Observer dependent temperature of perceived radiation in black hole physics Aotearoa Fundamental Physics Workshop 2018

Luis Cortés Barbado

in collaboration with

Carlos Barceló Serón

Luis Javier Garay Elizondo

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fakultät für Physik, Universität Wien Institute of Astrophysics of Andalusia (CSIC, Spain)

Thursday, 13th December, 2018

Introduction

Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon? Quantum frictionless trajectories The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

Introduction Hawking radiation and Unruh effect

Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon? Quantum frictionless trajectories The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

What is Hawking radiation?

- It is a radiation of quantum nature that escapes from black holes
- It has its origin in the collapse process that forms the black hole
- For late enough times, it does not depend on its details
- The spectrum of the radiation is thermal, with temperature
 T_H = ħκ_H/(2πk_B) proportional to the surface gravity κ_H

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

What is the Unruh effect?

- Particle definition and perception in quantum field theory is an observer dependent notion
- In general, families of observers will differ in their notions of vacuum state and particles
- The Unruh effect: the thermal spectrum that an accelerated observer detects with temperature T_U = ħa/(2πk_B) proportional to its acceleration

(日) (日) (日) (日) (日) (日) (日)

Our question

How these two effects combine to give the **net perception for a general observer** outside a black hole?

Introduction Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon? Quantum frictionless trajectories The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

Geometry, field, and approximations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Radial sector of Schwarzschild spacetime (we work in 1 + 1 dimensions)
- We omit the grey body factors
- Massless real Klein-Gordon scalar field (conformal invariance)

Collapse scheme

Collapse process

- ► Ingoing normal modes in the asymptotic null past are $e^{-i\omega'\bar{\nu}}$, where $\bar{\nu} := t + r^*$ is the affine parameter in that region
- > The field is on the state $|0_{in}\rangle$, the vacuum state associated to these modes
- Outgoing normal modes in the asymptotic null future are $e^{-i\omega \bar{u}}$, where $\bar{u} := t r^*$ is the affine parameter in that region
- The vacuum state associated to that modes would be $|0_{out}\rangle$
- When reversed back through the dynamical collapse (from late enough times), e^{-iωū} modes end up in modes ~ e^{i(ω/κ_H) log[A(v̄_H-v̄)]}

Hawking radiation found

- These modes mix positive and negative frequency modes of the kind e^{-iω'ν̄}!
- If the vacuum is |0_{in}>, observers in the asymptotic null future will detect a non-zero amount of particles
- This amount happens to be

$$\langle N_{\omega}
angle = rac{1}{\mathrm{e}^{rac{2\pi\omega}{\kappa_{\mathrm{H}}}}-1}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This is a thermal spectrum with temperature proportional to κ_H: Hawking radiation

The key point

- The key point: the transformation of the normal outgoing modes when reversed back in time
- Its properties are encoded in the relations between the affine parameters in the past (v) and future (u) regions

$$ar{v} = ar{v}_{\mathrm{H}} - rac{1}{A}\mathrm{e}^{-\kappa_{\mathrm{H}}ar{u}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 A similar derivation in Minkowski vacuum for accelerated observers yields the Unruh effect

ntroduction Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function

Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon? Quantum frictionless trajectories The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

Definition of the effective temperature function

- Consider the vacuum state $|0_U\rangle$ associated to some modes $e^{-i\omega' U}$
- Consider some observer (t(τ), r(τ)) who naturally couples to the modes e^{-iωτ}
- Let us define the function

$$\kappa(au) := - \left. \frac{\mathrm{d}^2 U}{\mathrm{d} au^2} \right/ \frac{\mathrm{d} U}{\mathrm{d} au}$$

If κ(τ) is approximately constant ≈ κ_{*} around some instant τ^{*}, we integrate and obtain

$$U = U_{\rm H} - \frac{1}{A} {\rm e}^{-\kappa_* \tau}$$

 During this interval the observer perceives radiation with temperature T_{*} = ħ|κ_{*}|/(2πk_B)

A general expression

• We have a general expression for $\kappa(\tau)$

$$\kappa(\tau) = \sqrt{\frac{1-v_l}{1+v_l}} \frac{1}{\sqrt{1-\frac{2M}{r}}} \left(\bar{\kappa}(\bar{u}) - \frac{M}{r^2}\right) + a_p$$

- $r(\tau)$ is the radial position
- $v_l(\tau)$ is the local velocity with respect to the black hole
- $a_p(\tau)$ is the proper acceleration
- $\bar{u}(\tau)$ is the \bar{u} parameter of the light ray it is crossing
- *κ*(*ū*) is the effective temperature for static observers in the asymptotic region

A first attempt of interpretation

$$\kappa(\tau) = \sqrt{rac{1-v_l}{1+v_l}} rac{1}{\sqrt{1-rac{2M}{r}}} \left(ar\kappa(ar u) - rac{M}{r^2}
ight) + a_p$$

- *κ*(*ū*) is the escaping radiation that the observer is crossing at τ
- $-\frac{M}{r^2}$ is a subtracting term due to 'gravitational acceleration' (but why?)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- $\frac{1}{\sqrt{1-\frac{2M}{r}}}$ is the gravitational blue-shift factor
- $\sqrt{\frac{1-v_l}{1+v_l}}$ is the Doppler shift factor
- ► *a_p* is... Unruh effect?

Introduction

Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon? Quantum frictionless trajectories The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

Sources of energy

There are three sources of energy for the radiation detected:

The radiation emitted by the black hole

The energy provided by the observer's rockets

The gravitational potential energy of the observer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Asymptotic observers are privileged

- Static observers in the asymptotic region do not have rockets or exploit their gravitational energy
- These observers can only detect radiation emission
- But these observers detect k?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

κ discriminates the radiation emission (such as Hawking radiation)

Hawking versus Unruh

 $\kappa(\tau) = \kappa_{\text{Hawk}}(\tau) + \kappa_{\text{Unruh}}(\tau)$

$$\kappa_{\mathrm{Hawk}}(\tau) = \sqrt{\frac{1-v_l}{1+v_l}} \frac{1}{\sqrt{1-\frac{2M}{r}}} \bar{\kappa}(\bar{u})$$

This term is the radiation emitted to the asymptotic region, adequately shifted

$$\kappa_{\mathrm{Unruh}}(au) = -\sqrt{rac{1-v_l}{1+v_l}}rac{1}{\sqrt{1-rac{2M}{r}}}rac{M}{r^2}+a_p$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This must be (by elimination) the Unruh effect

The Unruh effect as a relative acceleration

Unruh effect contribution can be written as

$$\begin{aligned} \kappa_{\text{Unruh}}(\tau) &= -\left(\frac{\mathrm{d}\bar{u}}{\mathrm{d}\tau}\right)^{-1} \frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{\mathrm{d}\bar{u}}{\mathrm{d}\tau}\right) \\ &= -\left(\frac{\mathrm{d}\bar{u}}{\mathrm{d}\tau}\right)^{-1} \frac{\mathrm{d}}{\mathrm{d}\tau} \left(\sqrt{\frac{1-\nu_l}{1+\nu_l}} \frac{1}{\sqrt{1-\frac{2M}{r}}}\right) \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- This is the acceleration with respect to the asymptotic region, in the sense of the variation of the shift du/dr
- In Minkowski, this notion coincides with the proper acceleration

Different causes... and different consequences

- Each effect have different consequences
- Hawking radiation is external and produces radiation action

Unruh effect produces itself Unruh radiation, which causes radiation back-reaction

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers

Slowly crossing the horizon? Quantum frictionless trajectories The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

Static observers

Unruh vacuum state with Hawking radiation:

$$\bar{\kappa} = \frac{1}{4M}$$

An static observer at a radius r₀ perceives

$$\kappa = \kappa_{\text{Hawk}} = \frac{1}{\sqrt{1 - \frac{2M}{r_0}}} \frac{1}{4M}$$

This is just Hawking radiation with a gravitational blueshift

The radiation pressure can lead to buoyancy effects

Free-falling observers

An free-falling observer perceives

$$\kappa = \sqrt{\frac{1 - v_l}{1 + v_l}} \frac{1}{\sqrt{1 - \frac{2M}{r}}} \left(\frac{1}{4M} - \frac{M}{r^2}\right)$$

• When approaching the horizon $(r \rightarrow 2M)...$

$$\frac{1}{\sqrt{1-\frac{2M}{r}}}\left(\frac{1}{4M}-\frac{M}{r^2}\right)\to 0$$

But, along a given geodesic...

$$\kappa(\tau) \not\rightarrow \mathbf{0}$$

- This is due to a diverging Doppler shift
- For an observer left to fall from the asymptotic region

$$\kappa(\tau) o \frac{1}{M}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Free-falling from infinity

u

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction

Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon? Quantum frictionless trajectories The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

It's not so easy to (slowly) cross the horizon

For the ingoing radiation sector, we have

$$\kappa = \kappa_{\text{Unruh}} = \sqrt{\frac{1+v_l}{1-v_l}} \frac{1}{\sqrt{1-\frac{2M}{r}}} \frac{M}{r^2}$$

• When approaching the horizon ($r \rightarrow 2M$)...

$$\frac{1}{\sqrt{1-\frac{2M}{r}}}\frac{M}{r^2}\to\infty$$

(Although, along a given geodesic...)

$$\kappa(\tau) \not\to \infty$$

- If you are free-falling (and slow), Unruh stops you
- If you are static (and close), Hawking stops you

Introduction

Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon?

Quantum frictionless trajectories

The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quantum frictionless trajectories

- We want to have no Unruh effect in the outgoing sector
- The equation

$$\kappa_{\text{Unruh}} = 0 \Rightarrow \sqrt{\frac{1-v_l}{1+v_l}} \frac{1}{\sqrt{1-\frac{2M}{r}}} = C$$

has many solutions: the quantum frictionless trajectories

ヘロト 人間 とくほ とくほ とう

-

Going into a buoyancy scenario

These trajectories are not geodesic

$$a_p = rac{CM}{r^2}$$

If the object emits a total power P, the irradiance perceived is

$$S = \frac{1 - v_l}{1 + v_l} \frac{1}{1 - \frac{2M}{r}} \frac{P}{4\pi r^2} = \frac{C^2 P}{4\pi r^2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The perceived radiation can be the source for the proper acceleration needed!
- There is ingoing Unruh effect, but it actually helps

Introduction

Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon? Quantum frictionless trajectories

The pulsating vacuum

Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The pulsating vacuum

- There is no need to form a horizon
- There is no need to invoke trans-planckian frequencies

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction

Hawking radiation and Unruh effect Quantum Field Theory in the collapse

Radiation perception

The effective temperature function Hawking versus Unruh

Applications

Static and free falling observers Slowly crossing the horizon? Quantum frictionless trajectories The pulsating vacuum Relative effective temperatures

Beyond the thermal spectrum

The Perceived Stress-Energy Tensor

Relative effective temperatures

- Consider different families of observers, each of which naturally quantizes the field with particles corresponding to modes e^{-iωu_i}
- Consider the quantities:

$$\mathcal{D}_{i,j} := rac{\mathrm{d} u_j}{\mathrm{d} u_i}, \quad \kappa_{i,j} := - \left. rac{\mathrm{d}^2 u_j}{\mathrm{d} u_i^2}
ight/ rac{\mathrm{d} u_j}{\mathrm{d} u_i} \,.$$

We have the following relations:

$$\kappa_{i,j} = -D_{i,j}\kappa_{j,i}, \quad \kappa_{i,j} = D_{i,k}\kappa_{k,j} + \kappa_{i,k}$$

- The general expression for κ(τ) in Schwarzschild can be constructed out of these relations
- The key ingredient for the radiation perception is the relative variations of the shifts

Beyond the thermal spectrum

 Corrections to for non-constant (unidirectional) acceleration g(τ) (in 3 + 1!)

The construction should be reproduced in 1 + 1 dimensions with g(τ) → κ(τ), and the factors changing

That's all...

Thanks for the attention!