
Does the chicken survive the firewall?

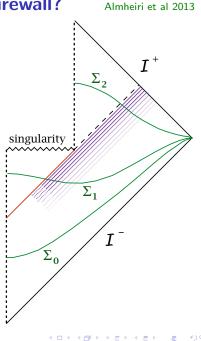
Jorma Louko

School of Mathematical Sciences, University of Nottingham

Observer-dependent entropy

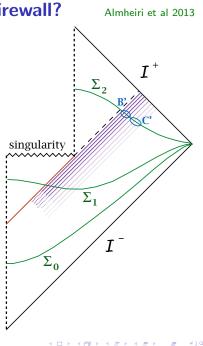
Victoria University of Wellington, 12-14 December 2018

Plan


1. Black hole information loss: Firewall?

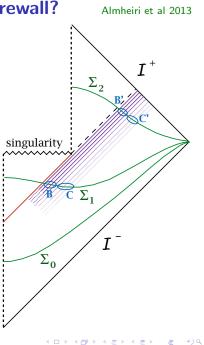
 \longrightarrow Correlation breakdown in quantum field theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

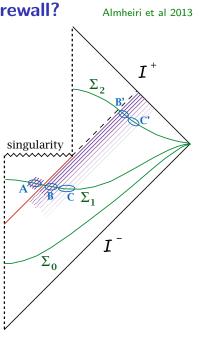

- 2. 'Atom': Pointlike system in quantum field theory
- 3. Rindler Firewall
 - \longrightarrow Evolution of entanglement
- 4. Wall creation
 - **Scalar field in** 1+1 and 3+1
 - Spinor field in 1+1
- 5. Summary

Suppose BH evaporates fully and the process preserves unitarity

Suppose BH evaporates fully and the process preserves unitarity


Pure state on Σ₂ ⇒ B' and C' strongly correlated

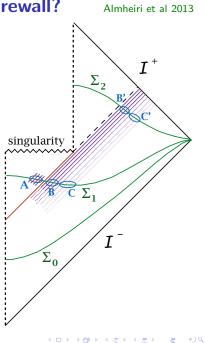
Suppose BH evaporates fully and the process preserves unitarity


- Pure state on $\Sigma_2 \Rightarrow$ *B'* and *C'* strongly correlated
- Evolution \Rightarrow

B and C strongly correlated

Suppose BH evaporates fully and the process preserves unitarity

- Pure state on Σ₂ ⇒ B' and C' strongly correlated
- Evolution \Rightarrow *B* and *C* strongly correlated
- ► Hawking ⇒
 B and A strongly correlated



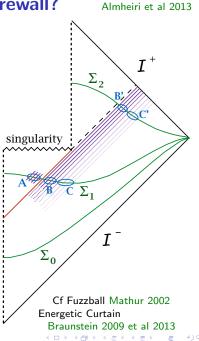
・ロト ・ 日 ト ・ 日 ト

Suppose BH evaporates fully and the process preserves unitarity

- Pure state on Σ₂ ⇒ B' and C' strongly correlated
- ► Evolution ⇒
 B and C strongly correlated
- ► Hawking ⇒
 B and A strongly correlated

Contradicts entanglement monogamy theorem ?!?

Suppose BH evaporates fully and the process preserves unitarity


- Pure state on Σ₂ ⇒ B' and C' strongly correlated
- ► Evolution ⇒
 B and C strongly correlated
- ► Hawking ⇒
 B and A strongly correlated

Contradicts entanglement monogamy theorem ?!?

Almheiri at al (AMPS) 2013 resolution proposal:

A-B correlations broken by "drama" at the shrinking horizon even for macroscopic BH

"Firewall"

2. 'Atom': Pointlike system in quantum field theory (Unruh-DeWitt detector)

Quantum field

- D spacetime dimension
- ϕ real scalar field
- $|0\rangle$ (initial) state

Two-state detector (atom)

- $\|0\rangle\!\rangle$ state with energy 0
- $\|1
 angle$ state with energy ω
- $x(\tau)$ detector worldline,
 - τ proper time

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2. 'Atom': Pointlike system in quantum field theory (Unruh-DeWitt detector)

Quantum field

- D spacetime dimension
- ϕ real scalar field
- $|0\rangle$ (initial) state

Two-state detector (atom)

- $\|0\rangle\!\rangle$ state with energy 0
- $\left\| 1 \right\rangle \!\!\!\! \rangle \hspace{0.5mm}$ state with energy ω
- $x(\tau)$ detector worldline, au proper time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Interaction: one of

$$\begin{split} H^{(0)}_{\text{int}}(\tau) &= \mathbf{c}\chi(\tau)\mu(\tau)\phi\bigl(\mathsf{x}(\tau)\bigr) & \longleftarrow \text{ usual UDW} \\ H^{(1)}_{\text{int}}(\tau) &= \mathbf{c}\chi(\tau)\mu(\tau)\frac{\mathrm{d}}{\mathrm{d}\tau}\phi\bigl(\mathsf{x}(\tau)\bigr) & \longleftarrow \text{ derivative-coupling} \end{split}$$

- c coupling constant
- χ switching function, C_0^{∞}
- μ detector's monopole moment operator

Probability of transition

$$\|0
angle \otimes |0
angle \longrightarrow \|1
angle \otimes |$$
anything $angle$

in first-order perturbation theory:

$$P(\omega) = c^{2} \underbrace{\left| \langle \langle 0 || \mu(0) || 1 \rangle \rangle \right|^{2}}_{\text{detector internals only:}} \times \underbrace{F(\omega)}_{\text{trajectory and } |0\rangle:}$$

$$F^{(0)}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-i\omega(\tau'-\tau'')} \,\chi(\tau')\chi(\tau'') \,W(\tau',\tau'')$$

$$F^{(1)}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-i\omega(\tau'-\tau'')} \,\chi(\tau')\chi(\tau'') \,\partial_{\tau'}\partial_{\tau''} W(\tau',\tau'')$$

 $\mathcal{W}(\tau',\tau'') = \langle \mathbf{0} | \phi \big(\mathbf{x}(\tau') \big) \phi \big(\mathbf{x}(\tau'') \big) | \mathbf{0} \rangle \quad \text{Wightman function}$

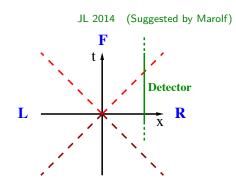
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Probability of transition

$$\|0
angle \otimes |0
angle \longrightarrow \|1
angle \otimes |$$
anything $angle$

in first-order perturbation theory:

$$P(\omega) = c^{2} \underbrace{\left| \langle \langle 0 || \mu(0) || 1 \rangle \rangle \right|^{2}}_{\text{detector internals only:}} \times \underbrace{F(\omega)}_{\text{trajectory and } |0\rangle:}$$

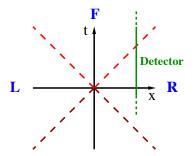

$$F^{(0)}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-i\omega(\tau'-\tau'')} \,\chi(\tau')\chi(\tau'') \,W(\tau',\tau'')$$

$$F^{(1)}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-i\omega(\tau'-\tau'')} \,\chi(\tau')\chi(\tau'') \,\partial_{\tau'}\partial_{\tau''} W(\tau',\tau'')$$

 $W(\tau',\tau'') = \langle 0|\phi(\mathsf{x}(\tau'))\phi(\mathsf{x}(\tau''))|0\rangle \qquad \begin{array}{l} \text{Wightman function} \\ \text{(distribution!)} \end{array}$

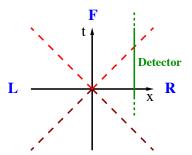
うせん 同一人用 (一日) (日)

1+1 Minkowski $\phi(t,x)$ massless Unruh-DeWitt detector



JL 2014 (Suggested by Marolf)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで


1+1 Minkowski $\phi(t,x)$ massless Unruh-DeWitt detector

Recall Minkowski vacuum $|0_M\rangle:$ R and L correlated \Rightarrow Unruh effect

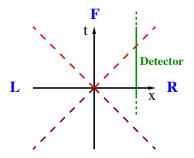
(Suggested by Marolf) JL 2014

1+1 Minkowski $\phi(t, x)$ massless Unruh-DeWitt detector

Recall Minkowski vacuum $|0_M\rangle$: **R** and **L** correlated \Rightarrow Unruh effect Define mixed state ρ_{FW} :

- 1. In **R**: $\rho_{\mathbf{R}} := \operatorname{Tr}_{\mathbf{L}}(|\mathbf{0}_{\mathsf{M}}\rangle\langle\mathbf{0}_{\mathsf{M}}|)$ In L: $\rho_{I} := \operatorname{Tr}_{R}(|0_{M}\rangle\langle 0_{M}|)$
- 2. In $\mathbf{R} \cup \mathbf{L}$: $\rho_{\mathsf{FW}} := \rho_{\mathbf{R}} \otimes \rho_{\mathbf{L}}$

indistinguishable from $|0_M\rangle$


indistinguishable from $|0_M\rangle$

No correlations between R and L

3. Evolved into **F** by null propagation

JL 2014 (Suggested by Marolf)

1+1 Minkowski $\phi(t,x)$ massless Unruh-DeWitt detector

Recall Minkowski vacuum $|0_M\rangle$: **R** and **L** correlated \Rightarrow Unruh effect Define mixed state ρ_{EW} :

2. In $\mathbf{R} \cup \mathbf{L}$: $\rho_{\mathsf{FW}} := \rho_{\mathbf{R}} \otimes \rho_{\mathsf{L}}$

indistinguishable from $|0_{\mathsf{M}}\rangle$

indistinguishable from $|0_{\mathsf{M}}\rangle$

 $ho_{\mathsf{FW}} :=
ho_{\mathbf{R}} \otimes
ho_{\mathbf{L}}$ No correlations between **R** and **L**

3. Evolved into F by null propagation

Firewall: ρ_{FW} is singular (non-Hadamard) at t = |x|. How strong?

$$egin{aligned} \mathcal{F}_{ extsf{FW}}^{(1)}(\omega) &- \mathcal{F}_{|0_{\mathsf{M}}
angle}^{(1)}(\omega) \ &= rac{\left[\chi(0)
ight]^2}{2\pi}\ln\left(|\omega|/\mu
ight) \end{aligned}$$

- ω : detector energy gap
- $F^{(1)}(\omega) \propto$ transition probability
- $\chi(au)$ switching: \propto coupling strength
- Firewall crossing at $\tau = 0$
- μ : infrared cutoff

$$+ \frac{\chi(0)}{2\pi} \int_0^\infty ds \cos(\omega s) \frac{[\chi(0) - \chi(-s)]}{s}$$

$$+ \frac{\chi(0)}{2\pi} \int_0^\infty ds \frac{[1 - \cos(\omega s)]}{s} \chi(s)$$

$$+ \frac{1}{2\pi} \int_0^\infty ds \frac{[\chi(s) - \chi(0)]}{s} \chi(s)$$

$$+ \frac{1}{2\pi} \int_0^\infty \frac{ds}{s^2} \int_0^s du \,\chi(u) [\chi(u - s) - \chi(u)]$$

$$- \frac{1}{2\pi} \int_0^\infty ds \frac{[1 - \cos(\omega s)]}{s^2} \int_0^s du \,\chi(u) \chi(u - s)$$

$$egin{aligned} \mathcal{F}_{ extsf{FW}}^{(1)}(\omega) &- \mathcal{F}_{|0_{\mathsf{M}}
angle}^{(1)}(\omega) \ &= rac{\left[\chi(0)
ight]^2}{2\pi}\ln\left(|\omega|/\mu
ight) \end{aligned}$$

- ω : detector energy gap
- $F^{(1)}(\omega) \propto$ transition probability
- $\chi(au)$ switching: \propto coupling strength
- Firewall crossing at $\tau = 0$
- μ : infrared cutoff

$$+ \frac{\chi(0)}{2\pi} \int_{0}^{\infty} ds \cos(\omega s) \frac{[\chi(0) - \chi(-s)]}{s}$$

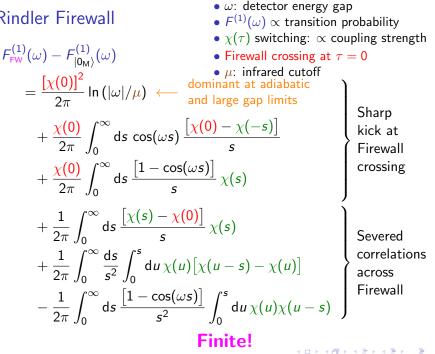
$$+ \frac{\chi(0)}{2\pi} \int_{0}^{\infty} ds \frac{[1 - \cos(\omega s)]}{s} \chi(s)$$

$$+ \frac{1}{2\pi} \int_{0}^{\infty} ds \frac{[\chi(s) - \chi(0)]}{s} \chi(s)$$

$$+ \frac{1}{2\pi} \int_{0}^{\infty} \frac{ds}{s^{2}} \int_{0}^{s} du \chi(u) [\chi(u - s) - \chi(u)]$$

$$- \frac{1}{2\pi} \int_{0}^{\infty} ds \frac{[1 - \cos(\omega s)]}{s^{2}} \int_{0}^{s} du \chi(u) \chi(u - s)$$
Finite!

$$egin{aligned} \mathcal{F}_{ extsf{FW}}^{(1)}(\omega) &- \mathcal{F}_{| extsf{OM}
angle}^{(1)}(\omega) \ &= rac{\left[\chi(0)
ight]^2}{2\pi}\ln\left(|\omega|/\mu
ight) \end{aligned}$$


• ω : detector energy gap • $F^{(1)}(\omega) \propto$ transition probability • $\chi(\tau)$ switching: \propto coupling strength • Firewall crossing at $\tau = 0$ • μ : infrared cutoff Sharp kick at Firewall crossing $+ \frac{\chi(\mathbf{0})}{2\pi} \int_0^\infty \mathrm{d}s \, \cos(\omega s) \, \frac{[\chi(\mathbf{0}) - \chi(-s)]}{s} \\ + \frac{\chi(\mathbf{0})}{2\pi} \int_0^\infty \mathrm{d}s \, \frac{[1 - \cos(\omega s)]}{s} \, \chi(s)$

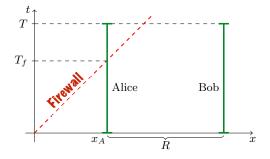
$$+ \frac{1}{2\pi} \int_0^\infty ds \, \frac{\left[\chi(s) - \chi(\mathbf{0})\right]}{s} \, \chi(s)$$

+
$$\frac{1}{2\pi} \int_0^\infty \frac{ds}{s^2} \int_0^s du \, \chi(u) \left[\chi(u-s) - \chi(u)\right]$$

-
$$\frac{1}{2\pi} \int_0^\infty ds \, \frac{\left[1 - \cos(\omega s)\right]}{s^2} \int_0^s du \, \chi(u) \chi(u-s)$$

Finite!

Severed correlations across Firewall

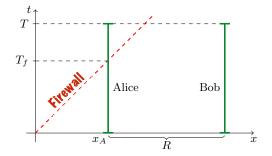

イロト イロト イヨト イヨト 三日

(日)

э

Detector pair: Alice and Bob

(日)


э

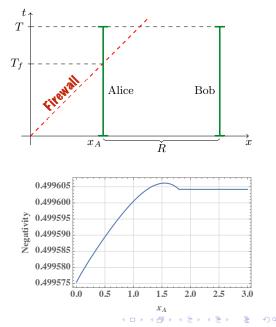
Detector pair: Alice and Bob

Initial state:

 $\frac{1}{\sqrt{2}}\left(\left|\downarrow\right\rangle_{A}\left|\downarrow\right\rangle_{B}+\left|\uparrow\right\rangle_{A}\left|\uparrow\right\rangle_{B}\right)$

Entanglement maximal: Negativity = $\frac{1}{2}$

Detector pair: Alice and Bob


Initial state:

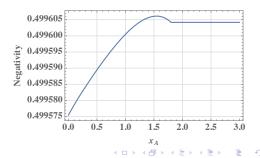
 $\frac{1}{\sqrt{2}}\left(\left|\downarrow\right\rangle_{A}\left|\downarrow\right\rangle_{B}+\left|\uparrow\right\rangle_{A}\left|\uparrow\right\rangle_{B}\right)$

Entanglement maximal: Negativity = $\frac{1}{2}$

Final state: entanglement changed

 Firewall crossing has a modest effect

Detector pair: Alice and Bob

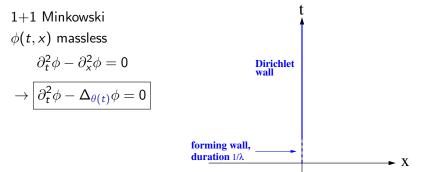

Initial state:

 $\frac{1}{\sqrt{2}}\left(\left|\downarrow\right\rangle_{A}\left|\downarrow\right\rangle_{B}+\left|\uparrow\right\rangle_{A}\left|\uparrow\right\rangle_{B}\right)$

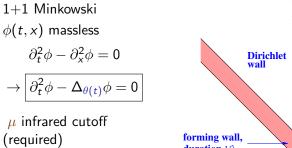
Entanglement maximal: Negativity = $\frac{1}{2}$ T_{f} Alice Bob

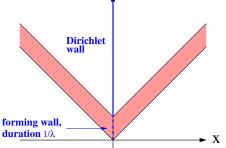
Final state: entanglement changed

- Firewall crossing has a modest effect
 - sign of effect: not fixed!

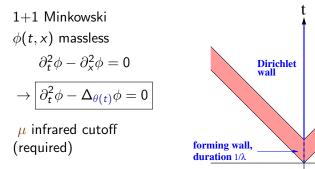

1+1 Minkowski $\phi(t, x)$ massless

$$\partial_t^2 \phi - \partial_x^2 \phi = 0$$

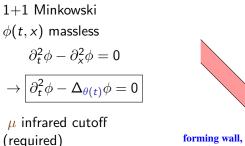

Dirichlet wall

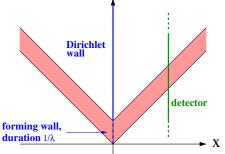

► X

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで


► Total energy radiated: $\langle E_{tot} \rangle \propto \lambda \ln(\lambda/\mu) \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation Cf Anderson and DeWitt 1986



Total energy radiated: (E_{tot}) ∝ λ ln(λ/μ) → ∞
 Divergent for sharp wall formation Cf Anderson and DeWitt 1986
 Atom coupled to φ: use Unruh-DeWitt detector

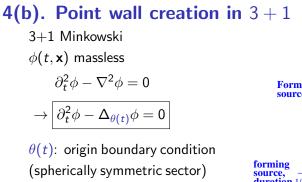
detector

► X

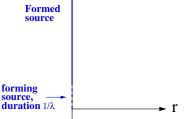
- ► Total energy radiated: $\langle E_{tot} \rangle \propto \lambda \ln(\lambda/\mu) \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation Cf Anderson and DeWitt 1986
- Atom coupled to \u03c6: use Unruh-DeWitt detector Transition probability finite for sharp wall formation
- Moral: sharp wall formation singular gravitationally but nonsingular for a matter coupling

4(b). Point wall creation in 3+1

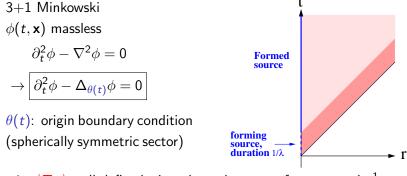
3+1 Minkowski


 $\phi(t, \mathbf{x})$ massless

$$\partial_t^2 \phi - \nabla^2 \phi = \mathbf{0}$$

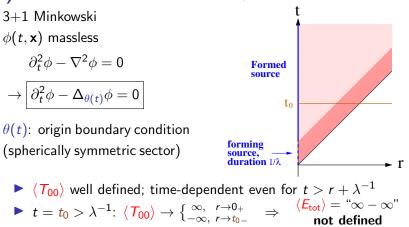

Formed source

Zhou et al 2016


► r

Zhou et al 2016

(日) (四) (日) (日) (日)



Zhou et al 2016

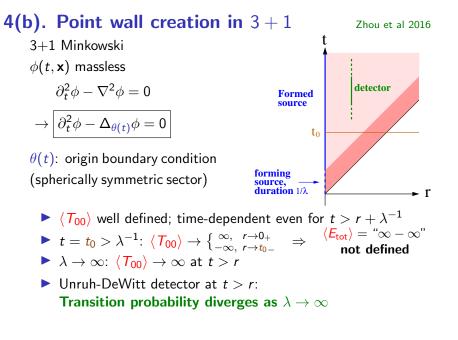
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

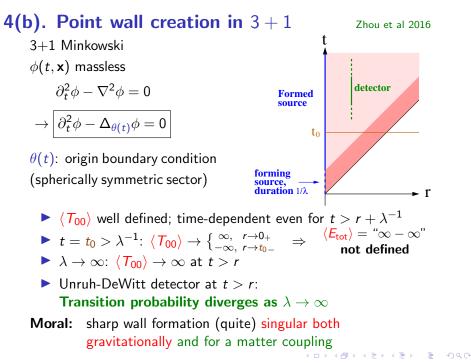
• $\langle T_{00} \rangle$ well defined; time-dependent even for $t > r + \lambda^{-1}$

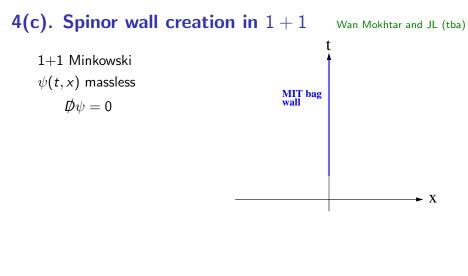
4(b). Point wall creation in 3+1

4(b). Point wall creation in 3+1

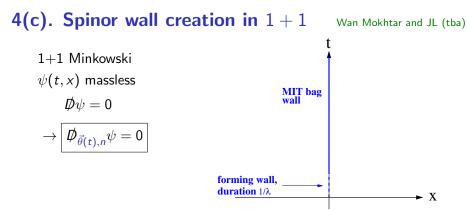
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●


Zhou et al 2016

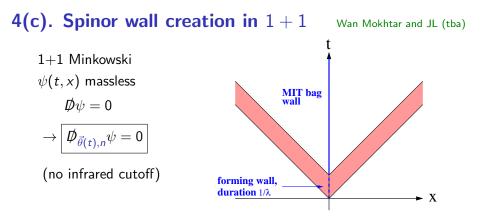

4(b). Point wall creation in 3+1


▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼ のへの

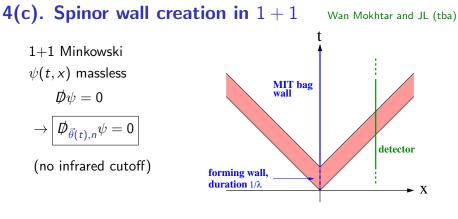
Zhou et al 2016



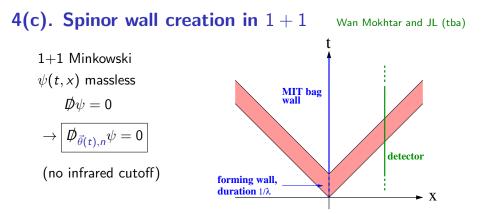
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - の久(で)



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

► Total energy radiated: $\langle E_{tot} \rangle \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation

- ► Total energy radiated: $\langle E_{tot} \rangle \xrightarrow[\lambda \to \infty]{} \infty$ Divergent for sharp wall formation
- Atom coupled to ψ : Unruh-DeWitt detector

- ► Total energy radiated: $\langle E_{tot} \rangle \xrightarrow{\lambda \to \infty} \infty$ Divergent for sharp wall formation
- Atom coupled to ψ : Unruh-DeWitt detector Transition probability diverges for sharp wall formation
- Moral: sharp wall formation singular both gravitationally and for a matter coupling

Summary

Rapid creation of a (pointlike) wall tends to be singular!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Both gravitationally and for a model atom's response
- 1+1 scalar field exceptional

Model for a black hole firewall?

- Spacetime will react. How?
- $G_{\mu\nu} = 8\pi \langle T_{\mu\nu} \rangle$? May or may not suffice...

Fully-developed firewall?

Quantum theory of spacetime needed

Summary

Rapid creation of a (pointlike) wall tends to be singular!

- Both gravitationally and for a model atom's response
- 1+1 scalar field exceptional

Model for a black hole firewall?

- Spacetime will react. How?
- $G_{\mu\nu} = 8\pi \langle T_{\mu\nu} \rangle$? May or may not suffice...

Fully-developed firewall?

Quantum theory of spacetime needed

Is information lost? Jury very much out!