorphism L → L^{*}. The trick then is to make L look like k · η while waiting for block sizes in L^{*} to go down.
 - 2) To make φ strongly nontrivial.
 - **3** To ensure that φ is Π_1^0 .

- Notice that if L^{*} ≅ L then we end up making L ≅ Z · η. Otherwise if L^{*} ≇ L then we end up making L ≅ k · η for some k ∈ N.
- Thus *L* has strongly η-like intervals (this is necessary, otherwise *L* will have a **0'**-limitwise monotonic block function).
- For the full construction of \mathcal{L} , put all the different requirements together using separators.
- Some additional effort needed to keep the different modules from interacting.

- Notice that if L^{*} ≅ L then we end up making L ≅ Z · η. Otherwise if L^{*} ≇ L then we end up making L ≅ k · η for some k ∈ N.
- Thus *L* has strongly η-like intervals (this is necessary, otherwise *L* will have a **0'**-limitwise monotonic block function).
- For the full construction of \mathcal{L} , put all the different requirements together using separators.
- Some additional effort needed to keep the different modules from interacting.

< □ > < 同 > < 三 >

Order type (no η -interval)	Π ⁰ -rigid
Discrete	✓ (Downey, Moses)
Blocks of a single finite size	✓ (Kierstead)
(strongly η -like)	
Blocks of finite size (η -like) with	✓ (Cooper, Harris, Lee)
0'-I.m.f. block function	
Blocks of finite size or type $\ensuremath{\mathbb{Z}}$ with	✓ (Wu, Zubkov)
0'-I.m.f. block function	
Blocks of finite size or type $\ensuremath{\mathbb{Z}}$ with	× (N, Zubkov)
partial $0'$ -I.m.f. block function	

3

<ロト <回ト < 回ト < 回ト

 Since not every η-like linear order has a 0'-l.m.f. block function, does Kierstead's conjecture hold for η-like linear orders?

Theorem (N, Zubkov)

There is a computable η -like \mathcal{L} with no η -interval such that for every computable $\mathcal{L}' \cong_{\Pi_2^0} \mathcal{L}$ has a strongly nontrivial Π_1^0 automorphism.

- What if we allow blocks to be either finite or type ω or ω^* ?
- Kierstead's conjecture is related to the so-called "*self-embedding conjecture*": Every copy of *L* has a nontrivial computable self-embedding if and only if *L* contains a strongly η-like interval.
- Thank you.

▲ 同 ▶ ▲ 国 ▶ ▲

 Since not every η-like linear order has a 0'-l.m.f. block function, does Kierstead's conjecture hold for η-like linear orders?

Theorem (N, Zubkov)

There is a computable η -like \mathcal{L} with no η -interval such that for every computable $\mathcal{L}' \cong_{\Pi_2^0} \mathcal{L}$ has a strongly nontrivial Π_1^0 automorphism.

- What if we allow blocks to be either finite or type ω or ω^* ?
- Kierstead's conjecture is related to the so-called "*self-embedding conjecture*": Every copy of *L* has a nontrivial computable self-embedding if and only if *L* contains a strongly η-like interval.

• Thank you.

《口》《聞》《臣》《臣》

 Since not every η-like linear order has a 0'-l.m.f. block function, does Kierstead's conjecture hold for η-like linear orders?

Theorem (N, Zubkov)

There is a computable η -like \mathcal{L} with no η -interval such that for every computable $\mathcal{L}' \cong_{\Pi_2^0} \mathcal{L}$ has a strongly nontrivial Π_1^0 automorphism.

- What if we allow blocks to be either finite or type ω or ω*?
- Kierstead's conjecture is related to the so-called "*self-embedding conjecture*": Every copy of *L* has a nontrivial computable self-embedding if and only if *L* contains a strongly η-like interval.
- Thank you.

▲ 同 ▶ ▲ 三 ▶ ▲