
Computable linear orders

Keng Meng Ng

Nanyang Technological University, Singapore

January 2017

Selwyn Ng Computable linear orders 1 / 16



Motivating questions

Study how computation interacts with various mathematical
concepts.

Measure how regular an algebraic object is by automorphisms.

Rigidity / Symmetry.

We’re going to look at computable linear orders and their effective
automorphisms.
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Motivating questions

Refining the classical notion: the number of automorphisms of a
structure is the same in every copy.

Invariance no longer holds if we look at the number of effective
automorphisms of different computable copies of A.

Example: It is easy to construct a computable copy of (Z, <) with
no computable automorphism (other than id). Yet Z is (classically)
not rigid.

It’s better to quantify over computable copies.
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Automorphisms in simple examples

Let’s look at the nicest linear order, Q, denoted by η.

(Remmel) A linear order is computably categorical iff it has finitely
many successivities.

What automorphisms does each copy of η have?
Each computable copy of η has a nontrivial computable
automorphism.
In fact, each automorphism F of η is also strongly nontrivial in the
sense that for some x , the interval (x ,F (x)) is infinite.

Obviously, this is true as well for any L which contains an
η-interval.
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Automorphisms in simple examples

The two examples we have:

If L contains an η-interval: Every computable copy of L has a
(strongly) nontrivial computable automorphism.

If L ∼= Z: L has a computable copy with no computable
automorphisms.

Theorem (Schwartz)
Every computable copy of L has a nontrivial computable
automorphism if and only if L contains an η-interval.
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Π0
1-rigidity

Computable rigidity is thus completely classified. What else can
we say?

Definition
We say that L is Π0

1-rigid if there is a computable copy A ∼= L such that
A has no strongly nontrivial Π0

1-automorphism.

Note that Σ0
1-rigidity is the same as computable-rigidity.

Note also that L has no Z-interval if and only if every non-trivial
automorphism is strongly non-trivial.

So it comes down to studying strongly non-trivial automorphisms.
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Kierstead’s Conjecture

Kierstead (1987) investigated the very similar L ∼= 2 · η.

By Schwartz’s criterion, k · η is computably-rigid.

Obviously, k · η is not ∆0
2-rigid.

Kierstead proved that it is Π0
1-rigid.
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Kierstead’s Conjecture

This led Kierstead to conjecture:

Conjecture (Kierstead 1987)

L is Π0
1-rigid if and only if L does not contain an η-interval.

Note that the conjecture is obviously false if we do not require the
automorphism to be strongly nontrivial. For example, every copy
of Z has a Π0

1 non-identity automorphism x 7→ S(x).

Kierstead verified his conjecture for the case L ∼= 2 · η.

Downey and Moses verified the conjecture for discrete linear
orders.
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η-like linear orders

Cooper, Harris and Lee verified the conjecture for a large subclass
of η-like linear orders.

L is η-like if
L ∼=

∑{
F (q) | q ∈ Q

}
for some function F : Q 7→ N \ {0}. Call F block function for L.

Since every block is finite, every non-identity automorphism is
strongly nontrivial.

These linear orders are useful in testing general properties of
linear orders.

(McCoy) Any linear order with no interval of type ω or ω∗ is η-like
(except for finitely many points).
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η-like linear orders

(Folklore) If L is η-like and computable, then clearly we can
choose a block function F ≤T ∅′′.
(Frolov, Zubkov) It is easy to see that if F is 0′-limitwise
monotonic, then there is a computable L with block function F .

F is 0′-limitwise monotonic if there is a g ≤T 0′ such that
F (n) = lims g(n, s) and g is non-decreasing in s.

(Harris) On the other hand every η-like with no strongly η-like
subinterval L has a 0′-limitwise monotonic block function.

Theorem (Cooper, Harris, Lee)
Every η-like linear order with a 0′-limitwise monotonic block function
and no η-interval is Π0

1-rigid.
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Extensions of Cooper, Harris, Lee

Wu and Zubkov extended this result to the class of linear orders of
order-type ∑{

F (q) | q ∈ Q
}

where F : Q 7→ N ∪ {ζ} \ {0} is 0′-limitwise monotonic. Here ζ
represents the ordering Z and ζ > n for every n ∈ N.

Note that this is not η-like.

Kierstead’s conjecture has been verified for a large class of linear
orders (without an η-interval).
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Refuting Kierstead’s Conjecture

However, Kierstead’s Conjecture is false:

Theorem (N, Zubkov)
There is a computable linear order with no η-intervals and is not
Π0

1-rigid.

The linear order constructed is not η-like, but has order type∑{
F (q) | q ∈ Q

}
, where F : Q 7→ N \ {0} is a partial 0′-limitwise

monotonic function. Here F (q) ↑ stands for the order-type Z.
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Refuting Kierstead’s Conjecture

First prove a uniform version: Given L∗ we construct L with no
η-interval and ϕ such that either L 6∼= L∗ or ϕ is a (strongly
nontrivial) Π0

1-automorphism of L∗.
Some issues:

1 Since L∗ might not be ∆0
2-categorical there is no hope of guessing

for an approximation to an isomorphism L 7→ L∗. The trick then is to
make L look like k · η while waiting for block sizes in L∗ to go down.

2 To make ϕ strongly nontrivial.
3 To ensure that ϕ is Π0

1.
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Refuting Kierstead’s Conjecture

Notice that if L∗ ∼= L then we end up making L ∼= Z · η. Otherwise
if L∗ 6∼= L then we end up making L ∼= k · η for some k ∈ N.

Thus L has strongly η-like intervals (this is necessary, otherwise L
will have a 0′-limitwise monotonic block function).

For the full construction of L, put all the different requirements
together using separators.

Some additional effort needed to keep the different modules from
interacting.
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Summary of Π0
1-rigidity

Order type (no η-interval) Π0
1-rigid

Discrete 3 (Downey, Moses)
Blocks of a single finite size
(strongly η-like)

3 (Kierstead)

Blocks of finite size (η-like) with
0′-l.m.f. block function

3 (Cooper, Harris, Lee)

Blocks of finite size or type Z with
0′-l.m.f. block function

3 (Wu, Zubkov)

Blocks of finite size or type Z with
partial 0′-l.m.f. block function

5 (N, Zubkov)
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Questions

Since not every η-like linear order has a 0′-l.m.f. block function,
does Kierstead’s conjecture hold for η-like linear orders?

Theorem (N, Zubkov)
There is a computable η-like L with no η-interval such that for every
computable L′ ∼=Π0

2
L has a strongly nontrivial Π0

1 automorphism.

What if we allow blocks to be either finite or type ω or ω∗?

Kierstead’s conjecture is related to the so-called “self-embedding
conjecture": Every copy of L has a nontrivial computable
self-embedding if and only if L contains a strongly η-like interval.

Thank you.
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