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Muchnik reducibility between structures

Definition
If A and B are countable structures, then A is Muchnik reducible
to B (written A <,, B) if every w-copy of B computes an w-copy of A.

» A <, B can be interpreted as saying that B is intrinsically at
least as complicated as A.

» This is a special case of Muchnik reducibility; it might be more
precise to say that the problem of presenting the structure A is
Muchnik reducible to the problem of presenting 5.

» Muchnik reducibility doesn’t apply to uncountable structures.
Various approaches have been used to extend computable structure
theory beyond the countable:

» Computability on admissible ordinals (aka a-recursion theory)

» Computability on separable structures, as in computable analysis
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Generic Muchnik reducibility

Noah Schweber extended Muchnik reducibility to arbitrary structures
(see Knight, Montalban, Schweber):

Definition (Schweber)

If A and B are (possibly uncountable) structures, then 4 is generically
Muchnik reducible to B (written A <} B) if A <,, B in some forcing
extension of the universe in which A and B are countable.

It follows from Shoenfield absoluteness that generic Muchnik
reducibility is robust.

Lemma (Schweber)

If A<* B, then A <, B in every forcing extension that makes .4

and B countable.

In particular, for countable structures, A <! B < A <, B.
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Initial example

Definition (Cantor space)

Let C be the structure with universe 2 and predicates P, (X) that
hold if and only if X (n) = 1.

Observation (Knight, Montalban, Schweber)
C<i (R +,).

To understand this example, say that we take a forcing extension that
collapses the continuum.

The Turing degrees from the ground model now form a countable
ideal I. By absoluteness, this ideal has many of the properties it has
in the ground model. It’s a jump ideal and much more.

Let Ry be the reals in I (the ground model’s version of R). Similarly,
let C; denote the restriction of C to sets in I (the ground model’s
version of C).



Initial example

Facts

» From a copy of (Ry,+,-), or even (Ry, +, <), we can compute an
injective listing of the sets in I, i.e., one with no repetitions.

» A degree d computes a copy of Cy iff it computes an (injective)
listing of the sets in [I.

This shows that C; <, (Ry, +,<). It is even easier to see that
(RI7 +a <) gw (RI7 +a )

Therefore, C <} (R, +, <) <! (R, +,).

Question (Knight, Montalban, Schweber)
Is (R, +,) <k C?

No! This was answered by Igusa and Knight, and independently
(though later) by Downey, Greenberg, and M.



Facts about C and B

Definition (Baire space)

Let B be the structure with universe w* and, for each finite string
o € w<¥ a predicate P,(f) that holds if and only if o < f.

The following facts were proved by Igusa, Knight; Downey,
Greenberg, M.; Igusa, Knight, Schweber; Andrews, Knight, Kuyper,
Lempp, M., Soskova.

» B=k (R, +,<) =% (R, +,-). This degree also contains every
closed /continuous expansion of (R, +,-).

» C <k B.
» C' =X B.
» The closed/continuous expansions of C lie in the interval between

C and B.

Question
Is there a generic Muchnik degree strictly between C and B?



Definability and post-extension complexity

It is going to be important to understand the complexity of definable
sets both before and after the forcing extension.

Definition
We say that a relation R on a structure M is 3¢ (M) if it is definable
by a computable ¥,, £, formula with finitely many parameters.

Theorem (Ash, Knight, Manasse, Slaman; Chisholm)

If M is countable, then R is X¢ (M) if and only if it is relatively
intrinsically X9 i.e., its image in any w-copy of M is ¥2 relative to
that copy.

Computable objects and satisfaction on a structure are absolute, so:

Corollary
A relation R is X¢ (M) if and only if it is relatively intrinsically 39 in
any/every forcing extension that makes M countable.



Definability and pre-extension complexity

In structures like C and B, we can also measure the complexity of
¢ (M) relations in topological terms.

The calculation depends on the structure:
Y Xy X§ X5 3§
B| x|l x| =t
(I SIRIDSENID IS WD)

» These bounds are sharp, e.g., every X7 relation on B is X§(B).

» The “lost quantifiers” correspond to the first order quantifiers
needed in the normal form for X! relations with function/set
quantifiers.

» This leads to an easy (and essentially different) separation
between the generic Muchnik degrees of C and B.



Differentiating C and B with a linear order

Lemma
There is a linear order £ such that £ <* B but £ «¥ C.

Proof Idea
For X < C, we define a linear order Lx that codes X. It is essentially
a shuffle sum of delimited (-representations of all elements of Cantor
space along with markers for the sequences not in X.
It is designed so that:

» If X is TI§(B), then Lx < B,

» If Lx <* C, then X is 3§(C).

Now take X < C to be IT but not X}. By the analysis on the
previous slide:

» X is II§(B), so Lx <% B,

» X is not 3§(C), so Lx <X C. O



A degree strictly between C and B

Lemma
There is a linear order £ such that £ <¥* B but £ «¥ C.

But linear orders are bad at coding:

Lemma
If £ is a linear order, then B <* C u L.

Following the Downey, Greenberg, M. proof that B <* C, we show
that a generic countable presentation of C L £ does not compute a
copy of B. The key fact used about linear orders is that their
~g-equivalence classes are tame (Knight 1986).

Now let M = C u L, where L is the linear order from the first lemma.

Corollary
There is a structure M such that C <} M <* B.

Great! But...not the most satisfying example.



What kind of example would we like?

The initial attempts to find an intermediate degree involved natural
expansions of C, but without success. For example:

» (€)=
> (C’g) =

(C,o0) =% B, where o is the shift operator on 2¢.
(C,N) =X C.

*
w
*

w

Another approach would be to expand C with sufficiently generic
relations. Greenberg, Igusa, Turetsky, and Westrick tried a version of
this that involved adding infinitely many unary relations.

In both cases, we considered expansions of C.

Open Question

Is there an expansion of C that is strictly between C and B?
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Expansions of C above B

Let M = (C, Stuff) be an expansion of C. First, we want a criterion
that guarantees that M =% B.

» If the set F < 2% of sequences with finitely many ones is A§(M),
i.e., computable in every w-copy of M, then M >3

» Why? There is a natural bijection between B and C \ F.

» If Fis A§(M), then M =¥

» Add a little injury.
» This is how we show, for example, that (C,®) =% B.

» If any countable dense set is A§(M), then M =¥ B.

» If there is a perfect set P < C with a countable dense @ c P that
is A§(M), then M =¥ B.



Expansions of C above B

» If there is a perfect set P < C with a countable dense @ < P that
is A§(M), then M =¥ B.

Lemma
If M <¥ Band R < C is A§5(M), then it is A§(B), i.e., Borel.

Lemma (Hurewicz)

If R < C is Borel but not A9, then there is a perfect set P < C such
that either P n R or P \ R is countable and dense in P.

Putting it all together (and noting that arity doesn’t matter):

Lemma
If M <} B is an expansion of C and R = C" is A5(M) but not AY,
then M =¥ B.



Tameness and dichotomy

In the contrapositive (and using the fact that A = A§(C)):

Tameness Lemma
If M <% B is an expansion of C, then A§(M) = A§(C).

Dichotomy Theorem for Closed Expansions

If M < B is an expansion of C by closed relations (and/or
continuous functions), then either M =% C or M =% B.

Proof Idea

For a tuple X = C, let p(X) be the (code for the) complete positive
1(M) type of X. The relation that holds only on tuples of the form
(X, p(X)) is AZ(M).

If it is not A§(C), then M =¥ B.

If it is A§(C), then a delicate injury argument can be used to prove
that M <} C. O



Another dichotomy result

Combined with work of Greenberg, Igusa, Turetsky, and Westrick:

Dichotomy Theorem for Unary Expansions

If M <% B is an expansion of C by countably many unary relations,
then either M =% C or M =} B.

» If M is an expansion of C by finitely many A9 unary relations,
then M <¥* C. This is a fairly simple finite injury argument.

» Expansions by infinitely many closed unary relations need not be
below C: For o € 2<%, let U, hold only on ¢0¥. Then the set of
sequences with finitely many ones is X5 (C, {Uy }yea<e).

» Greenberg, et al. supplied the right condition distinguishing the
cases, and one direction of the proof.

The dichotomy results kill off a lot of possible natural (and many
unnatural) examples of expansions.



Recent progress

Based partly on conversations with Turetsky and Gura, I am pretty
sure the following is true.

Using Marker extensions, we can get structures with the following
“complexity profiles”:

IR SRS 3/ S 3 Y0
B [==t]=t =)=t
M |25 33|33 21| 23
M, [20 [ =t [ st =t | =t
M; |23 %] |55 | 2535

C ]23\21\2@\2;\21\...

» Again, these bounds are sharp.

’C<:§)'~-<:)M3<§)M2 <:‘;M1 <:)B



Open questions

1. Can an expansion of C be strictly between C and B? (In
particular, the non-unary AY case is open.)

2. Are the degrees of My, My, M3, ... the only degrees strictly
between C and B?

3. Are there incomparable degrees between C and 57

These questions are related. For example:

Fact. Any Borel expansion of C that is not above B has the same
complexity profile as C. So a positive answer to 1 gives a negative
answer to 2.

We have focused on C and B (and a couple of other degrees). What
else are generic Muchnik degrees good for?
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