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m No minimal degree bounds an n-generic degree.

m (Jockusch 1980) For n > 2, no n-generic degree bounds a
minimal degree.

m (Chong and Jockusch 1984) No 1-generic degree < 0’
bounds a minimal degree.

m (Haught 1986) Every degree below a 1-generic degree
< 0’ is 1-generic.
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1-Generic degrees and minimal degrees

m (Chong and Downey; Kumabe 1990) There is a 1-generic
degree < 0” bounding a minimal degree < 0'.

m (Chong and Downey 1989) Not every minimal degree < 0’
is bounded by a 1-generic degree.
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What is the proof-theoretic strength of [*]?

[*] There is a 1-generic degree < 0” bounding a minimal
degree.

Let

P~ = Peano axioms minus induction;
By 9 = ¥9-bounding
I£9 = ¥9%-induction.

Problem: Determine the proof-theoretic (inductive) strength of

['].
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Constructing a minimal degree

Typical construction of a set of minimal degree applies the
Spector “tree construction" method:

Given ¢, and an infinite recursive perfect tree T c 2<%, define
by recursion a splitting subree Sp(e, T) C T:

m If 71,7 € Sp(e, T) are incomparable, then ¢ (x) # dg&(x)
for some x.

There are two possibilities:

(Splitting tree) Every 7 € Sp(e, T) has a (least) pair of
incomparable extensions in Sp(e, T). Let To = Sp(e, T).
Thenif X € [Te], ®X =1 X;

(Full tree) There is a 7 € Sp(e, T) with no extension in
Sp(e,T). Let To={r" € T:7 = 7}. Thenany X € [T¢]
satisfies ®7 is partial or ® is recursive.
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The Tree Method

m Starting with T = 2<%, define To D Ty D --- so that To, 1 is
a splitting or full subtree of T.

m Any X € (), [Te] has minimal degree. There is an X <7 (".

m The splitinto (1) or (2) is a ()""-decision.

m ¥ induction is sufficient to implement the Spector
construction.

Question: Is there a set of minimal degree in the absence of Zg
induction?



Models of P~ + /£9 + —/3

Fix 9 = (M, +,-,0,1) | P~ + 129 + —/3.



Models of P~ + /£9 + —/3

Fix 9 = (M, +,-,0,1) | P~ + 129 + —/3.

m (Tame cut) There is a £J cut / with a 3 increasing, cofinal
g:l— M.



Models of P~ + I£9 + - /%)

Fix 9 = (M, +,-,0,1) | P~ + 129 + —/3.
m (Tame cut) There is a £J cut / with a 3 increasing, cofinal
g:l— M.
m Let / < a. For i < g, define

or(x) = 700 ifx<loland @'(x.0) # g'(x+1.1)
: o otherwise
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Tree Method in —/£3

m Let T = 2<M. Define splitting tree and full tree as before.
m Thenfori € I, T;is a full tree with root of length > g(i).
m T;is not defined for i ¢ I.

Hence the Spector method fails.

Question. Is there a set of minimal degree <1 (' or <7 (" in M?
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Minimal Degrees in —/£3

X C M is regularif X | sis 9M-finite for every s € M.

m (Chong and Mourad 1990) There is an 9t = B in which
w = [is a ¥3-cut of minimal degree.

m / <7 (" and nonregular.

mIfmE= IZ? is countable, then there is a regular set X of
minimal degree. But X need not be definable.

Refined Question: Is there a regular set of minimal degree
<7 0"or<y0?
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Minimal Degrees in =/3>»

Let M |= P~ + B3 + —/x9. if X <7 0" is regular and has
minimal degree, then X <1 (' and X' =1 (.

Theorem
RCAq + “There is a minimal degree” does not imply BZ‘Z’.

Question: Is there a model of

RCAg + B3 + —/¥3 + “There is a minimal degree”?



Minimal Degree in —/%3

The following are equivalent over the base theory P~ + BXS:
M= P~ + 153

9 ="“There is a 1-generic degree < 0" bounding
a minimal degree”
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Sketch of proof

(1) = (2) follows the proof for w.
(@) =(1):
Let G <7 (" be 1-generic in M = P~ + BXI + —~/x9;

Fact. (Chong and Yang 2006) If M = P~ + BX3 + —/x3 with a
»9-cut /, then every regular X <r ()" is recursive in | & (I'.

Suppose ) <7 B<7 G <7 I (. Construct a 1-generic
D <7 Bto conclude that B is not a set of minimal degree.
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Second order arithmetic

There is much more restriction on set existence over RCA:

Theorem

LetIM = (M, S). If MM |= RCAq + B3 + /3, then every
Zg-definable X € S (without set parameters) is low.

Corollary

IfON is as above, then no Zg -definable 1-generic set in M
bounds a set of minimal degree.



