Generic Muchnik reducibility

Joseph S. Miller University of Wisconsin–Madison

(Joint work with Andrews, Schweber, and M. Soskova)

Computability and Complexity Symposium 2017 (Rodfest)

Muchnik reducibility between structures

Definition

If \mathcal{A} and \mathcal{B} are countable structures, then \mathcal{A} is Muchnik reducible to \mathcal{B} (written $\mathcal{A} \leq_w \mathcal{B}$) if every ω -copy of \mathcal{B} computes an ω -copy of \mathcal{A} .

- $\mathcal{A} \leq_w \mathcal{B}$ can be interpreted as saying that \mathcal{B} is intrinsically at least as complicated as \mathcal{A} .
- This is a special case of Muchnik reducibility; it might be more precise to say that the problem of presenting the structure \mathcal{A} is Muchnik reducible to the problem of presenting \mathcal{B} .
- Muchnik reducibility doesn't apply to uncountable structures.

Various approaches have been used to extend computable structure theory beyond the countable:

- Computability on admissible ordinals (aka α -recursion theory)
- Computability on separable structures, as in computable analysis

▶ ...

Generic Muchnik reducibility

Noah Schweber extended Muchnik reducibility to arbitrary structures (see Knight, Montalbán, Schweber):

Definition (Schweber)

If \mathcal{A} and \mathcal{B} are (possibly uncountable) structures, then \mathcal{A} is generically Muchnik reducible to \mathcal{B} (written $\mathcal{A} \leq_w^* \mathcal{B}$) if $\mathcal{A} \leq_w \mathcal{B}$ in some forcing extension of the universe in which \mathcal{A} and \mathcal{B} are countable.

It follows from Shoenfield absoluteness that generic Muchnik reducibility is robust.

Lemma (Schweber)

If $\mathcal{A} \leq^*_w \mathcal{B}$, then $\mathcal{A} \leq_w \mathcal{B}$ in *every* forcing extension that makes \mathcal{A} and \mathcal{B} countable.

In particular, for countable structures, $\mathcal{A} \leq^*_w \mathcal{B} \iff \mathcal{A} \leq_w \mathcal{B}$.

Initial example

Definition (Cantor space)

Let \mathcal{C} be the structure with universe 2^{ω} and predicates $P_n(X)$ that hold if and only if X(n) = 1.

Observation (Knight, Montalbán, Schweber) $\mathcal{C} \leqslant^*_w (\mathbb{R},+,\cdot).$

To understand this example, say that we take a forcing extension that collapses the continuum.

The Turing degrees from the ground model now form a countable ideal I. By absoluteness, this ideal has many of the properties it has in the ground model. It's a jump ideal and much more.

Let \mathbb{R}_I be the reals in I (the ground model's version of \mathbb{R}). Similarly, let \mathcal{C}_I denote the restriction of \mathcal{C} to sets in I (the ground model's version of \mathcal{C}).

Initial example

Facts

- From a copy of $(\mathbb{R}_I, +, \cdot)$, or even $(\mathbb{R}_I, +, <)$, we can compute an *injective* listing of the sets in I, i.e., one with no repetitions.
- A degree **d** computes a copy of C_I iff it computes an (injective) listing of the sets in I.

This shows that $C_I \leq_w (\mathbb{R}_I, +, <)$. It is even easier to see that $(\mathbb{R}_I, +, <) \leq_w (\mathbb{R}_I, +, \cdot)$.

Therefore, $\mathcal{C} \leq^*_w (\mathbb{R}, +, <) \leq^*_w (\mathbb{R}, +, \cdot).$

Question (Knight, Montalbán, Schweber) Is $(\mathbb{R}, +, \cdot) \leq_w^* C$?

No! This was answered by Igusa and Knight, and independently (though later) by Downey, Greenberg, and M.

Facts about \mathcal{C} and \mathcal{B}

Definition (Baire space)

Let \mathcal{B} be the structure with universe ω^{ω} and, for each finite string $\sigma \in \omega^{<\omega}$, a predicate $P_{\sigma}(f)$ that holds if and only if $\sigma < f$.

The following facts were proved by Igusa, Knight; Downey, Greenberg, M.; Igusa, Knight, Schweber; Andrews, Knight, Kuyper, Lempp, M., Soskova.

- ▶ $\mathcal{B} \equiv_w^* (\mathbb{R}, +, <) \equiv_w^* (\mathbb{R}, +, \cdot)$. This degree also contains every closed/continuous expansion of $(\mathbb{R}, +, \cdot)$.
- $\mathcal{C} <^*_w \mathcal{B}$.
- $\mathcal{C}' \equiv^*_w \mathcal{B}.$
- The closed/continuous expansions of \mathcal{C} lie in the interval between \mathcal{C} and \mathcal{B} .

Question

Is there a generic Muchnik degree strictly between \mathcal{C} and \mathcal{B} ?

Definability and post-extension complexity

It is going to be important to understand the complexity of definable sets both before and after the forcing extension.

Definition

We say that a relation R on a structure \mathcal{M} is $\sum_{n=1}^{c} (\mathcal{M})$ if it is definable by a computable $\sum_{n=1}^{c} \mathcal{L}_{\omega_{1}\omega}$ formula with finitely many parameters.

Theorem (Ash, Knight, Manasse, Slaman; Chisholm)

If \mathcal{M} is countable, then R is $\Sigma_n^c(\mathcal{M})$ if and only if it is relatively intrinsically Σ_n^0 , i.e., its image in any ω -copy of \mathcal{M} is Σ_n^0 relative to that copy.

Computable objects and satisfaction on a structure are absolute, so:

Corollary

A relation R is $\Sigma_n^c(\mathcal{M})$ if and only if it is relatively intrinsically Σ_n^0 in any/every forcing extension that makes \mathcal{M} countable.

Definability and pre-extension complexity

In structures like C and \mathcal{B} , we can also measure the complexity of $\Sigma_n^c(\mathcal{M})$ relations in topological terms.

The calculation depends on the structure:

	Σ_2^c	Σ_3^c	Σ_4^c	Σ_5^c	Σ_6^c	
\mathcal{B}	Σ^1_1	Σ_2^1	Σ^1_3	Σ_4^1	Σ_5^1	
\mathcal{C}	Σ_2^0	Σ^1_1	Σ_2^1	Σ_3^1	Σ_4^1	

- These bounds are sharp, e.g., every Σ_1^1 relation on \mathcal{B} is $\Sigma_2^c(\mathcal{B})$.
- The "lost quantifiers" correspond to the first order quantifiers needed in the normal form for Σ_n^1 relations with function/set quantifiers.
- This leads to an easy (and essentially different) separation between the generic Muchnik degrees of C and B.

Differentiating \mathcal{C} and \mathcal{B} with a linear order

Lemma

There is a linear order \mathcal{L} such that $\mathcal{L} \leq_w^* \mathcal{B}$ but $\mathcal{L} \leq_w^* \mathcal{C}$.

Proof Idea

For $X \subseteq \mathcal{C}$, we define a linear order \mathcal{L}_X that codes X. It is essentially a shuffle sum of delimited ζ -representations of *all* elements of Cantor space along with markers for the sequences not in X.

It is designed so that:

- If X is $\Pi_3^c(\mathcal{B})$, then $\mathcal{L}_X \leq^*_w \mathcal{B}$,
- If $\mathcal{L}_X \leq^*_w \mathcal{C}$, then X is $\Sigma_4^c(\mathcal{C})$.

Now take $X \subseteq \mathcal{C}$ to be Π_2^1 but not Σ_2^1 . By the analysis on the previous slide:

- X is $\Pi_3^c(\mathcal{B})$, so $\mathcal{L}_X \leq^*_w \mathcal{B}$,
- X is not $\Sigma_4^c(\mathcal{C})$, so $\mathcal{L}_X \leq w^* \mathcal{C}$.

A degree strictly between \mathcal{C} and \mathcal{B}

Lemma

There is a linear order \mathcal{L} such that $\mathcal{L} \leq_w^* \mathcal{B}$ but $\mathcal{L} \leq_w^* \mathcal{C}$.

But linear orders are bad at coding:

Lemma

If \mathcal{L} is a linear order, then $\mathcal{B} \leq^*_w \mathcal{C} \sqcup \mathcal{L}$.

Following the Downey, Greenberg, M. proof that $\mathcal{B} \leq_w^* \mathcal{C}$, we show that a generic countable presentation of $\mathcal{C} \sqcup \mathcal{L}$ does not compute a copy of \mathcal{B} . The key fact used about linear orders is that their \sim_2 -equivalence classes are tame (Knight 1986).

Now let $\mathcal{M} = \mathcal{C} \sqcup \mathcal{L}$, where \mathcal{L} is the linear order from the first lemma.

Corollary

There is a structure \mathcal{M} such that $\mathcal{C} <^*_w \mathcal{M} <^*_w \mathcal{B}$.

Great! But...not the most satisfying example.

What kind of example would we like?

The initial attempts to find an intermediate degree involved natural expansions of C, but without success. For example:

- $(\mathcal{C}, \oplus) \equiv_w^* (\mathcal{C}, \sigma) \equiv_w^* \mathcal{B}$, where σ is the shift operator on 2^{ω} .
- $(\mathcal{C},\subseteq) \equiv_w^* (\mathcal{C},\triangle) \equiv_w^* \mathcal{C}.$

Another approach would be to expand C with sufficiently generic relations. Greenberg, Igusa, Turetsky, and Westrick tried a version of this that involved adding infinitely many unary relations.

In both cases, we considered *expansions* of \mathcal{C} .

Open Question

Is there an expansion of \mathcal{C} that is strictly between \mathcal{C} and \mathcal{B} ?

Expansions of \mathcal{C} above \mathcal{B}

Let $\mathcal{M} = (\mathcal{C}, \text{Stuff})$ be an expansion of \mathcal{C} . First, we want a criterion that guarantees that $\mathcal{M} \geq_w^* \mathcal{B}$.

- If the set $\mathcal{F} \subset 2^{\omega}$ of sequences with finitely many ones is $\Delta_1^c(\mathcal{M})$, i.e., computable in every ω -copy of \mathcal{M} , then $\mathcal{M} \geq_w^* \mathcal{B}$.
 - Why? There is a natural bijection between \mathcal{B} and $\mathcal{C} \smallsetminus \mathcal{F}$.
- If \mathcal{F} is $\Delta_2^c(\mathcal{M})$, then $\mathcal{M} \geq_w^* \mathcal{B}$.
 - Add a little injury.
 - This is how we show, for example, that $(\mathcal{C}, \oplus) \geq^*_w \mathcal{B}$.
- If any countable dense set is $\Delta_2^c(\mathcal{M})$, then $\mathcal{M} \geq_w^* \mathcal{B}$.
- If there is a perfect set $\mathcal{P} \subseteq \mathcal{C}$ with a countable dense $\mathcal{Q} \subset \mathcal{P}$ that is $\Delta_2^c(\mathcal{M})$, then $\mathcal{M} \geq_w^* \mathcal{B}$.

Expansions of \mathcal{C} above \mathcal{B}

• If there is a perfect set $\mathcal{P} \subseteq \mathcal{C}$ with a countable dense $\mathcal{Q} \subset \mathcal{P}$ that is $\Delta_2^c(\mathcal{M})$, then $\mathcal{M} \geq_w^* \mathcal{B}$.

Lemma

If $\mathcal{M} \leq^*_w \mathcal{B}$ and $R \subseteq \mathcal{C}$ is $\Delta_2^c(\mathcal{M})$, then it is $\Delta_2^c(\mathcal{B})$, i.e., Borel.

Lemma (Hurewicz)

If $R \subseteq \mathcal{C}$ is Borel but not Δ_2^0 , then there is a perfect set $\mathcal{P} \subseteq \mathcal{C}$ such that either $\mathcal{P} \cap R$ or $\mathcal{P} \smallsetminus R$ is countable and dense in \mathcal{P} .

Putting it all together (and noting that arity doesn't matter):

Lemma

If $\mathcal{M} \leq_w^* \mathcal{B}$ is an expansion of \mathcal{C} and $R \subseteq \mathcal{C}^n$ is $\Delta_2^c(\mathcal{M})$ but not Δ_2^0 , then $\mathcal{M} \geq_w^* \mathcal{B}$.

Tameness and dichotomy

In the contrapositive (and using the fact that $\Delta_2^0 = \Delta_2^c(\mathcal{C})$): Tameness Lemma If $\mathcal{M} <_w^* \mathcal{B}$ is an expansion of \mathcal{C} , then $\Delta_2^c(\mathcal{M}) = \Delta_2^c(\mathcal{C})$.

Dichotomy Theorem for Closed Expansions

If $\mathcal{M} \leq_w^* \mathcal{B}$ is an expansion of \mathcal{C} by closed relations (and/or continuous functions), then either $\mathcal{M} \equiv_w^* \mathcal{C}$ or $\mathcal{M} \equiv_w^* \mathcal{B}$.

Proof Idea

For a tuple $\overline{X} \subset C$, let $p(\overline{X})$ be the (code for the) complete positive $\Sigma_1(\mathcal{M})$ type of \overline{X} . The relation that holds only on tuples of the form $(\overline{X}, p(\overline{X}))$ is $\Delta_2^c(\mathcal{M})$.

If it is not $\Delta_2^c(\mathcal{C})$, then $\mathcal{M} \geq_w^* \mathcal{B}$.

If it is $\Delta_2^c(\mathcal{C})$, then a delicate injury argument can be used to prove that $\mathcal{M} \leq^*_w \mathcal{C}$.

Another dichotomy result

Combined with work of Greenberg, Igusa, Turetsky, and Westrick: Dichotomy Theorem for Unary Expansions If $\mathcal{M} \leq^*_w \mathcal{B}$ is an expansion of \mathcal{C} by countably many unary relations, then either $\mathcal{M} \equiv^*_w \mathcal{C}$ or $\mathcal{M} \equiv^*_w \mathcal{B}$.

- If \mathcal{M} is an expansion of \mathcal{C} by finitely many Δ_2^0 unary relations, then $\mathcal{M} \leq_w^* \mathcal{C}$. This is a fairly simple finite injury argument.
- Expansions by infinitely many closed unary relations need not be below \mathcal{C} : For $\sigma \in 2^{<\omega}$, let U_{σ} hold only on $\sigma 0^{\omega}$. Then the set of sequences with finitely many ones is $\Sigma_1^c(\mathcal{C}, \{U_{\sigma}\}_{\sigma \in 2^{<\omega}})$.
- Greenberg, et al. supplied the right condition distinguishing the cases, and one direction of the proof.

The dichotomy results kill off a lot of possible natural (and many unnatural) examples of expansions.

Recent progress

Based partly on conversations with Turetsky and Gura, I am pretty sure the following is true.

Using Marker extensions, we can get structures with the following "complexity profiles":

	Σ_2^c	Σ_3^c	Σ_4^c	Σ_5^c	Σ_6^c	•••
${\mathcal B}$	Σ^1_1	Σ_2^1	Σ^1_3	Σ_4^1	Σ_5^1	
\mathcal{M}_1	Σ_2^0	Σ_2^1	Σ^1_3	Σ_4^1	Σ_5^1	
\mathcal{M}_2	Σ_2^0	Σ^1_1	Σ^1_3	Σ_4^1	Σ_5^1	
\mathcal{M}_3	Σ_2^0	Σ^1_1	Σ^1_2	Σ_4^1	Σ_5^1	
			•			
\mathcal{C}	Σ_2^0	Σ^1_1	Σ^1_2	Σ^1_3	Σ_4^1	

- Again, these bounds are sharp.
- $\bullet \ \mathcal{C} <^*_w \cdots <^*_w \mathcal{M}_3 <^*_w \mathcal{M}_2 <^*_w \mathcal{M}_1 <^*_w \mathcal{B}.$

Open questions

- 1. Can an expansion of C be strictly between C and \mathcal{B} ? (In particular, the non-unary Δ_2^0 case is open.)
- 2. Are the degrees of $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \ldots$ the only degrees strictly between \mathcal{C} and \mathcal{B} ?
- 3. Are there incomparable degrees between \mathcal{C} and \mathcal{B} ?

These questions are related. For example:

Fact. Any Borel expansion of C that is not above \mathcal{B} has the same complexity profile as C. So a positive answer to 1 gives a negative answer to 2.

We have focused on C and B (and a couple of other degrees). What else are generic Muchnik degrees good for?

THANK YOU.

AND THANKS TO ROD FOR BEING A GREAT FRIEND AND MENTOR!