1-Generic Degrees Bounding Minimal Degrees—*Revisited*

C T Chong

National University of Singapore

chongct@math.nus.edu.sg

7 January 2017

(ロ) (同) (三) (三) (三) (○) (○)

IMS Graduate Logic Summer School 2017

- Date: 19 June—7 July 2017
- Lecturers:
 - week 1: Artem Chernikov
 - Week 2: Theodore A Slaman
 - Week 3: W Hugh Woodin
- Funding support: Acommodation, per diem and travel allowance
- Application Deadline: 15 March 2017
- For more information: http://www2.ims.nus.edu.sg/Programs/017logicss/index.php

- No minimal degree bounds an *n*-generic degree.
- (Jockusch 1980) For n ≥ 2, no n-generic degree bounds a minimal degree.
- (Chong and Jockusch 1984) No 1-generic degree < 0' bounds a minimal degree.
- (Haught 1986) Every degree below a 1-generic degree < 0' is 1-generic.</p>

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

■ No minimal degree bounds an *n*-generic degree.

- (Jockusch 1980) For n ≥ 2, no n-generic degree bounds a minimal degree.
- (Chong and Jockusch 1984) No 1-generic degree < 0' bounds a minimal degree.
- (Haught 1986) Every degree below a 1-generic degree
 0' is 1-generic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- No minimal degree bounds an *n*-generic degree.
- (Jockusch 1980) For n ≥ 2, no n-generic degree bounds a minimal degree.
- (Chong and Jockusch 1984) No 1-generic degree < 0' bounds a minimal degree.
- (Haught 1986) Every degree below a 1-generic degree
 0' is 1-generic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- No minimal degree bounds an *n*-generic degree.
- (Jockusch 1980) For n ≥ 2, no n-generic degree bounds a minimal degree.
- (Chong and Jockusch 1984) No 1-generic degree < 0' bounds a minimal degree.
- (Haught 1986) Every degree below a 1-generic degree
 < 0' is 1-generic.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- No minimal degree bounds an *n*-generic degree.
- (Jockusch 1980) For n ≥ 2, no n-generic degree bounds a minimal degree.
- (Chong and Jockusch 1984) No 1-generic degree < 0' bounds a minimal degree.
- (Haught 1986) Every degree below a 1-generic degree < 0′ is 1-generic.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- (Chong and Downey; Kumabe 1990) There is a 1-generic degree < 0" bounding a minimal degree < 0'.</p>
- (Chong and Downey 1989) Not every minimal degree < 0' is bounded by a 1-generic degree.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- (Chong and Downey; Kumabe 1990) There is a 1-generic degree < 0" bounding a minimal degree < 0'.
- (Chong and Downey 1989) Not every minimal degree < 0' is bounded by a 1-generic degree.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- (Chong and Downey; Kumabe 1990) There is a 1-generic degree < 0" bounding a minimal degree < 0'.
- (Chong and Downey 1989) Not every minimal degree < 0' is bounded by a 1-generic degree.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is the proof-theoretic strength of [*]?

[*] There is a 1-generic degree $< \mathbf{0}^{\prime\prime}$ bounding a minimal degree.

Let

 $P^- =$ Peano axioms minus induction; $B\Sigma_n^0 = \Sigma_n^0$ -bounding $I\Sigma_n^0 = \Sigma_n^0$ -induction.

Problem: Determine the proof-theoretic (inductive) strength of [*].

[*] There is a 1-generic degree $< \mathbf{0}''$ bounding a minimal degree.

Let

 $P^- =$ Peano axioms minus induction; $B\Sigma_n^0 = \Sigma_n^0$ -bounding $I\Sigma_n^0 = \Sigma_n^0$ -induction.

Problem: Determine the proof-theoretic (inductive) strength of [*].

[*] There is a 1-generic degree $< \mathbf{0}''$ bounding a minimal degree.

Let

 $P^- =$ Peano axioms minus induction; $B\Sigma_n^0 = \Sigma_n^0$ -bounding $I\Sigma_n^0 = \Sigma_n^0$ -induction.

Problem: Determine the proof-theoretic (inductive) strength of [*].

Given Φ_e and an infinite recursive perfect tree $T \subset 2^{<\omega}$, define by recursion a *splitting subree* $Sp(e, T) \subset T$:

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

- (Splitting tree) Every τ ∈ Sp(e, T) has a (least) pair of incomparable extensions in Sp(e, T). Let T_e = Sp(e, T). Then if X ∈ [T_e], Φ^X_e ≡_T X;
- 2 (Full tree) There is a $\tau \in Sp(e, T)$ with no extension in Sp(e, T). Let $T_e = \{\tau' \in T : \tau' \succeq \tau\}$. Then any $X \in [T_e]$ satisfies Φ_e^X is partial or Φ_e^X is recursive.

Constructing a minimal degree

Typical construction of a set of minimal degree applies the Spector "tree construction" method:

Given Φ_e and an infinite recursive perfect tree $T \subset 2^{<\omega}$, define by recursion a *splitting subree* $Sp(e, T) \subset T$:

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

- (Splitting tree) Every τ ∈ Sp(e, T) has a (least) pair of incomparable extensions in Sp(e, T). Let T_e = Sp(e, T). Then if X ∈ [T_e], Φ^X_e ≡_T X;
- 2 (Full tree) There is a $\tau \in Sp(e, T)$ with no extension in Sp(e, T). Let $T_e = \{\tau' \in T : \tau' \succeq \tau\}$. Then any $X \in [T_e]$ satisfies Φ_e^X is partial or Φ_e^X is recursive.

Given Φ_e and an infinite recursive perfect tree $T \subset 2^{<\omega}$, define by recursion a *splitting subree* $Sp(e, T) \subset T$:

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

- (Splitting tree) Every τ ∈ Sp(e, T) has a (least) pair of incomparable extensions in Sp(e, T). Let T_e = Sp(e, T). Then if X ∈ [T_e], Φ^X_e ≡_T X;
- 2 (Full tree) There is a τ ∈ Sp(e, T) with no extension in Sp(e, T). Let T_e = {τ' ∈ T : τ' ≽ τ}. Then any X ∈ [T_e] satisfies Φ^X_e is partial or Φ^X_e is recursive.

Given Φ_e and an infinite recursive perfect tree $T \subset 2^{<\omega}$, define by recursion a *splitting subree* $Sp(e, T) \subset T$:

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

There are two possibilities:

(Splitting tree) Every τ ∈ Sp(e, T) has a (least) pair of incomparable extensions in Sp(e, T). Let T_e = Sp(e, T). Then if X ∈ [T_e], Φ^X_e ≡_T X;

2 (Full tree) There is a $\tau \in Sp(e, T)$ with no extension in Sp(e, T). Let $T_e = \{\tau' \in T : \tau' \succeq \tau\}$. Then any $X \in [T_e]$ satisfies Φ_e^X is partial or Φ_e^X is recursive.

Given Φ_e and an infinite recursive perfect tree $T \subset 2^{<\omega}$, define by recursion a *splitting subree* $Sp(e, T) \subset T$:

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

- (Splitting tree) Every τ ∈ Sp(e, T) has a (least) pair of incomparable extensions in Sp(e, T). Let T_e = Sp(e, T). Then if X ∈ [T_e], Φ^X_e ≡_T X;
- 2 (Full tree) There is a $\tau \in Sp(e, T)$ with no extension in Sp(e, T). Let $T_e = \{\tau' \in T : \tau' \succeq \tau\}$. Then any $X \in [T_e]$ satisfies Φ_e^X is partial or Φ_e^X is recursive.

- Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$ so that T_{e+1} is a splitting or full subtree of T_e .
- Any X ∈ ∩_e [T_e] has minimal degree. There is an X <_T Ø".
 The split into (1) or (2) is a Ø"-decision.
- Σ₂⁰ induction is sufficient to implement the Spector construction.

- Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$ so that T_{e+1} is a splitting or full subtree of T_e .
- Any $X \in \bigcap_{e} [T_{e}]$ has minimal degree. There is an $X <_{T} \emptyset''$.
- The split into (1) or (2) is a \emptyset'' -decision.
- Σ₂⁰ induction is sufficient to implement the Spector construction.

- Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$ so that T_{e+1} is a splitting or full subtree of T_e .
- Any X ∈ ∩_e [T_e] has minimal degree. There is an X <_T Ø".
 The split into (1) or (2) is a Ø"-decision.
- Σ₂⁰ induction is sufficient to implement the Spector construction.

- Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$ so that T_{e+1} is a splitting or full subtree of T_e .
- Any $X \in \bigcap_{e} [T_{e}]$ has minimal degree. There is an $X <_{T} \emptyset''$.
- The split into (1) or (2) is a \emptyset'' -decision.
- Σ₂⁰ induction is sufficient to implement the Spector construction.

- Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$ so that T_{e+1} is a splitting or full subtree of T_e .
- Any $X \in \bigcap_{e} [T_{e}]$ has minimal degree. There is an $X <_{T} \emptyset''$.
- The split into (1) or (2) is a \emptyset'' -decision.
- Σ₂⁰ induction is sufficient to implement the Spector construction.

A D F A 同 F A E F A E F A Q A

Fix $\mathfrak{M} = (M, +, \cdot, 0, 1) \models P^- + I\Sigma_1^0 + \neg I\Sigma_2^0$.

- (Tame cut) There is a Σ_2^0 cut *I* with a Σ_2^0 increasing, cofinal $g: I \to M$.
- Let I < a. For $i \leq a$, define

 $\Phi_i^{\sigma}(x) = \begin{cases} \sigma(x) & \text{if } x \le |\sigma| \text{ and } g'(x,i) \ne g'(x+1,i) \\ 0 & \text{otherwise} \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fix
$$\mathfrak{M} = (M, +, \cdot, 0, 1) \models P^- + I\Sigma_1^0 + \neg I\Sigma_2^0$$
.

• (Tame cut) There is a Σ_2^0 cut *I* with a Σ_2^0 increasing, cofinal $g: I \to M$.

• Let I < a. For $i \leq a$, define

 $\Phi_i^{\sigma}(x) = \begin{cases} \sigma(x) & \text{if } x \le |\sigma| \text{ and } g'(x,i) \ne g'(x+1,i) \\ 0 & \text{otherwise} \end{cases}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Fix
$$\mathfrak{M} = (M, +, \cdot, 0, 1) \models P^- + I\Sigma_1^0 + \neg I\Sigma_2^0$$
.

• (Tame cut) There is a Σ_2^0 cut *I* with a Σ_2^0 increasing, cofinal $g: I \rightarrow M$.

• Let
$$I < a$$
. For $i \leq a$, define

$$\Phi_i^{\sigma}(x) = \begin{cases} \sigma(x) & \text{if } x \leq |\sigma| \text{ and } g'(x,i) \neq g'(x+1,i) \\ 0 & \text{otherwise} \end{cases}$$

Let T = 2^{<M}. Define splitting tree and full tree as before. Then for i ∈ I, T_i is a full tree with root of length ≥ g(i). T_i is not defined for i ∉ I.

Hence the Spector method fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let T = 2^{<M}. Define splitting tree and full tree as before.
 Then for i ∈ I, T_i is a full tree with root of length ≥ g(i).
 T_i is not defined for i ∉ I.

Hence the Spector method fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

Let T = 2^{<M}. Define splitting tree and full tree as before.
Then for i ∈ I, T_i is a full tree with root of length ≥ g(i).
T_i is *not* defined for i ∉ I.

Hence the Spector method fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

- Let $T = 2^{<M}$. Define splitting tree and full tree as before.
- Then for $i \in I$, T_i is a full tree with root of length $\geq g(i)$.
- **T**_{*i*} is *not* defined for $i \notin I$.

Hence the Spector method fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

$X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.

- (Chong and Mourad 1990) There is an $\mathfrak{M} \models B\Sigma_2^0$ in which $\omega = I$ is a Σ_2^0 -cut of minimal degree.
- $I <_T \emptyset''$ and nonregular.
- If $\mathfrak{M} \models I\Sigma_1^0$ is countable, then there is a regular set *X* of minimal degree. But *X* need not be definable.

(日) (日) (日) (日) (日) (日) (日)

Refined Question: Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

- $X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.
 - Chong and Mourad 1990) There is an 𝔐 ⊨ BΣ₂⁰ in which ω = *I* is a Σ₂⁰-cut of minimal degree.
 - $I <_T \emptyset''$ and nonregular.

If m ⊨ I∑⁰₁ is countable, then there is a regular set X of minimal degree. But X need not be definable.

(日) (日) (日) (日) (日) (日) (日)

Refined Question: Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

- $X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.
 - Chong and Mourad 1990) There is an 𝔐 ⊨ BΣ₂⁰ in which ω = *I* is a Σ₂⁰-cut of minimal degree.
 - I < $T \otimes \mathcal{O}''$ and nonregular.

If m ⊨ I∑⁰₁ is countable, then there is a regular set X of minimal degree. But X need not be definable.

(日) (日) (日) (日) (日) (日) (日)

Refined Question: Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

 $X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.

- Chong and Mourad 1990) There is an 𝔐 ⊨ BΣ₂⁰ in which ω = *I* is a Σ₂⁰-cut of minimal degree.
- $I <_T \emptyset''$ and nonregular.
- If 𝔐 ⊨ *I*Σ₁⁰ is countable, then there is a regular set *X* of minimal degree. But *X* need not be definable.

Refined Question: Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

 $X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.

- Chong and Mourad 1990) There is an 𝔐 ⊨ BΣ₂⁰ in which ω = *I* is a Σ₂⁰-cut of minimal degree.
- $I <_T \emptyset''$ and nonregular.
- If 𝔐 ⊨ *I*Σ₁⁰ is countable, then there is a regular set *X* of minimal degree. But *X* need not be definable.

Refined Question: Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

Theorem

Let $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$. if $X <_T \emptyset''$ is regular and has minimal degree, then $X <_T \emptyset'$ and $X' \equiv_T \emptyset'$.

Theorem

 $RCA_0 +$ "There is a minimal degree" does not imply $B\Sigma_2^0$.

Question: Is there a model of

 $RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0 +$ "There is a minimal degree"?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

Let $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$. if $X <_T \emptyset''$ is regular and has minimal degree, then $X <_T \emptyset'$ and $X' \equiv_T \emptyset'$.

Theorem

 $RCA_0 +$ "There is a minimal degree" does not imply $B\Sigma_2^0$.

Question: Is there a model of

 $RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0 +$ "There is a minimal degree"?

Theorem

Let $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$. if $X <_T \emptyset''$ is regular and has minimal degree, then $X <_T \emptyset'$ and $X' \equiv_T \emptyset'$.

Theorem

 RCA_0 + "There is a minimal degree" does not imply $B\Sigma_2^0$.

Question: Is there a model of

 $RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0 +$ "There is a minimal degree"?

Theorem

Let $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$. if $X <_T \emptyset''$ is regular and has minimal degree, then $X <_T \emptyset'$ and $X' \equiv_T \emptyset'$.

Theorem

 RCA_0 + "There is a minimal degree" does not imply $B\Sigma_2^0$.

Question: Is there a model of

 $RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0 +$ "There is a minimal degree"?

Theorem

The following are equivalent over the base theory $P^- + B\Sigma_2^0$: 1 $\mathfrak{M} \models P^- + I\Sigma_2^0$ 2

$\mathfrak{M} \models$ "There is a 1-generic degree $< \mathbf{0}''$ bounding a minimal degree"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(1) \Rightarrow (2) follows the proof for ω .

 $(2) \Rightarrow (1)$:

Let $G <_T \emptyset''$ be 1-generic in $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$;

Fact. (Chong and Yang 2006) If $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$ with a Σ_2^0 -cut *I*, then every regular $X \leq_T \emptyset''$ is recursive in $I \oplus \emptyset'$.

Suppose $\emptyset <_T B \leq_T G \leq_T I \oplus \emptyset'$. Construct a 1-generic $D \leq_T B$ to conclude that B is not a set of minimal degree.

(1) \Rightarrow (2) follows the proof for ω .

(2) \Rightarrow (1):

Let $G <_T \emptyset''$ be 1-generic in $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$;

Fact. (Chong and Yang 2006) If $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$ with a Σ_2^0 -cut *I*, then every regular $X \leq_T \emptyset''$ is recursive in $I \oplus \emptyset'$.

(日) (日) (日) (日) (日) (日) (日)

Suppose $\emptyset <_T B \leq_T G \leq_T I \oplus \emptyset'$. Construct a 1-generic $D \leq_T B$ to conclude that B is not a set of minimal degree.

(1) \Rightarrow (2) follows the proof for ω .

(2) \Rightarrow (1):

Let $G <_T \emptyset''$ be 1-generic in $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$;

Fact. (Chong and Yang 2006) If $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$ with a Σ_2^0 -cut *I*, then every regular $X \leq_T \emptyset''$ is recursive in $I \oplus \emptyset'$.

Suppose $\emptyset <_T B \leq_T G \leq_T I \oplus \emptyset'$. Construct a 1-generic $D \leq_T B$ to conclude that *B* is not a set of minimal degree.

There is much more restriction on set existence over RCA₀:

Theorem

Let $\mathfrak{M} = (M, S)$. If $\mathfrak{M} \models \operatorname{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$, then every Σ_3^0 -definable $X \in S$ (without set parameters) is low.

Corollary

If $\mathfrak M$ is as above, then no Σ_3^0 -definable 1-generic set in $\mathfrak M$ bounds a set of minimal degree.

There is much more restriction on set existence over RCA₀:

Theorem

Let $\mathfrak{M} = (M, S)$. If $\mathfrak{M} \models \operatorname{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$, then every Σ_3^0 -definable $X \in S$ (without set parameters) is low.

Corollary

If $\mathfrak M$ is as above, then no Σ_3^0 -definable 1-generic set in $\mathfrak M$ bounds a set of minimal degree.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

There is much more restriction on set existence over RCA₀:

Theorem

Let $\mathfrak{M} = (M, S)$. If $\mathfrak{M} \models \operatorname{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$, then every Σ_3^0 -definable $X \in S$ (without set parameters) is low.

Corollary

If \mathfrak{M} is as above, then no Σ_3^0 -definable 1-generic set in \mathfrak{M} bounds a set of minimal degree.