Second law non-violation theorem for Lorentz-noninvariant black holes

Jorma Louko

School of Mathematical Sciences, University of Nottingham

Observer-dependent entropy

Victoria University of Wellington, 12-14 December 2018

R. Benkel, J. Bhattacharyya, JL, D. Mattingly, T. P. Sotiriou PRD **98** (2018) 024034 [arXiv:1803.01624]

Plan

1. Einstein gravity Penrose process

- Splitting, collisions, tether...
- 2. Covariant Lorentz violation
 - Einstein-æther
- 3. Lorentz-violating Penrose process
 - Spherical symmetry
 - Splitting
- 4. Results
 - Energy extraction admission theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Energy extraction no-go theorem
- 5. Upshots

1. Einstein gravity Penrose process

Rotating black hole

Splitting version Penrose and Floyd 1971

- 1. Drop in shuttle
 - + payload (waste)
- 2. Eject payload in ergoregion, *against* the rotation
- 3. Collect shuttle, extract energy from velocity

Extracted energy $> m_{waste}c^2$

Picture: Misner, Thorne and Wheeler 1973

◆□ → ◆圖 → ◆国 → ◆国 → □ ■

1. Einstein gravity Penrose process

Rotating black hole

Splitting version Penrose and Floyd 1971

- 1. Drop in shuttle
 - + payload (waste)
- 2. Eject payload in ergoregion, *against* the rotation
- 3. Collect shuttle, extract energy from velocity

Extracted energy $> m_{waste}c^2$

- Energy budget drawn at infinity
- ► Comes from rotational energy → Laws of BH mechanics...

Picture: Misner, Thorne and Wheeler 1973

1. Einstein gravity Penrose process

Rotating black hole

Splitting version Penrose and Floyd 1971

- 1. Drop in shuttle
 - + payload (waste)
- 2. Eject payload in ergoregion, *against* the rotation
- 3. Collect shuttle, extract energy from velocity

Extracted energy $> m_{waste}c^2$

- Energy budget drawn at infinity
- ► Comes from rotational energy → Laws of BH mechanics...
- Exists for $|J|/M^2 > 2/(\sqrt{2} + 1)$ Fayos Valles and Llanta Salleras 1991 (and only for?)
- Collision version more efficient Wald 1974,...

Picture: Misner, Thorne and Wheeler 1973

Einstein gravity Penrose process (cont'd)

Tether version Penrose 1969

- 1. Lower payload (waste) to ergoregion by a tether
- 2. Extract energy from pull on the tether

Extracted energy $> m_{waste}c^2$

Picture: Penrose 1969

A D > A P > A B > A B >

Einstein gravity Penrose process (cont'd)

Tether version Penrose 1969

- 1. Lower payload (waste) to ergoregion by a tether
- 2. Extract energy from pull on the tether

Extracted energy $> m_{waste}c^2$

- Tether's net contribution to energy budget assumed negligible
 - $\label{eq:ongoing debate...} \begin{array}{c} \rightarrow \mbox{ Ongoing debate...} \\ \mbox{ Marolf and Sorkin 2002} \\ \mbox{ A. R. Brown 2013} \end{array}$

Today: no tethers!

(日) (四) (日) (日) (日)

Fundamental Jacobson and Mattingly 2001,... or effective Hořava 2009,...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dynamical fields:

►
$$g_{ab}^{(A)}$$
 (-+++)

•
$$u^a$$
 with $u_a u^a = -1$ (æther)

 \Rightarrow Distinguished timelike direction at each point

Fundamental Jacobson and Mattingly 2001,... or effective Hořava 2009,...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dynamical fields:

•
$$g_{ab}^{(A)}$$
 (-+++)
• u^a with $u_a u^a = -1$ (æther)

 \Rightarrow Distinguished timelike direction at each point

Build second metric:

$$g_{ab}^{(B)} = -u_a u_b + c^{-2} \left(g_{ab}^{(A)} + u_a u_b \right)$$
$$c > 1$$

Fundamental Jacobson and Mattingly 2001,... or effective Hořava 2009,...

Dynamical fields:

$$g_{ab}^{(B)} = -u_a u_b + c^{-2} \left(g_{ab}^{(A)} + u_a u_b \right) \qquad (-+++) \text{ but faster!}$$

$$c > 1$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fundamental Jacobson and Mattingly 2001,... or effective Hořava 2009,...

Dynamical fields:

$$g_{ab}^{(B)} = -u_a u_b + c^{-2} \left(g_{ab}^{(A)} + u_a u_b \right) \qquad (-+++) \text{ but faster}$$
$$c > 1$$

Excitations:

A-fields: hyperbolic in $g_{ab}^{(A)}$

B-fields: hyperbolic in $g_{ab}^{(B)}$

Local interactions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fundamental Jacobson and Mattingly 2001,... or effective Hořava 2009,...

Dynamical fields:

$$g_{ab}^{(B)} = -u_a u_b + c^{-2} (g_{ab}^{(A)} + u_a u_b) \qquad (-+++) \text{ but faster!}$$

$$c > 1$$

Excitations:

particles: geodesic A-fields: hyperbolic in $g_{ab}^{(A)}$ particles: geodesic B-fields: hyperbolic in $g_{ab}^{(B)}$

Local interactions \rightarrow **Collisions** conserving 4-momentum

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fundamental Jacobson and Mattingly 2001,... or effective Hořava 2009,...

Dynamical fields:

$$g_{ab}^{(B)} = -u_a u_b + c^{-2} (g_{ab}^{(A)} + u_a u_b) \qquad (-+++) \text{ but faster!}$$

$$c > 1$$

Excitations:

particles: geodesic A-fields: hyperbolic in $g_{ab}^{(A)}$ particles: geodesic B-fields: hyperbolic in $g_{ab}^{(B)}$ Ua Alightone

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Local interactions

 \rightarrow **Collisions** conserving 4-momentum (1-form)

 $g_{ab}^{(A)}$:

- static, spherically symmetric, asymptotically flat
- $\chi^{\rm a}$ Killing, asymptotically Minkowski ∂_t at infinity
- future A-horizon: $\chi_a \chi^a$ changes sign

 $g_{ab}^{(A)}$:

- static, spherically symmetric, asymptotically flat
- $\chi^{\rm a}$ Killing, asymptotically Minkowski ∂_t at infinity
- future A-horizon: $\chi_a \chi^a$ changes sign

u^a:

ullet stationary, spherically symmetric, asymptotically ∂_t at infinity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• regular on A-horizon

 \Rightarrow A-horizon not an event horizon in $g_{ab}^{(B)}$

 $g_{ab}^{(A)}$:

- static, spherically symmetric, asymptotically flat
- $\chi^{\rm a}$ Killing, asymptotically Minkowski ∂_t at infinity
- future A-horizon: $\chi_a \chi^a$ changes sign

u^a:

ullet stationary, spherically symmetric, asymptotically ∂_t at infinity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- regular on A-horizon
 - \Rightarrow A-horizon not an event horizon in $g_{ab}^{(B)}$

 $g_{ab}^{(A)}$

- static, spherically symmetric, asymptotically flat
- $\chi^{\rm a}$ Killing, asymptotically Minkowski ∂_t at infinity
- future A-horizon: $\chi_a \chi^a$ changes sign

u^a:

- \bullet stationary, spherically symmetric, asymptotically ∂_t at infinity
- regular on A-horizon
 - \Rightarrow A-horizon not an event horizon in $g_{ab}^{(B)}$

cf Eling et al 2007

Radial motion (by assumption)

• Σ (*A* or *B*) dropped from infinity

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

cf Eling et al 2007

Radial motion (by assumption)

- Σ (A or B) dropped from infinity
- $\Sigma \rightarrow A + B$ split in ergoregion
- **B**-ejectum escapes to infinity

Killing energy at infinity?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

cf Eling et al 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

cf Eling et al 2007

Radial motion (by assumption)

- Σ (A or B) dropped from infinity
- $\Sigma \rightarrow A + B$ split in ergoregion
- **B**-ejectum escapes to infinity

Killing energy at infinity?

- Iff $-k_a^A \chi^a < 0$, Killing energy at infinity increases
 - \Rightarrow End point of energy extraction?
 - \Rightarrow Perpetual motion?
 - ⇒ Violation of 2nd law of BH thermodynamics?!? cf Eling et al 2007, Jacobson and Wall 2010, Dubovsky and Sibiryakov 2006

cf Eling et al 2007

Radial motion (by assumption)

- Σ (A or B) dropped from infinity
- $\Sigma \rightarrow A + B$ split in ergoregion
- **B**-ejectum escapes to infinity

Killing energy at infinity?

- Iff $-k_a^A \chi^a < 0$, Killing energy at infinity increases
 - \Rightarrow End point of energy extraction?
 - \Rightarrow Perpetual motion?
 - ⇒ Violation of 2nd law of BH thermodynamics?!? cf Eling et al 2007, Jacobson and Wall 2010, Dubovsky and Sibiryakov 2006

For which $(g_{ab}^{(A)}, u^a)$ does the process exist?

4. Results

1. Energy extraction admission theorem For any $g_{ab}^{(A)}$, the process exists for **some** u^a

Construction:

- Σ : massive A
- B-ejectum massless

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

4. Results

1. Energy extraction admission theorem For any $g_{ab}^{(A)}$, the process exists for **some** u^a

Construction:

- Σ : massive A
- B-ejectum massless

• At splitting event, make u^a point to the **left** of v^a by sufficiently large relative A-velocity $(> c^{-1})$ cf Eling et al 2007

4. Results

1. Energy extraction admission theorem For any $g_{ab}^{(A)}$, the process exists for **some** u^a

Construction:

- Σ : massive A
- B-ejectum massless

• At splitting event, make u^a point to the **left** of v^a by sufficiently large relative *A*-velocity $(> c^{-1})$ cf Eling et al 2007

Does this happen for 'reasonable' field equations?

4. Results (cont'd)

2. Energy extraction no-go theorem

$$-\frac{g_{ab}^{(B)}}{\chi^a}\chi^b < 1 \tag{1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

in exterior \cup ergosurface \cup ergoregion, the process does not exist.

4. Results (cont'd)

2. Energy extraction no-go theorem

$$-g_{ab}^{(B)}\chi^a\chi^b < 1 \tag{1}$$

in exterior \cup ergosurface \cup ergoregion, the process does not exist.

Comments

- Physics of (1): $-g_{00}^{(B)} < 1 \implies B$ -gravity attractive
- (1) implies $-g^{(A)}_{ab}\chi^a\chi^b < 1 \implies A$ -gravity attractive too
- \bullet (1) holds in all known Einstein-æther and Hořava solutions, analytic and numerical
- Might (1) necessarily follow from (reasonable) field equations?

4. Results (cont'd)

2. Energy extraction no-go theorem

$$-g_{ab}^{(B)}\chi^a\chi^b < 1 \tag{1}$$

in exterior \cup ergosurface \cup ergoregion, the process does not exist.

Comments

- Physics of (1): $-g_{00}^{(B)} < 1 \implies B$ -gravity attractive
- (1) implies $-g^{(A)}_{ab}\chi^a\chi^b < 1 \implies A$ -gravity attractive too
- \bullet (1) holds in all known Einstein-æther and Hořava solutions, analytic and numerical
- Might (1) necessarily follow from (reasonable) field equations?

Proof: conceptually straightforward

5. Upshots

No-go theorem for Penrose splitting processes in spherically symmetric black holes without local Lorentz symmetry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Strong despite limitations (e.g. radial motion)
 ⇒ no perpetual motion
 ⇒ no violation of 2nd law of thermodynamics

5. Upshots

No-go theorem for Penrose splitting processes in spherically symmetric black holes without local Lorentz symmetry

Strong despite limitations (e.g. radial motion)
 ⇒ no perpetual motion
 ⇒ no violation of 2nd law of thermodynamics

Nonradial motion?

 A prospective no-go theorem may need assumptions about the area-radius Ezra and Louko in progress

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5. Upshots

No-go theorem for Penrose splitting processes in spherically symmetric black holes without local Lorentz symmetry

- **Strong** despite limitations (e.g. radial motion)
 - \Rightarrow no perpetual motion
 - \Rightarrow no violation of 2nd law of thermodynamics

Nonradial motion?

 A prospective no-go theorem may need assumptions about the area-radius Ezra and Louko in progress

Conjecture:

If field equations allow −g^(B)_{ab} χ^a χ^b < 1 to be violated and energy extraction to occur, there must be new charges at infinity

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・