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n-Generic degrees and minimal degrees

No minimal degree bounds an n-generic degree.
(Jockusch 1980) For n ≥ 2, no n-generic degree bounds a
minimal degree.
(Chong and Jockusch 1984) No 1-generic degree < 0′

bounds a minimal degree.
(Haught 1986) Every degree below a 1-generic degree
< 0′ is 1-generic.
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What is the proof-theoretic strength of [*]?

[*] There is a 1-generic degree < 0′′ bounding a minimal
degree.

Let

P− = Peano axioms minus induction;
BΣ0

n = Σ0
n-bounding

IΣ0
n = Σ0

n-induction.

Problem: Determine the proof-theoretic (inductive) strength of
[*].
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Constructing a minimal degree

Typical construction of a set of minimal degree applies the
Spector “tree construction" method:

Given Φe and an infinite recursive perfect tree T ⊂ 2<ω, define
by recursion a splitting subree Sp(e,T ) ⊂ T :

If τ1, τ2 ∈ Sp(e,T ) are incomparable, then Φτ1
e (x) 6= Φτ2

e (x)
for some x .

There are two possibilities:

1 (Splitting tree) Every τ ∈ Sp(e,T ) has a (least) pair of
incomparable extensions in Sp(e,T ). Let Te = Sp(e,T ).
Then if X ∈ [Te], ΦX

e ≡T X ;
2 (Full tree) There is a τ ∈ Sp(e,T ) with no extension in

Sp(e,T ). Let Te = {τ ′ ∈ T : τ ′ � τ}. Then any X ∈ [Te]
satisfies ΦX

e is partial or ΦX
e is recursive.
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The Tree Method

Starting with T = 2<ω, define T0 ⊃ T1 ⊃ · · · so that Te+1 is
a splitting or full subtree of Te.
Any X ∈

⋂
e [Te] has minimal degree. There is an X <T ∅′′.

The split into (1) or (2) is a ∅′′-decision.
Σ0

2 induction is sufficient to implement the Spector
construction.

Question: Is there a set of minimal degree in the absence of Σ0
2

induction?
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Models of P− + IΣ0
1 + ¬IΣ0

2

Fix M = (M,+, ·,0,1) |= P− + IΣ0
1 + ¬IΣ0

2.

(Tame cut) There is a Σ0
2 cut I with a Σ0

2 increasing, cofinal
g : I → M.
Let I < a. For i ≤ a, define

Φσ
i (x) =

{
σ(x) if x ≤ |σ| and g′(x , i) 6= g′(x + 1, i)
0 otherwise
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Tree Method in ¬IΣ0
2

Let T = 2<M . Define splitting tree and full tree as before.
Then for i ∈ I, Ti is a full tree with root of length ≥ g(i).
Ti is not defined for i /∈ I.

Hence the Spector method fails.

Question. Is there a set of minimal degree <T ∅′ or <T ∅′′ in M?
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Minimal Degrees in ¬IΣ0
2

X ⊂ M is regular if X � s is M-finite for every s ∈ M.

(Chong and Mourad 1990) There is an M |= BΣ0
2 in which

ω = I is a Σ0
2-cut of minimal degree.

I <T ∅′′ and nonregular.
If M |= IΣ0

1 is countable, then there is a regular set X of
minimal degree. But X need not be definable.

Refined Question: Is there a regular set of minimal degree
<T ∅′′ or <T ∅′?
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Minimal Degrees in ¬IΣ2

Theorem

Let M |= P− + BΣ0
2 + ¬IΣ0

2. if X <T ∅′′ is regular and has
minimal degree, then X <T ∅′ and X ′ ≡T ∅′.

Theorem

RCA0 + “There is a minimal degree” does not imply BΣ0
2.

Question: Is there a model of

RCA0 + BΣ0
2 + ¬IΣ0

2 + “There is a minimal degree”?
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Minimal Degree in ¬IΣ0
2

Theorem

The following are equivalent over the base theory P− + BΣ0
2:

1 M |= P− + IΣ0
2

2

M |=“There is a 1-generic degree < 0′′ bounding
a minimal degree”



Sketch of proof

(1)⇒ (2) follows the proof for ω.

(2)⇒ (1):

Let G <T ∅′′ be 1-generic in M |= P− + BΣ0
2 + ¬IΣ0

2;

Fact. (Chong and Yang 2006) If M |= P− + BΣ0
2 + ¬IΣ0

2 with a
Σ0

2-cut I, then every regular X ≤T ∅′′ is recursive in I ⊕ ∅′.

Suppose ∅ <T B ≤T G ≤T I ⊕ ∅′. Construct a 1-generic
D ≤T B to conclude that B is not a set of minimal degree.
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Second order arithmetic

There is much more restriction on set existence over RCA0:

Theorem

Let M = (M,S). If M |= RCA0 + BΣ0
2 + ¬IΣ0

2, then every
Σ0

3-definable X ∈ S (without set parameters) is low.

Corollary

If M is as above, then no Σ0
3-definable 1-generic set in M

bounds a set of minimal degree.
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