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Overview: VUW

One of the very first applications of the quantum vacuum
was in the development of the notion of Casimir energy.

Casimir energies, considered individually, are typically infinite.

But differences in Casimir energies are often finite — a fortunate
circumstance which luckily made some of the early calculations,
(parallel plates and hollow spheres), tractable.

Can this observation be systematized?

What are necessary and sufficient conditions for Casimir energy
differences to be finite?

And when the Casimir energy differences are not finite,
can anything useful be said?
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Overview: VUW

I shall argue (mathematically) that there are a large number of
interesting physical situations where Casimir energy differences,
(and so Casimir energy forces), are automatically known to be finite,
even before starting specific computations.

I shall argue (mathematically) that one can often develop physically
interesting “reference models” such that the Casimir energy difference
between the physical system and the “reference models” is known to
be finite, even before starting specific computations.
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Introduction: VUW

Introduction
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Introduction: VUW

Lemma

Exact result:

ω − ω∗ =
1√
4π

∫ ∞
0

dt

t3/2

{
e−ω

2
∗t − e−ω

2t
}

Exact result:∑
n

{ωn − (ω∗)n} =
1√
4π

∑
n

∫ ∞
0

dt

t3/2

{
e−(ω2

∗)nt − e−ω
2
nt
}

Formally, (and I will justify this much more carefully later on):∑
n

{ωn − (ω∗)n} =
1√
4π

∫ ∞
0

dt

t3/2

∑
n

{
e−(ω∗)2

nt − e−ω
2
nt
}
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Introduction: VUW

Then in terms of the heat kernel,

K (t) =
∑
n

e−ω
2
nt ,

we formally have:∑
n

{ωn − (ω∗)n} =

∫ ∞
0

dt

t

1√
4πt
{K∗(t)− K (t)}

The heat kernel is an extremely useful object...

The heat kernel is an commonly occurring object...
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Introduction: VUW

The flat-space no-boundary diffusion operator in 3-dimensions:

〈x |et∇2 |y〉 =
exp

(
− [x−y ]2

4t

)
(4πt)3/2

The flat-space no-boundary heat kernel in 3-dimensions:

K (t) = 〈x |et∇2 |x〉 =
1

(4πt)3/2

This generalizes in curved spacetime...

This generalizes in the presence of boundaries...
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Introduction: VUW

By the Seeley–de Witt expansion:

K (t) = (4πt)−d/2

{
N∑
i=0

ai/2 t i/2 +O
(
t(N+1)/2

)}

Also:

K∗(t) = (4πt)−d/2

{
N∑
i=0

(a∗)i/2 t i/2 +O
(
t(N+1)/2

)}

Don’t panic — other people have done all the work for you...
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Introduction: VUW

Seeley–de Witt is closely related to the density of states...

As every schoolchild knows:

(density of states) =
Vk2

2π2
+ ...

As every schoolchild should know:

(density of states) =
Vk2

2π2
+ ε

Sk

8π
+ . . .

where

ε =


+1 for Neumann;

0 for periodic;
−1 for Dirichlet.

This generalizes...

Finite boundaries =⇒ modified density of states...
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Introduction VUW

In terms of the heat kernel we formally have:∑
n

{ωn − (ω∗)n} =

∫ ∞
0

dt

t

1√
4πt
{K∗(t)− K (t)}

and

K∗(t)− K (t) = (4πt)−d/2

{
N∑
i=0

{
(a∗)i/2 − ai/2

}
t i/2 +O

(
t(N+1)/2

)}
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Introduction VUW

Now choose N = d + 1, then formally

∑
n

{ωn − (ω∗)n} =

∫ ∞
0

dt

t
(4πt)−(d+1)/2

{
d+1∑
i=0

{
(a∗)i/2 − ai/2

}
t i/2

}

+(UV finite)
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Introduction VUW

That is:

Lemma (At this stage a formal argument only)

∆(Casimir Energy) = −~
2

∫ ∞
0

dt

t
(4πt)−(d+1)/2

{
d+1∑
i=0

∆ai/2 t i/2

}

+(UV finite)

The rest of the lecture will involve refinements on this simple theme...

In 3+1 dimensions want ∆a0 = ∆a1/2 = ∆a1 = ∆a3/2 = ∆a2 = 0.

In 2+1 dimensions want ∆a0 = ∆a1/2 = ∆a1 = ∆a3/2 = 0.

In 1+1 dimensions want ∆a0 = ∆a1/2 = ∆a1 = 0.
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Being more careful VUW

Being more careful
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Being more careful VUW
Let’s regulate everything a little more carefully....

Lemma

Exact result:

ω erfc(ω/Ω) =
Ω√
π
e−ω

2/Ω2 − 1√
4π

∫ ∞
Ω−2

dt

t3/2
e−ω

2t

Exact result:∑
n

ωn erfc(ωn/Ω) =
Ω√
π

∑
n

e−ω
2
n/Ω2 − 1√

4π

∑
n

∫ ∞
Ω−2

dt

t3/2
e−ω

2
nt

Exact result (no longer just formal):∑
n

ωn erfc(ωn/Ω) =
Ω√
π

∑
n

e−ω
2
n/Ω2 − 1√

4π

∫ ∞
Ω−2

dt

t3/2

∑
n

e−ω
2
nt
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Being more careful VUW

In terms of the heat kernel:∑
n

ωn erfc(ωn/Ω) =
Ω√
π
K (Ω−2)− 1√

4π

∫ ∞
Ω−2

dt

t3/2
K (t)

Now apply the Seeley–de Witt expansion:

K (t) = (4πt)−d/2

{
N∑
i=0

ai/2 t i/2 +O
(
t(N+1)/2

)}
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Being more careful VUW

But then (choose N = d ):

Ω√
π
K (Ω−2) = 2

(
Ω√
4π

)d+1
{

d∑
i=0

ai/2 Ω−i

}
+ (finite as Ω→∞)

The integral is a little trickier...

1√
4π

∫ ∞
Ω−2

dt

t3/2
K (t) =

∫ ∞
Ω−2

dt

t

1√
4πt

K (t)
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Being more careful VUW

In this integral choose N = d + 1.

Then, treating the logarithmic term separately, we have∫ ∞
Ω−2

dt

t

1√
4πt

K (t) =
1√
4π

∫ ∞
Ω−2

dt

t3/2
(4πt)−d/2

{
d∑

i=0

{
ai/2

}
t i/2

}

+
a(d+1)/2

(4π)(d+1)/2
ln(Ω2) + (finite as Ω→∞)
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Being more careful VUW

Combine:∫ ∞
Ω−2

dt

t

1√
4πt

K (t) =

∫ ∞
Ω−2

dt

t
(4πt)−(d+1)/2

{
d∑

i=0

{
ai/2

}
t i/2

}

+
a(d+1)/2

(4π)(d+1)/2
ln(Ω2) + (finite as Ω→∞)
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Being more careful VUW

Performing the remaining integrals:∫ ∞
Ω−2

dt

t

1√
4πt

K (t) = − 1

(4π)(d+1)/2

{
d∑

i=0

ai/2 Ωd+1−i

d + 1− i

}

+
a(d+1)/2

(4π)(d+1)/2
ln(Ω2) + (finite as Ω→∞)
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Being more careful VUW

Assembling all the pieces:

∑
n

ωn erfc(ωn/Ω) = 2

(
Ω√
4π

)d+1
{

d∑
i=0

{
ai/2

}
Ω−i

}

+
1

(4π)(d+1)/2

{
d∑

i=0

ai/2 Ωd+1−i

d + 1− i

}
+

a(d+1)/2

(4π)(d+1)/2
ln(Ω2)

+(finite as Ω→∞)
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Being more careful VUW

Lemma

We have:

∑
n

ωn erfc(ωn/Ω) =

{
d∑

i=0

ki ai/2 Ωd+1−i

}
+ k(d+1)/2 a(d+1)/2 ln(Ω2)

+(finite as Ω→∞)

For our purposes the specific values of the ki are not important...

Matt Visser (VUW) L3 of 4: Casimir energy differences... 22 / 51



Regulated Casimir Energy: VUW

Regulated Casimir Energy
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Regulated Casimir Energy VUW

Consider the regulated Casimir energy:

(Regulated Casimir energy) =
1

2
~
∑
n

ωn erfc(ωn/Ω)

Then:

Theorem

(Regulated Casimir energy) =

1

2
~

{
d∑

i=0

ki ai/2 Ωd+1−i

}
+

1

2
~k(d+1)/2 a(d+1)/2 ln(Ω2)

+(finite as Ω→∞)
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Regulated Casimir Energy VUW

Take differences:

∆(Regulated Casimir energy) =

1

2
~

{
d∑

i=0

ki ∆ai/2 Ωd+1−i

}
+

1

2
~k(d+1)/2 ∆a(d+1)/2 ln(Ω2)

+(finite as Ω→∞)

If the first (d + 1)/2 Seeley–de Witt coefficients are unchanged,

∆a0 = ∆a1/2 = · · · = ∆a(d+1)/2 = 0,

then:
∆(Regulated Casimir energy) = (finite as Ω→∞)

We can now safely take the limit...
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Regulated Casimir Energy VUW

In the limit where the cutoff is removed (Ω→∞) we have:

Theorem

When comparing two physical situations where the first (d+1)
2

Seeley–de Witt coefficients are the same,

∆a0 = ∆a1/2 = · · · = ∆a(d+1)/2 = 0,

we have:
∆(Casimir energy) = (finite).

How general is this phenomenon?
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Unchanging Seeley–de Witt coefficients: VUW

Unchanging Seeley–de Witt

coefficients
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Unchanging Seeley–de Witt coefficients: VUW

There are very many physically interesting situations where the
Seeley–de Witt coefficients are unchanging...

The pre-eminent cases are these:

Parallel plates.

Thin spherical shells.

In both cases an infra-red regulator is needed,
and some subtle thought is required...
More radically:

Take any collection of conductors.

Move them around relative to each other.
(Without distorting their shapes and/or volumes.)

Then the change in Casimir energy is finite.

Then the Casimir forces are finite.

Matt Visser (VUW) L3 of 4: Casimir energy differences... 28 / 51



Unchanging Seeley–de Witt coefficients: VUW

For a region V with boundary ∂V:

a0 ∝
∫

V
1 ddx = (volume)

a1/2 ∝
∫
∂V

1 dd−1x = (surface area)

a1 ∝
∫

V
{R,V } ddx +

∫
∂V
{K} dd−1x

a3/2 ∝
∫
∂V
{R,V ,K 2,KijK

ij} dd−1x

a2 ∝
∫

V
{...} ddx +

∫
∂V
{...} dd−1x

Here the { , , } denote species-dependent linear combinations...
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Unchanging Seeley–de Witt coefficients: VUW

In all its glory:

a2 ∝
∫

V
{R2,V 2,RV ,∇2R,∇2V ,RabR

ab,RabcdR
abcd} ddx

+

∫
∂V
{R;n,V;n,Kii :jj ,Kij :ij ,VK ,K

3, tr(K 2)K , tr(K 3)} dd−1x

+

∫
∂V
{RK , g ijRninjK ,RninjK

ij , g ikRijklK
jl} dd−1x

Here the { , , } denote species-dependent linear combinations...

(There are also contributions from kinks and corners;
but let’s stay with smooth boundaries for now.)
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Unchanging Seeley–de Witt coefficients: VUW

Parallel plates:

Working with QED in flat spacetime with flat boundaries:

a0 ∝ (volume)

a1/2 ∝ (surface area)

a1 = 0

a3/2 = 0

a2 = 0

Just keep volume and surface area fixed...

For example:
Periodic boundary conditions in d − 1 directions...
Conducting box boundary conditions in the remaining direction...
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Unchanging Seeley–de Witt coefficients: VUW

Hollow spheres:

Working with QED in flat spacetime with thin spherical boundaries:

Step I (QED in flat spacetime):

a0 ∝ (volume)

a1/2 ∝ (surface area)

a1 ∝
∫
∂V
{K} dd−1x

a3/2 ∝
∫
∂V
{K 2,KijK

ij} dd−1x

a2 ∝
∫
∂V
{g ijgklKij :kl ,K

ij
:ij ,K

3, tr(K 2)K , tr(K 3)} dd−1x

Now a little trickier...
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Unchanging Seeley–de Witt coefficients: VUW
Hollow spheres:

Working with QED in flat spacetime with thin spherical boundaries:

Step II:
As long as the boundaries are thin, then Kinside = −Koutside,
leading to cancellations in a1 and a2.
(The outermost boundary, the IR regulator, is always held fixed.)
Then:

∆a0 → 0

∆a1/2 ∝ ∆(surface area)

∆a1 → 0

∆a3/2 ∝
∫
∂V
{K 2,KijK

ij} dd−1x

∆a2 → 0
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Unchanging Seeley–de Witt coefficients: VUW
Hollow spheres:

Working with QED in flat spacetime with thin spherical boundaries:

Step III:
As long as the inner boundaries are simply rescaled,
then

∫
∂V KKd2x is scale invariant, leading to a cancellation in a3/2.

(The outermost boundary, the IR regulator, is always held fixed.)
Then:

∆a0 → 0

∆a1/2 ∝ ∆(surface area)

∆a1 → 0

∆a3/2 → 0

∆a2 → 0
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Unchanging Seeley–de Witt coefficients: VUW
Hollow spheres:

Working with QED in flat spacetime with thin spherical boundaries:

Step IV:
In spherical symmetry, define TE and TM modes.
Note that they have equal and opposite contributions to a1/2,
leading to a cancellation in a1/2.
(The outermost boundary is always held fixed.)
Then:

∆a0 → 0

∆a1/2 → 0

∆a1 → 0

∆a3/2 → 0

∆a2 → 0
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Unchanging Seeley–de Witt coefficients: VUW

Hollow spheres:

Working with QED in flat spacetime with thin spherical boundaries:

∆(Casimir Energy) = (finite)

This underlies the “miraculous cancellations” in Boyer’s calculation
of the Casimir energy of a hollow sphere.

Compare two hollow spheres of radius a and b;
letting the IR regulator move out to infinity:

∆(Casimir Energy) = ~ c B

(
1

a
− 1

b

)
“All” one needs to do is to calculate the numerical coefficient B,
which is now guaranteed to be finite...
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Unchanging Seeley–de Witt coefficients: VUW

If one has determined

∆(Casimir Energy) = (finite)

then

∆(Casimir Energy) =
1

2
~ {any resummation technique} (ωn − (ω∗)n)

Boyer uses Riesz resummation.

This is justified only in hindsight...

Blindly calculating ∑
n

(ωn − (ω∗)n)

is asking for trouble...
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Unchanging Seeley–de Witt coefficients: VUW
Generalize — Working with QED in flat spacetime:

a0 ∝ (volume)

a1/2 ∝ (surface area)

a1 ∝
∫
∂V
{K} dd−1x

a3/2 ∝
∫
∂V
{K 2,KijK

ij} dd−1x

a2 ∝
∫
∂V
{g ijgklKij :kl ,K

ij
:ij ,K

3, tr(K 2)K , tr(K 3)} dd−1x

Take any collection of conductors.

Move them around relative to each other.
(Without distorting their shapes and/or volumes.)

Then the change in Casimir energy is finite.

Then the Casimir forces are finite.
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Unchanging Seeley–de Witt coefficients: VUW

Working in flat spacetime with periodic boundary conditions:

We have:

a0 ∝ (volume)

a1/2 = 0

a1 ∝
∫

V
{V } ddx

a3/2 = 0

a2 ∝
∫

V
{V 2} ddx

We “just” need to keep a0, a1, and a2 fixed...
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Unchanging Seeley–de Witt coefficients: VUW
Working in flat spacetime with periodic boundary conditions:

In (1+1) dimensions define

V =

∫ L
0 V dx

L

Compare the two situations:

D = ∇2 + V (x); eigenvalues ω2
n.

D = ∇2 + V ; eigenvalues ω2
n.

Then ∑
n

{ωn erfc(ωn/Ω)− ωn erfc(ωn/Ω)} = (finite as Ω→∞)

(Casimir energy of D)− (Casimir energy of D) = (finite)
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Unchanging Seeley–de Witt coefficients: VUW

Working in flat spacetime with periodic boundary conditions:

In (3+1) dimensions define

V =

∫ V
0 V (x) d3x

volume(V)
; V 2 =

∫ V
0 V (x)2 d3x

volume(V)
;

Now solve
m2

1 + m2
2 = 2V ; m4

1 + m4
2 = 2V 2

Compare the three situations:

D = ∇2 + V (x); eigenvalues ω2
n.

D1 = ∇2 + m2
1; eigenvalues (ω1)

2

n.

D2 = ∇2 + m2
2; eigenvalues (ω2)

2

n.
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Unchanging Seeley–de Witt coefficients: VUW

Working in flat spacetime with periodic boundary conditions:

Then:∑
n

{
ωn erfc(ωn/Ω)− 1

2
(ω1)n erfc

(
(ω1)n/Ω

)
− 1

2
(ω2)n erfc

(
(ω2)n/Ω

)}
= (finite as Ω→∞)

This implies:

(Casimir energy of D)−1

2

(
Casimir energy of D1

)
−1

2

(
Casimir energy of D2

)
= (finite)
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If the Casimir energy differences are not finite? VUW

And if the Casimir energy

differences are not finite?

Matt Visser (VUW) L3 of 4: Casimir energy differences... 43 / 51



If the Casimir energy differences are not finite? VUW

Real metals and real dielectrics are transparent in the UV.

The UV cutoff Ω is a stand-in for all the complicated physics.

Let us write a general cutoff function as

f
(ω

Ω

)
=

∫ ∞
0

g(ξ) erfc

(
ω

ξΩ

)
dξ;

∫ ∞
0

g(ξ) dξ = 1.

Note f (0) = 1, while f (∞) = 0, and f is monotone decreasing.

Let us now consider ∑
n

ωn f
(ωn

Ω

)
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If the Casimir energy differences are not finite? VUW

Then

∑
n

ωn erfc(ωn/Ω) =

{
d∑

i=0

ki ai/2 Ωd+1−i

}
+ k(d+1)/2 a(d+1)/2 ln(Ω2)

+(finite as Ω→∞)

becomes

∑
n

ωn f
(ωn

Ω

)
=

{
d∑

i=0

ki

(∫ ∞
0

g(ξ) ξd+1−i dξ

)
ai/2 Ωd+1−i

}

+k(d+1)/2 a(d+1)/2

{
ln(Ω2) + 2

∫ ∞
0

g(ξ) ln ξ dξ

}
+(finite as Ω→∞)
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If the Casimir energy differences are not finite? VUW

Theorem

For a general cutoff f (ω/Ω) one has

∑
n

ωn f
(ωn

Ω

)
=

{
d∑

i=0

[k(f )]i ai/2 Ωd+1−i

}

+k(d+1)/2 a(d+1)/2 ln(Ω2)

+(finite as Ω→∞)

The [k(f )]i are phenomenological parameters that depend on the
detailed physics of the specific cutoff function f (ω/Ω).

However k(d+1)/2 is cutoff independent.

The Ω dependence represents real physics.

Live with it!
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If the Casimir energy differences are not finite? VUW

Definition

For a general cutoff f (ω/Ω) one has

∆(Casimir energies) =
1

2
~ ∆

(∑
n

ωn f
(ωn

Ω

))
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If the Casimir energy differences are not finite? VUW

Theorem

For a general cutoff f (ω/Ω) one has

∆(Casimir energies) =
1

2
~

{
d∑

i=0

[k(f )]i ∆ai/2 Ωd+1−i

}

+
1

2
~ k(d+1)/2 ∆a(d+1)/2 ln(Ω2)

+(finite as Ω→∞)

The [k(f )]i are phenomenological parameters that depend on the
detailed physics of the specific cutoff function f (ω/Ω).

However k(d+1)/2 is cutoff independent.

The Ω dependence represents real physics. Live with it!
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Conclusions: VUW

Conclusions
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Conclusions: VUW

In (d + 1) dimensions, iff the first few Seeley–de Witt coefficients
agree,

∆a0 = ∆a1/2 = . . .∆a(d+1)/2 = 0,

then the difference in Casimir energies is guaranteed finite.

This is a useful thing to check before you start calculating.

The erfc function, in the form erfc(ω/Ω), is a perhaps unexpectedly
useful regulator

erfc(0) = 1; erfc(∞) = 0

Various generalizations, (such as counting eigenstates, or calculating
sums of powers of eigenvalues), are also possible.
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End: VUW

VUW

End of Lecture 3.

VUW
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