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No ordered state at any finite temperature due to spin-waves! 
Mermin and Wagner 1966



Figure 3: To the left a single vortex configuration, and to the right a vortex-
antivortex pair. The angle ✓ is shown as the direction of the arrows, and the cores
of the vortex and antivortex are shaded in red and blue respectively. Note how the
arrows rotate as you follow a contour around a vortex.

by the Hamiltonian,

HXY = �J
X
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where hiji again denotes nearest neighbours and the angular variables, 0 
✓i < 2⇡ can denote either the direction of an XY-spin or the phase of a
superfluid. We shall discuss this model in some detail below.

Although the GL and BCS theories were very successful in describing many
aspects of superconductors, as were the theories developed by Lev Landau (No-
bel Prize 1962), Nikolay Bogoliubov, Richard Feynman and others for the Bose
superfluids, not everything fit neatly into the Landau paradigm of order param-
eters and spontaneous symmetry breaking. Problems occur in low-dimensional
systems, such as thin films or thin wires. Here, the thermal fluctuations be-
come much more important and often prevent ordering even at zero temper-
ature [39]. The exact result of interest here is due to Wegner, who showed
that there cannot be any spontaneous symmetry breaking in the XY-model at
finite temperature [53].

So far we have discussed phenomena that can be understood using classical
concepts, at least as long as one accepts that superfluids are characterised
by a complex phase. There are however important macroscopic phenomena
that cannot be explained without using quantum mechanics. To find the
ground state of a quantum many-body problem is usually very difficult, but
there are some important examples where solutions to simplified problems give
deep physical insights. Electromagnetic response in crystalline materials is an
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Kosterlitz-Thouless transition
gas of v-av pairs unbound vortices

low T high T
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Kosterlitz-Thouless transition
gas of v-av pairs unbound vortices

low T high T

Free-energy for a single vortex
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Critical temperature:

Topological phase transition! 
J M Kosterlitz and D J Thouless, J. Phys C: Solid State Phys. 6, 1181 (1973).
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Kosterlitz-Thouless transition
gas of v-av pairs unbound vortices

low T high T

Topological phase transition! 

Physical systems

• thin films of superfluid 4He
• disordered superconducting thin films
• planar arrays of Josephson junctions
•melting of 2D solids 
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Berezinskii–Kosterlitz–Thouless crossover in a
trapped atomic gas
Zoran Hadzibabic1, Peter Krüger1, Marc Cheneau1, Baptiste Battelier1 & Jean Dalibard1

Any state of matter is classified according to its order, and the type
of order that a physical system can possess is profoundly affected
by its dimensionality. Conventional long-range order, as in a
ferromagnet or a crystal, is common in three-dimensional systems
at low temperature. However, in two-dimensional systems with a
continuous symmetry, true long-range order is destroyed by
thermal fluctuations at any finite temperature1,2. Consequently,
for the case of identical bosons, a uniform two-dimensional fluid
cannot undergo Bose–Einstein condensation, in contrast to the
three-dimensional case. However, the two-dimensional system can
form a ‘quasi-condensate’ and become superfluid below a finite
critical temperature. The Berezinskii–Kosterlitz–Thouless (BKT)
theory3,4 associates this phase transition with the emergence of a
topological order, resulting from the pairing of vortices with
opposite circulation. Above the critical temperature, proliferation
of unbound vortices is expected. Here we report the observation of
a BKT-type crossover in a trapped quantum degenerate gas of
rubidium atoms. Using a matter wave heterodyning technique, we
observe both the long-wavelength fluctuations of the quasi-
condensate phase and the free vortices. At low temperatures, the
gas is quasi-coherent on the length scale set by the system size.
As the temperature is increased, the loss of long-range coher-
ence coincides with the onset of proliferation of free vortices.
Our results provide direct experimental evidence for the micro-
scopic mechanism underlying the BKT theory, and raise new
questions regarding coherence and superfluidity in mesoscopic
systems.
The BKT mechanism is very different from the usual finite-

temperature phase transitions. It does not involve any spontaneous
symmetry-breaking and emergence of a spatially uniform order
parameter. Instead, the low-temperature phase is associated with a
quasi-long-range order, with the correlations of the order parameter
(for example, the macroscopic wavefunction of a Bose fluid) decay-
ing algebraically in space. Above the critical temperature this quasi-
long-range order is no longer maintained, and the correlations decay
exponentially. This picture is applicable to a wide variety of two-
dimensional (2D) phenomena, including superfluidity in liquid
helium films5, the superconducting transition in arrays of Josephson
junctions6, and the collision physics of 2D atomic hydrogen7. These
experiments have provided evidence for the BKT phase transition by
looking at the macroscopic properties of the system, but could
not reveal its microscopic origin—the binding and unbinding of
vortex–antivortex pairs3,4.
Harmonically trapped atomic gases generally provide an excellent

testing ground for the theories of many-body physics. In particular,
they arewell suited for thepreparation of low-dimensional systems and
the detection of individual vortices. Quasi-2D quantum degenerate
Bose gases have been produced in single ‘pancake’ traps or at the
nodes of one-dimensional (1D) optical lattice potentials8–15.
Recently, matter wave interference between small disk-shaped

quasi-condensates has revealed the occasional presence of free
vortices16, but a systematic temperature study was not possible.
Theoretically, because the density of states in a 2D harmonic trap
allows for finite temperature Bose–Einstein condensation in an ideal
gas17, the nature of the superfluid transition in an interacting gas has
been a topic of some debate18–24. Our results indicate that the BKT
picture is applicable to these systems, even though in our finite-size
system the transition occurs as a finite-width crossover rather than a
sharp phase transition25.
We start our experiments with a quantum degenerate three-

dimensional (3D) cloud of 87Rb atoms, produced by radio-frequency
evaporation in a cylindrically symmetric magnetic trap. Next, a 1D
optical lattice with a period of d ¼ 3mm along the vertical direction z
is used to split the 3D gas into two independent clouds and to

LETTERS

Figure 1 | Probing the coherence of 2D atomic gases using matter wave
heterodyning. a, An optical lattice potential of period d ¼ 3mm along the
vertical direction z is formed by two laser beamswith awavelength of 532 nm
intersecting at a small angle. It is used to split a quantum degenerate 3D gas
into two independent planar systems. The transparent ellipsoid indicates the
shape of the gas before the lattice is ramped up. b, After the confining
potential is abruptly switched off, the two atomic clouds expand, overlap
and interfere. The interference pattern is recorded onto a CCD camera using
the absorption of a resonant probe laser. The waviness of the interference
fringes contains information about the phase patterns in the two planar
systems. c, d, Examples of interference patterns obtained at a low and a high
temperature, respectively.
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function of Lx at a low and a high temperature, along with the fits by a
power-law decaying function.
Figure 3b summarizes the fitted values of the exponent a in

different temperature regimes, and constitutes the first main result
of this Letter. Starting at high temperatures, for values of c0 up to
about 13%, a is approximately constant and close to 0.5. When the
temperature is reduced further,a rapidly drops to about 0.25, and for
even lower temperatures (larger c0) it levels off. We thus clearly
observe a transition between two qualitatively different regimes at
high and low temperatures. The values of a above and below the
transition are in agreement with the theoretically expected jump in
the superfluid density at the BKT transition in a uniform system.
However, this quantitative agreement might be partly fortuitous.
Even though we concentrated on the quasi-uniform part of the
images, the geometrical effects in our elongated samples could still be
important. Ultimately, at extremely low temperature, a should
slowly tend to zero and the gas should become a pure, fully coherent
Bose–Einstein condensate. We could not reach this regime in the
present experiments owing to the residual heating discussed above.
Even without precise thermometry, we can estimate the cloud’s

temperature and density at the onset of quasi-long-range coherence.
For images with c0 ¼ 0.15, the temperature inferred from the wings
of the atom distribution after TOF is 290 ^ 40 nK, corresponding to
a thermal wavelength of l ¼ 0.3 mm. From the length of the quasi-
condensate we deduce the number of condensed atoms
NC ¼ 11,000 ^ 3,000, and the peak condensate density (in the
trap centre) rC ¼ (5 ^ 1) £ 109 cm22. This gives rCl

2 ¼ 6 ^ 2.
BKT theory for a uniform system predicts the transition at

rSl
2 ¼ 4, where rS is the superfluid density. The two values are in

fair agreement, but we note that the exact relation between rC and rS

in 2D atomic gases will require further experimental and theoretical
investigation. For example, our observation of a < 0.5 for a finite
value of c0 suggests that the superfluid density rS might be zero even
if the condensate density rC is finite.
The key role in the microscopic BKT theory is played by vortices,

localized topological defects in the phase of the condensate. In
contrast to the smooth variation of the fringe phase J(x) created
by long-wavelength phonons (Fig. 1d), a free vortex in one of the
condensates should appear as a sharp dislocation in the interference
pattern16,24, with J(x) changing abruptly across a dislocation line
parallel to the expansion axis z. We indeed occasionally observe such
dislocations. Examples of images containing one and several disloca-
tions are shown in Fig. 4a and b, respectively. The tightly bound
vortex–antivortex pairs are not detectable in our experiments
because they create only infinitesimal phase slips in the interference
pattern. Other phase configurations which could mimic the appear-
ance of a vortex, such as a dark soliton aligned with the imaging
direction, can be discarded on theoretical grounds24.
Figure 4c shows the frequency with which we detect sharp

dislocations at different temperatures. For the count we consider
only the central, 30-mm-wide region of each image, which is smaller
than the length of our smallest quasi-condensates. We note that we
detect only a subset of vortices—those that are well isolated and close
to the centre of the cloud. We also note that thermally activated
phonon modes with a very short wavelength along x can in principle
contribute to the count. Their contribution is expected to be non-
negligible only at the highest temperatures, at which a detailed
theoretical analysis would be needed to separate their effect from
that of the vortices.
The observed sudden onset of vortex proliferation with increasing

temperature constitutes the second main result of this Letter. Further,
this onset coincides with the loss of quasi-long-range coherence
(Fig. 3b). These two observations together provide conclusive evidence
for the observation of the BKT crossover in this system.

Figure 3 | Emergence of quasi-long-range order in a 2D gas. a, Examples of
average integrated interference contrasts kC̃2(Lx)l are shown for a low (blue
circles, c0 ¼ 0.24) and a high (red squares, c0 ¼ 0.13) temperature; Lx is the
integration length. The lines are fits to the data by the power-law function
1/(Lx)

2a, and give a ¼ 0.29 ^ 0.01 (low temperature) and a ¼ 0.46 ^ 0.01
(high temperature). The fitting range, indicated by the solid part of the line,
is constrained by the conditions Lx .. Ly on the left and cx . c0/2 on the
right. b, Decay exponent a as a function of c0. Dashed lines indicate the
theoretically expected values of a above and below the BKT transition in a
uniform system. Error bars indicate the standard deviation of the results
from different experimental runs.

Figure 4 | Proliferation of free vortices at high temperature. a, Example of
an interference pattern showing a sharp dislocation that we attribute to the
presence of a free vortex in one of the interfering clouds. b, Interference
pattern showing several dislocations. c, Fraction of images showing at least
one dislocation in the central, 30-mm-wide region, plotted as a function of c0.
The error bars show the statistical uncertainty, given by the square root of
the number of images with dislocations. Inset, histogram of the phase
jumps DJ i ¼ jJ(x i) 2 f(x iþ1)j between adjacent CCD pixel columns, for
the set of images in the bin c0 ¼ 0.08. An image is counted as showing a
dislocation if at least one of theDJ i exceeds 2p/3 (threshold indicated by the
dashed line). The distance between adjacent columns is 2.7 mm and the
count runs over the 10 central columns. There are 97 images contributing to
this histogram, hence 970 counts, among which 16 counts (corresponding to
13 different images) exceed the threshold.
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