
Generic Muchnik reducibility

Joseph S. Miller
University of Wisconsin–Madison

(Joint work with Andrews, Schweber, and M. Soskova)

Computability and Complexity Symposium 2017 (Rodfest)



Muchnik reducibility between structures

Definition
If A and B are countable structures, then A is Muchnik reducible
to B (written A ďw B) if every ω-copy of B computes an ω-copy of A.

§ A ďw B can be interpreted as saying that B is intrinsically at
least as complicated as A.

§ This is a special case of Muchnik reducibility; it might be more
precise to say that the problem of presenting the structure A is
Muchnik reducible to the problem of presenting B.

§ Muchnik reducibility doesn’t apply to uncountable structures.

Various approaches have been used to extend computable structure
theory beyond the countable:

§ Computability on admissible ordinals (aka α-recursion theory)
§ Computability on separable structures, as in computable analysis
§ . . .
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Generic Muchnik reducibility

Noah Schweber extended Muchnik reducibility to arbitrary structures
(see Knight, Montalbán, Schweber):

Definition (Schweber)
If A and B are (possibly uncountable) structures, then A is generically
Muchnik reducible to B (written A ď˚w B) if A ďw B in some forcing
extension of the universe in which A and B are countable.

It follows from Shoenfield absoluteness that generic Muchnik
reducibility is robust.

Lemma (Schweber)
If A ď˚w B, then A ďw B in every forcing extension that makes A
and B countable.

In particular, for countable structures, A ď˚w B ðñ A ďw B.
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Initial example

Definition (Cantor space)
Let C be the structure with universe 2ω and predicates PnpXq that
hold if and only if Xpnq “ 1.

Observation (Knight, Montalbán, Schweber)
C ď˚w pR,`, ¨q.

To understand this example, say that we take a forcing extension that
collapses the continuum.

The Turing degrees from the ground model now form a countable
ideal I. By absoluteness, this ideal has many of the properties it has
in the ground model. It’s a jump ideal and much more.

Let RI be the reals in I (the ground model’s version of R). Similarly,
let CI denote the restriction of C to sets in I (the ground model’s
version of C).

3 / 16



Initial example

Facts
§ From a copy of pRI ,`, ¨q, or even pRI ,`,ăq, we can compute an

injective listing of the sets in I, i.e., one with no repetitions.
§ A degree d computes a copy of CI iff it computes an (injective)
listing of the sets in I.

This shows that CI ďw pRI ,`,ăq. It is even easier to see that
pRI ,`,ăq ďw pRI ,`, ¨q.

Therefore, C ď˚w pR,`,ăq ď˚w pR,`, ¨q.

Question (Knight, Montalbán, Schweber)
Is pR,`, ¨q ď˚w C?

No! This was answered by Igusa and Knight, and independently
(though later) by Downey, Greenberg, and M.
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Facts about C and B

Definition (Baire space)
Let B be the structure with universe ωω and, for each finite string
σ P ωăω, a predicate Pσpfq that holds if and only if σ ă f .

The following facts were proved by Igusa, Knight; Downey,
Greenberg, M.; Igusa, Knight, Schweber; Andrews, Knight, Kuyper,
Lempp, M., Soskova.

§ B ”˚w pR,`,ăq ”˚w pR,`, ¨q. This degree also contains every
closed/continuous expansion of pR,`, ¨q.

§ C ă˚w B.
§ C1 ”˚w B.
§ The closed/continuous expansions of C lie in the interval between

C and B.

Question
Is there a generic Muchnik degree strictly between C and B?
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Definability and post-extension complexity

It is going to be important to understand the complexity of definable
sets both before and after the forcing extension.

Definition
We say that a relation R on a structure M is ΣcnpMq if it is definable
by a computable Σn Lω1ω formula with finitely many parameters.

Theorem (Ash, Knight, Manasse, Slaman; Chisholm)
If M is countable, then R is ΣcnpMq if and only if it is relatively
intrinsically Σ0

n, i.e., its image in any ω-copy of M is Σ0
n relative to

that copy.

Computable objects and satisfaction on a structure are absolute, so:

Corollary
A relation R is ΣcnpMq if and only if it is relatively intrinsically Σ0

n in
any/every forcing extension that makes M countable.
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Definability and pre-extension complexity

In structures like C and B, we can also measure the complexity of
ΣcnpMq relations in topological terms.

The calculation depends on the structure:

Σc2 Σc3 Σc4 Σc5 Σc6 . . .
B Σ1

1 Σ1
2 Σ1

3 Σ1
4 Σ1

5 . . .
C Σ0

2 Σ1
1 Σ1

2 Σ1
3 Σ1

4 . . .

§ These bounds are sharp, e.g., every Σ1
1 relation on B is Σc2pBq.

§ The “lost quantifiers” correspond to the first order quantifiers
needed in the normal form for Σ1

n relations with function/set
quantifiers.

§ This leads to an easy (and essentially different) separation
between the generic Muchnik degrees of C and B.
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Differentiating C and B with a linear order

Lemma
There is a linear order L such that L ď˚w B but L ę˚w C.

Proof Idea
For X Ď C, we define a linear order LX that codes X. It is essentially
a shuffle sum of delimited ζ-representations of all elements of Cantor
space along with markers for the sequences not in X.

It is designed so that:
§ If X is Πc

3pBq, then LX ď˚w B,
§ If LX ď˚w C, then X is Σc4pCq.

Now take X Ď C to be Π1
2 but not Σ1

2. By the analysis on the
previous slide:

§ X is Πc
3pBq, so LX ď˚w B,

§ X is not Σc4pCq, so LX ę˚w C.
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A degree strictly between C and B

Lemma
There is a linear order L such that L ď˚w B but L ę˚w C.

But linear orders are bad at coding:

Lemma
If L is a linear order, then B ę˚w C \ L.

Following the Downey, Greenberg, M. proof that B ę˚w C, we show
that a generic countable presentation of C \ L does not compute a
copy of B. The key fact used about linear orders is that their
„2-equivalence classes are tame (Knight 1986).

Now let M “ C \ L, where L is the linear order from the first lemma.

Corollary
There is a structure M such that C ă˚w M ă˚w B.

Great! But. . . not the most satisfying example.
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What kind of example would we like?

The initial attempts to find an intermediate degree involved natural
expansions of C, but without success. For example:

§ pC,‘q ”˚w pC, σq ”˚w B, where σ is the shift operator on 2ω.
§ pC,Ďq ”˚w pC,4q ”˚w C.

Another approach would be to expand C with sufficiently generic
relations. Greenberg, Igusa, Turetsky, and Westrick tried a version of
this that involved adding infinitely many unary relations.

In both cases, we considered expansions of C.

Open Question
Is there an expansion of C that is strictly between C and B?
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Expansions of C above B

Let M “ pC,Stuffq be an expansion of C. First, we want a criterion
that guarantees that M ě˚w B.

§ If the set F Ă 2ω of sequences with finitely many ones is ∆c
1pMq,

i.e., computable in every ω-copy of M, then M ě˚w B.
§ Why? There is a natural bijection between B and C r F .

§ If F is ∆c
2pMq, then M ě˚w B.

§ Add a little injury.
§ This is how we show, for example, that pC, ‘q ě

˚
w B.

§ If any countable dense set is ∆c
2pMq, then M ě˚w B.

§ If there is a perfect set P Ď C with a countable dense Q Ă P that
is ∆c

2pMq, then M ě˚w B.
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Expansions of C above B

§ If there is a perfect set P Ď C with a countable dense Q Ă P that
is ∆c

2pMq, then M ě˚w B.

Lemma
If M ď˚w B and R Ď C is ∆c

2pMq, then it is ∆c
2pBq, i.e., Borel.

Lemma (Hurewicz)
If R Ď C is Borel but not ∆0

2, then there is a perfect set P Ď C such
that either P XR or P rR is countable and dense in P.

Putting it all together (and noting that arity doesn’t matter):

Lemma
If M ď˚w B is an expansion of C and R Ď Cn is ∆c

2pMq but not ∆0
2,

then M ě˚w B.
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Tameness and dichotomy

In the contrapositive (and using the fact that ∆0
2 “ ∆c

2pCq):

Tameness Lemma
If M ă˚w B is an expansion of C, then ∆c

2pMq “ ∆c
2pCq.

Dichotomy Theorem for Closed Expansions
If M ď˚w B is an expansion of C by closed relations (and/or
continuous functions), then either M ”˚w C or M ”˚w B.

Proof Idea
For a tuple X Ă C, let ppXq be the (code for the) complete positive
Σ1pMq type of X. The relation that holds only on tuples of the form
pX, ppXqq is ∆c

2pMq.

If it is not ∆c
2pCq, then M ě˚w B.

If it is ∆c
2pCq, then a delicate injury argument can be used to prove

that M ď˚w C.
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Another dichotomy result

Combined with work of Greenberg, Igusa, Turetsky, and Westrick:

Dichotomy Theorem for Unary Expansions
If M ď˚w B is an expansion of C by countably many unary relations,
then either M ”˚w C or M ”˚w B.

§ If M is an expansion of C by finitely many ∆0
2 unary relations,

then M ď˚w C. This is a fairly simple finite injury argument.

§ Expansions by infinitely many closed unary relations need not be
below C: For σ P 2ăω, let Uσ hold only on σ0ω. Then the set of
sequences with finitely many ones is Σc1pC, tUσuσP2ăω q.

§ Greenberg, et al. supplied the right condition distinguishing the
cases, and one direction of the proof.

The dichotomy results kill off a lot of possible natural (and many
unnatural) examples of expansions.
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Recent progress
Based partly on conversations with Turetsky and Gura, I am pretty
sure the following is true.

Using Marker extensions, we can get structures with the following
“complexity profiles”:

Σc2 Σc3 Σc4 Σc5 Σc6 . . .
B Σ1

1 Σ1
2 Σ1

3 Σ1
4 Σ1

5 . . .
M1 Σ0

2 Σ1
2 Σ1

3 Σ1
4 Σ1

5 . . .
M2 Σ0

2 Σ1
1 Σ1

3 Σ1
4 Σ1

5 . . .
M3 Σ0

2 Σ1
1 Σ1

2 Σ1
4 Σ1

5 . . .
...

C Σ0
2 Σ1

1 Σ1
2 Σ1

3 Σ1
4 . . .

§ Again, these bounds are sharp.
§ C ă˚w ¨ ¨ ¨ ă˚w M3 ă

˚
w M2 ă

˚
w M1 ă

˚
w B.
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Open questions

1. Can an expansion of C be strictly between C and B? (In
particular, the non-unary ∆0

2 case is open.)

2. Are the degrees of M1,M2,M3, . . . the only degrees strictly
between C and B?

3. Are there incomparable degrees between C and B?

These questions are related. For example:

Fact. Any Borel expansion of C that is not above B has the same
complexity profile as C. So a positive answer to 1 gives a negative
answer to 2.

We have focused on C and B (and a couple of other degrees). What
else are generic Muchnik degrees good for?
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Thank you.

And thanks to Rod
for being a great friend and mentor!


