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MOTIVATION

I What is “random”?
I How can we calibrate levels randomness? Among

randoms?, Among non-randoms?
I How does this relate to classical computability notions,

which calibrate levels of computational complexity?
I Von Mises, Church, Solomonoff, Levin, Chaitin,

Kolmogorov, Shannon, etc.
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NOTATION

I Real is a member of Cantor space 2ω with topology with
basic clopen sets [σ] = {σα : α ∈ 2ω} whose measure is
µ([σ]) = 2−|σ|.

I Strings = members of 2<ω = {0, 1}∗.
I There are theories for more general spaces, notably by

Gács, (see his web site), but this is still under development.
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COMPUTABILITY THEORY

I “Computable” means f (n) can be computed (in theory) by
a machine.

I Objects coded as members of N.
I A ⊆ N is computable means there is an algorithm to decide

n ∈ A? uniformly. χA(n) computable.
I A is computably enumerable means A = {f (0), f (1), . . . }.
I Halting problem {〈x , y〉 : ϕx(y) halts } is famously c.e. but

not computable.
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THREE VIEWS OF EFFECTIVE RANDOMNESS FOR REALS

1 Measure-Theoretical:
I Random means no distinguishing features. (Think of a

statistical test as generating a set of tests: considered as
open sets.)

I In effective terms:
- Avoids all effective sets of measure 0.
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2 Algorithmic:
I Random means hard to describe, incompressible: e.g.

1010101010.... (10000 times) would have a short program.
I In effective terms:
I Initial segments have high “Kolmogorov complexity.”

Rod Downey Victoria University Wellington New Zealand Algorithmic Randomness and Computability



Introduction
Left c.e. reals

3 Other views: e.g. random means unpredictable.
I No effective betting strategy succeeds on α.
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RICHARD VON MISES:

I Actually, the first attempt to “define” randomness was by
the statistician von Mises 1919.

I Stochastic approach: α = a1a2 . . . , “select” some
subsequence assuming “acceptable” selection rules,

I Say positions f (1) < f (2) . . . , then n →∞, the number of
af (i) = 1 divided by those with af (i) = 0 for i ≤ n should be
1.

I Generalization of the law of large numbers.
I What are acceptable selection rules?
I Some problems (later). Solved by Martin-Löf who said we

should view effective statistical tests as effective null sets.
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MARTIN-LÖF RANDOMNESS:

I A c.e. open set is one of the form
⋃

i(qi , ri) where
{qi : i ∈ ω} and {ri : i ∈ ω} are c.e.. In 2ω,
U = {[σ] : σ ∈ W}.

I A Martin-Löf test is a uniformly c.e. sequence U1, U2, . . . of
c.e. open sets s.t.

∀i(µ(Ui) ≤ 2−i).

(Computably shrinking to measure 0)

DEFINITION
α is Martin-Löf random if for every Martin-Löf test,

α /∈
⋂
i>0

Ui .
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UNIVERSAL TESTS

I Enumerate all c.e. tests, {We,j,s : e, j , s ∈ N}, stopping
should one threated to exceed its bound.

I Un = ∪e∈NWe,n+e+1.

I A passes this test iff it passes all tests. It is a universal
Martin-Löf test. (Martin-Löf)

Rod Downey Victoria University Wellington New Zealand Algorithmic Randomness and Computability



Introduction
Left c.e. reals

UNIVERSAL TESTS

I Enumerate all c.e. tests, {We,j,s : e, j , s ∈ N}, stopping
should one threated to exceed its bound.

I Un = ∪e∈NWe,n+e+1.

I A passes this test iff it passes all tests. It is a universal
Martin-Löf test. (Martin-Löf)

Rod Downey Victoria University Wellington New Zealand Algorithmic Randomness and Computability



Introduction
Left c.e. reals

KOLMOGOROV COMPLEXITY

I Capture the incompressibility paradigm.
I A string σ is random iff the only way to describe it is by

hardwiring it. (Formalizing the Berry paradox)
I For a fixed machine N, we can define
I The Kolmogorov complexity C(σ) of σ ∈ {0, 1}∗ with

respect to N, is |τ | for the shortest τ s.t. N(τ)↓= σ.
(Kolmogorov)
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I A string σ is N-random iff CN(σ) ≥ |σ|.
I A machine U is called universal iff for all N, there is a d

such that for all σ, CU(σ) ≤ CN(σ) + d .
I Kolmogorov showed that universal machines exist. Hence

there is a notion of Kolmogorov randomness for strings up
to a constant.

I Proof: We can enumerate the Turing machines
{Me : e ∈ N}. Define

U(1e0σ) = Me(σ).

This particular coding gives C(τ) ≤ Me(τ) + e + 1.
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THEOREM (PLAIN COUNTING THEOREM-KOLMOGOROV)
|{τ : C(τ) ≤ |τ | − d}| ≤ O(1)2|τ |−d .

I Proof: pigeonhole principle.
I Thus plain complexity is a combinatorial fact This is

important when we look at compression functions later.
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A FIRST ATTEMPT FOR REALS

I The above works for strings.
I For reals problems occur because a string τ gives “|τ |+ τ ”

much information.
I First try α, a real, is random iff for all n, C(α � n) ≥ n − d .

THEOREM (MARTIN-LÖF)
NO such real exist!
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I Why? Take any α. Then, as a string α � n corresponds to
some number which we can interpret as a string using llex
ordering: α � n is the m-th string.

I Now consider the program that does the following. It takes
a strings ν, interprets its length mν = |ν as a string, σ = σm
and outputs σν.

I Apply this to the string τ whose length is m th code of
α � n.

I The output would be much longer, and would be α � m + n,
with input having length m. Thus
C(α � m + n) < m + n −O(1).

I This phenomenom is fundamental in our understanding of
Kolmogorov complexity and is called complexity
oscillations.

I There are several known ways to get round this problem to
cause only to get the information provided by the bits of
the strings.

Rod Downey Victoria University Wellington New Zealand Algorithmic Randomness and Computability



Introduction
Left c.e. reals

PREFIX FREE UNIVERSAL COMPUTERS

I Levin, Schnorr, Chaitin.
I Computers have alphabet {0, 1}.

DEFINITION
A computer M is prefix-free if

(M(σ)↓ ∧ σ′ ) σ) ⇒ M(σ′)↑ .

I A prefix-free M is universal if for every prefix-free N there
is a c s.t.

N(σ)↓ → ∃τ(|τ | ≤ |σ|+ c ∧

M(τ)↓= N(σ)).

I Fix a universal prefix-free machine M.
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K -RANDOMNESS:

I Prefix freeness gets rid of the use of length as extra
information:

DEFINITION
The prefix-free complexity K (σ) of σ ∈ {0, 1}∗ is |τ | for the
shortest τ s.t. M(τ)↓= σ.

I Note now K (σ) ≤ |σ|+ K (|σ|) + d , about n + 2 log n, for
|σ| = n.
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THEOREM (COUNTING THEOREM-CHAITIN)
|{τ : |τ | = n ∧ K (τ) ≤ n + K (n)− c}| ≤ 2n−c+O(1).

DEFINITION (LEVIN, SCHNORR, CHAITIN)
A real α is K -random if there is a c s.t.

∀n(K (α � n) > n − c).

This happens if there is a c such that for infinitely many n,
C(α � n) > n − c.
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SCHNORR’S THEOREM

THEOREM (SCHNORR)
K -random ⇐⇒ Martin-Löf random.
So we know that we are on a reasonable idea since the notions
coincide.
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THE PROOF AND KRAFT-CHAITIN

THEOREM (KRAFT COMPUTABLE, LEVIN, SCHNORR,
PIPPINGER)

(I) If A is prefix-free then
∑

n∈A 2−|n| ≤ 1.
(II) (Kraft-Chaitin) Let d1, d2, · · · be a computably enumerable

collection of lengths (possibly with repetitions), with
targets σi , called an axiom 〈di , σi〉. Then

∑
2−di ≤ 1 iff we

can compute a prefix-free machine M with domain
members τi and |τi | = di , and M(τi) = σi .
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LOTS OF RANDOM REALS

I µ{A : A random } = 1.
I The Σ0

2 class {A : ∃k∀nK (A � n > n − k} contains all
random reals.

I Hence there are ones of low Turing degree (low basis
theorem) and hyperimmune free degree.

I There are ones of all jumps and even ∆0
2 ones of all jumps

(Kučera, Downey-Miller)
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EXTENDING SCHNORR’S THEOREM

THEOREM (MILLER AND YU)
α is Martin-Löf random iff

∑
n∈N 2n−K (α�n) < ∞.

I This says that whilst the K-complexity is above n, mostly it
is “pretty far” from n. Miller and Yu proved the following
consequence:

THEOREM (MILLER AND YU)
Suppose that f is an arbitrary function with

∑
m∈N 2−f (m) = ∞.

Suppose that α is 1-random. Then there are infinitely many m
with K (α � m) > m + f (m)−O(1).
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MONOTONE COMPLEXITY

I Levin’s original idea here was to try to assign a complexity
to the real itself. That is, think of the complexity of the real
as the shortest machine that outputs the real. Hence now
we are thinking of machines that take a program σ and
might perhaps output a real α. (Nonsense unless α is
computable)

I The following definition can be applied to Turing machines
with potentially infinite output, and to discrete ones
mapping strings to strings. In this definition, we regard
M(σ) ↓ to mean that at some stage s, M(σ) ↓ [s].

DEFINITION (LEVIN)
We say that a machine M is monotone if its action is
continuous. That is, for all σ � τ , if M(σ) ↓ and M(τ) ↓ then

M(σ) � M(τ).
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I Levin’s (standard) monotone complexity Km is defined as
follows. Fix a universal monotone machine U.

Km(σ) = min{|τ | : σ � U(τ)}.

I If strings to strings, you get Schnorr’s process complexity.

THEOREM (LEVIN, SCHNORR)
A is Martin-Löf random iff Km(A � n) > n −O(1).
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LEFT COMPUTABLY ENUMERABLE REALS:

DEFINITION
α is left c.e. if there is a computable sequence of rationals

q0 < q1 < . . . −→ α.

Equivalently, the lower cut of α is a c.e. set of rationals.

DEFINITION (TURING)
α is computable if there is a computable f s.t.

∀n(α− qf (n) < 2−n).

I Being a left c.e. real is not the same as being the
characteristic function of a c.e. set. (Soare)
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CHAITIN’S Ω

I The most famous left c.e. real is

Ω = µ dom(M) =
∑

M(σ)↓

2−|σ|,

the “halting probability.”
I Left c.e. reals are the relevant effective sets for

randomness (as they are the measures of domains of
prefix free machines) in the same way that c.e sets are the
central objects in classical computabiltity theory.
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THEOREM (CHAITIN)
Ω is random.

I Proof. We use Kraft-Chaitin: We build a Kraft-Chaitin set
with coding constant c given by the recursion theorem. If,
at stage s, we see Ks(Ωs � n) < n − c − 1, enumerate
〈n − c,Ωs � n〉 into KC, and hence Ω � n 6= Ωs � n.
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PLAIN COMPLEXITY AGAIN

I The relationship between plain and prefix-free complexities
is complicated.

I (Solovay)

K (x) = C(x) + C(2)(x) +O(C(3)(x)).

C(x) = K (x)− K (2)(x) +O(K (3)(x)).

I The 3’s are sharp
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I The maximum complexity a string of length n can have is
(I) C(σ) = n −O(1).

(II) K (σ) = n + K (n)−O(1).

THEOREM (SOLOVAY)
(ii) implies (i), but not conversely.

I Say that a real is strongly Chaitin random iff there are
infinitely many n with K (α � n) ≥ n + K (n)−O(1).

I Say that it is Kolmogorov random if there are infinitely
many n with C(n) ≥ n −O(1).

THEOREM (SOLOVAY)
Strongly Chaitin random and hence Kolmogorov random reals
exist.

I Fundamental question: are they the same?
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n-RANDOMNESS

I This “all” relativizes, so we can define Martin-Löf
randomness relative to a set B, and n-randomness relative
to ∅(n−1) which, due to the work of Kurtz, is the same as
randomness for tests with Σ0

n classes as tests.
I Thus, we can define 2-randomness as 1-randomness

relative to the halting problem.
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KOLMOGOROV RANDOMNESS

THEOREM (NIES-TERWIJN-STEPHAN, MILLER)
2-randomness=Kolmogorov randomness.
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I The other direction. (Miller, NST)
I A compression function acts like U−1.
I We say that F : Σ∗ 7→ Σ∗ is a compression function if for all

x |F (x)| ≤ C(x) and F is 1-1.
I Nies, Stephan, and Twerijn There is a compression

function F with F ′ ≤T ∅′.
I Consider the Π0

1 class of functions |F̂ (σ)| ≤ C(σ).

I The main idea is that most of the basic facts of plain
complexity can be re-worked with any compression
function. For a compression function F we can define
F -Kolmogorov complexity: α is F -Kolmogorov random iff
∃∞n(F (α � n) > n −O(1)).
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I (NST) If Z is 2-random relative a compression function F ,
then Z is Kolmogorov F -random.

I Now we can save a quantifier using a low compression
function.
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1-RANDOMNESS AND PLAIN COMPLEXITY

I There is a plain complexity characterization of Martin-Löf
randomness.

THEOREM (MILLER AND YU)
x is Martin-Löf random iff (∀n) C(x � n) ≥ n − g(n)±O(1), for
every computable g : ω → ω such that

∑
n∈ω 2−g(n) is finite.
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MEASURES OF RELATIVE RANDOMNESS

I A pre-ordering ≤ on reals is a measure of relative
randomness if it satisfies the Solovay property:

If β ≤ α then ∃c (∀n (K (β � n) ≤ K (α � n) + c)).

I Notice that if α is random and α ≤ β then by Schnorr’s
Theorem, β is random too.

I Can also use C, and others.
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I The idea is that if we can characterize randomness by
initial segment complexity, then we oght to be able to
calibrate randomness by comparing initial segment
complexities.
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SOLOVAY REDUCIBILITY

I We talk about the halting problem, whereas of course we
really mean HALTU for a universal U. But... they are all the
same (Myhill)

I Solovay introduced a reduction to address this for
randomness.

I (α ≤S β) α is Solovay or domination reducible to β iff there
is a constant d , and a partial computable ϕ, such that for
all rationals q < β

ϕ(q) ↓ ∧ d(β − q) > |α− ϕ(q)|.
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I Intuitively, however well I can approximate β, I can
approximate α just as well. Clearly ≤S implies ≤T .

I S-reducibility is a measure of relative randomness
(Solovay)

I This follows by : Let d be given. Then there is a constant
c = c(d) such that for all n: if σ and τ have length n and
|σ − τ | < 2−n+d , K (σ) + c > K (τ).
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ONLY ONE RANDOM C.E. REAL

I A c.e. real is Ω-like if it dominates all c.e. reals.
I (Solovay) Any Ω-like real is random.
I Proof : By Schnorr.
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I Solovay proved that Ω-like reals posessed many of the
properties that Ω posessed. He remarks:
“It seems strange that we will be able to prove so much
about the behavior of K (Ω � n) when, a priori, the definition
of Ω is thoroughly model dependent. What our discussion
has shown is that our results hold for a class of reals (that
include the value of the universal measures of ...) and that
the function K (Ω � n) is model independent to within O(1).”
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THEOREM (CALUDE, HERTLING, KHOUSSAINOV, AND
WANG)
If a c.e. real is Ω-like then it is an Ω-number. That is, a halting
probability.
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KUČERA-SLAMAN THEOREM

THEOREM (KUČERA-SLAMAN)
If a c.e. real is random then it is Ω-like.

I ie all random c.e. reals are the “same” and are halting
probabilities. (even though it might be possible for it to be
as high as n + 2 log n all oscillations occur at the “same”
n’s.)
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STRUCTURE

I The c.e. reals using ≤S forms a upper semilattice, called
the Solovay degrees.

THEOREM (DOWNEY, HIRSCHFELDT, NIES)

(I) + induces a join
(II) It is distributive

(III) dense
(IV) [Ω] is the only join inaccessible element.
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THEOREM (DOWNEY, HIRSCHFELDT, LAFORTE)
The structure of the S-degrees of c.e. reals has an undecidable
theory.

I S-reducibility is a measure of relative randomness, but not
the only one, and it has some problems.

I However, structure of ≤K and ≤C , except on c.e. reals, is
largely unknown. On the randoms, we lack techniques.
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RESULTS ON ≤K

I Define A ≤K B to mean K (A � n) ≤ K (B � n) + O(1), all n.

THEOREM (YU, DING, DOWNEY)
µ({B : B ≤K A}) = 0. Hence uncountably many K degrees.

I Yu, Ding In fact 2ℵ0 .

THEOREM (MILLER AND YU)
For almost all pairs A|K B.

THEOREM (MILLER AND YU)
For all n 6= m, Ω(n)|K Ω(m).

THEOREM (MILLER AND YU)
However, there are random A, B with B <K A.
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I (Miller and Yu) Each K -degree of a random countable.
I (Miller) There is an uncountable K -degree.
I (Csima and Montalbán) There are minimal pairs of

K -degrees.
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K -TRIVIAL REALS:

I (Solovay) There exist noncomputable reals α such that for
all n

K (α � n) ≤ K (1n) + c.

I These are called K -trivial reals.
I Note that Chaitin proved that if K (α) ≤ K (1n) + c, then α is

∆0
2. It was earlier proven by Chaitin using a technique of

Loveland that
C(α � n) ≤ C(1n) + c for all n, implies α is computable.
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I Such A can be c.e. sets. (Zambella, then DHNS, and
others)

I Solovay’s 1974 proof is very complicated. Here is a
simplified version proving a stronger result.

I (DHNS) There is a c.e. noncomputable set A such that for
all n

K (A � n) ≤ K (n) +O(1).

I Let
As+1 = As ∪ {x : We,s ∩ As = ∅ ∧ x ∈ We,s

∧
∑

x≤j≤s

2−K (1j )[s] < 2−(e+1)}.
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THEOREM (DOWNEY, HIRSCHFELDT, NIES AND STEPHAN)
K -trivial reals are never of high degree, so this is an injury free
solution to Post’s problem.
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NIES THEOREMS

I Every K -trivial is bounded by a K -trivial c.e. set.
I Every K -low is superlow, and “tracable”. ( and hence

(Chaitin) there are only countably many.)
I (Nies and Hirschfeldt) K -trivial = low for K .
I K -trivials are closed under T -reducibility and form the only

known natural Σ0
3 ideal in the Turing degrees.

I The are bounded above by a low2 degree.
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OTHER CLASSES

I K -trivials also correspond to other classes.

THEOREM (DOWNEY, NIES, WEBER, YU+MILLER, NIES)
They are exactly the same as the reals low for weak
2-randomness...Randomness for generalized Martin-Löf tests,
where Un → 0 but no effective convergence.

THEOREM (MILLER, NIES, STEPHAN)
They are the same as reals A such that there is an A-random B
with A ≤T B.
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I Related to reals X with X + R ≥T ∅′ for soem random R.
(Nies)

I (Nies) They are all “jump traceable”.

THEOREM (CHOLAK, DOWNEY, GREENBERG)
The strongly jump traceable c.e. reals are a proper subclass of
the K -trivials, the first such defined by a cost function
construction.
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CEREALS ARE RED HERRINGS

I In some sense, the c.e. reals and Ω make us think of
randomness as “like” the halting problem, and more
random=more information. This seems false.

I Also the Kučera-Gács Theorem that each real is
computable in a random one suggest computational power.

I Stephan has shown that if a is a Turing degree containing
a 1-random real which has enough information to compute
a {0, 1} valued diagonal function then a ≥ 0′. (If a is
1-random and PA then 0′ ≤ a.)
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I Miller proved the following remarkable result. Say α is
“pseudo-low” if (∃∞n)[K (n) ≤ K α(n) + O(1)].

I The intuition is that α is so computationally useless that it
gives no help in computing such n.

THEOREM (MILLER)
α is random and pseudo-low if α is 3-random.

I (Miller and Yu) Also if A ≤T B and A, B are random with B
n-random, then A is also n-random. Thus randomness is a
lowness property.
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HALTING PROBABILITY

I Look at ΩA as an operator.
I Care is needed as to exactly what this means.
I Note this is CE but not CEA.
I e.g. Ω|T ΩΩ, indeed they form a minimal pair.
I Hoped to solve Martin’s conjecture

THEOREM (DOWNEY, HIRSCHFELDT, MILLER, NIES)
Alas there are A =∗ B such that ΩA and ΩB are relatively
random and hence Turing incomparible.

THEOREM (DOWNEY, HIRSCHFELDT, MILLER, NIES)
Every 2-random is ΩB for some B. (so maybe ce reals are not
red herrings)

I Compare with Kurtz’s Theorem : every 2-random is
properly CEA.
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I many oher intersting results: eg
I Omega operators are lower semicontinuous but not

continuous, and moreover, that they are continuous exactly
at the 1-generic reals.
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MARTINGALES

- martingales=betting strategies (Doob etc)
I F : 2<ω 7→ R+ ∪ {0}, with F (σ) = F (σ1)+F (σ0)

2 .

I F succeeds on α iff lim supn F (α � n) →∞.

I Think of a real where every 3rd bit was 1. You could win
betting on the bits.

I also have supermartingales where we only ask
F (σ) ≥ F (σ1)+F (σ0)

2 .

I Supermartingales have an advantage that they can be
enumerated, and there is a multiplicatively optimal minimal
one. (Levin)

I (Schnorr) a real is 1-random iff no computably enumerable
(super-)martingale succeeds on it. Here F above should
have a computable sequence of approximations Fs → F .
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HAUSDORFF DIMENSION

I 1895 Borel, Jordan
I Lebesgue 1904 measure
I In any n-dimesnional Euclidean space, Carathéodory 1914

µs(A) = inf{
∑

i

|Ii |s : A ⊂ ∪i Ii},

where each Ii is an interval in the space.
I 1919 Hausdorff s fractional. and refine measure 0.
I For 0 ≤ s ≤ 1, the s-measure of a clopen set [σ] is

µs([σ]) = 2−s|σ|.

I Lutz has the following characterization of effective
Hausdorff dimension:

I An s-gale is a function F : 2<ω 7→ R such that

F (σ) = 2s(F (σ0) + F (σ1)).

Similarly we can define s-supergale, etc. (Think here of
s = 1

2 .)
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THEOREM (LUTZ)
For a class X the following are equivalent:
(I) dim(X ) = s.

(II) s = inf{s ∈ Q : X ⊆ S[d ] for some s-gale F}.

I The d is is effective Hausdorff dimension.
I Lutz says the following:

“Informally speaking, the above theorem says the the
dimension of a set is the most hostile environment (i.e.
most unfavorable payoff schedule, i.e. the infimum s) in
which a single betting strategy can achieve infinite
winnings on every element of the set.”

THEOREM (MAYORDOMO)
The Hausdorff dimension of a real α is

lim inf
n→∞

K (α � n)

n
= (lim inf

n→∞

C(α � n)

n
)

Rod Downey Victoria University Wellington New Zealand Algorithmic Randomness and Computability



Introduction
Left c.e. reals

DIMENSIONS OF STRINGS

I Lutz has introduced a method of assigning dimensions to
strings.

I liminf K (α�n
n ,

I equivalently, the infimum over all s of the values of
ds(α � n).

I To discreteize this characterization, Lutz used three
devices:

(I) He replaced supergales by termgales, which resemble
supergales, yet have modifications to deal with the
terminations of strings. This is done first via s-termgales
and then later by termgales, which are uniform families of
s-termgales.

(II) He replaced →∞ by a finite threshold.
(III) He replaced optimal s-supergale by and optimal termgale.
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I For s ∈ [0,∞), an s- termgale is a function d from the
collection of terminated strings T to R+ ∪ {0}, such that
d(λ) ≤ 1, and

d(σ) ≥ 2−s[d(σ0) + d(σ1) + d(σ�)].

Here � is a delimiting symbol, and has vanishing
probability as n →∞.

I

(I) A termgale is a family d = {ds : s ∈ [0,∞)} of s-termgales
such that

2−s|σ|ds(σ) = 2−s′|σ|d ′(σ),

for all s, s′ and σ ∈ 2<ω.
(II) We say that a termgale is constructive or Σ0

1, if d0 is a Σ0
1

function.
I Now introduce optimal termgales etc.
I Filtering through discrete semimeasures and the Coding

theorem, you get
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THEOREM (LUTZ)
There is a constant c ∈ N such that for all σ ∈ 2<ω,

|K (σ)− |σ| dim(σ)| ≤ c.
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SOME IGNORED MATERIAL

I The Russian school’s work on random strings.
I Time/space bounded Komogorov complexity.
I work on Schnorr, computable and other randomness

notions.
I especially the beautiful lowness material of

Kučera-Terwijn-Zambella, and of Nies.
I Stochasiticity and Miller, Nies, Stephan, Merkle, etc
I complexity of c.e. sets and Kummer, Muchnik.
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I Thank you.
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