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Abstract: VUW

Some 65 years ago (1951) Wolfgang Pauli noted that the
zero-point energy density could be set to zero by a carefully
fine-tuned cancellation between bosons and fermions.

In this lecture I will argue in a slightly different direction:
The zero-point energy density is only one component of the
zero-point stress energy tensor, and it is this tensor quantity
that is in many ways the more fundamental object of interest.

I shall demonstrate that Lorentz invariance of the zero-point stress
energy tensor implies finiteness of the zero-point stress energy tensor,
and vice versa.

— arXiv:1610.07264 [gr-qc] —
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Introduction: VUW

Introduction
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Introduction: VUW

Remember:

We are interested in making sense of the zero-point energy density:

ρzpe =
~
2

∫
d3k

(2π)3
ω(~k).

Naively divergent...
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Pauli 1951 VUW

Pauli 1951
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Pauli 1951 VUW

Very definitely dead-tree technology...

Not online anywhere...

1971 translation of 1951 lectures at ETH Zurich...
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Pauli 1951: Zero-point energy density... VUW

Pauli was worried about the zero-point energy density:

ρzpe =
~
2

∫
d3k

(2π)3

√
m2 + k2...

Flat space, infinite volume, free-field calculation...

No interactions as yet...

(Yes this argument will [sometimes] survive interactions...)

Naively this diverges to infinity...

What to do?
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Pauli 1951: Zero-point energy density... VUW

The question:
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Pauli 1951: Zero-point energy density... VUW
The answer:
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More modern notation VUW

More modern notation
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Pauli 1951: Zero-point energy density... VUW

More modern notation:

ρzpe =
∑
n

{
(−1)2Sngn

∫
d3k

(2π)3
1

2
~ωn(k)

}
.

Integrate the zero-point energy ±1
2~ω(k) over all modes.

Boson contributions positive, fermion contributions negative.

Degeneracy factor g includes spin factor g = 2S + 1 for massive
particles, whereas spin factor is g = 2 for massless particles.

Degeneracy factor g also includes a factor of 2 when particle and
antiparticle are distinct, and a factor of 3 due to colour.

Finally one sums over all particle species indexed by n.

Sum over the entire particle physics spectrum is Pauli’s key insight.
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Pauli 1951: Zero-point energy density... VUW

More modern notation:

Now explicitly introduce particle masses:

ρzpe =
∑
n

{
(−1)2Sngn

1

2
~
∫

d3k

(2π)3

√
m2

n + k2
}
.
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Pauli 1951: Zero-point energy density... VUW

More modern notation:

Key integral:∫ K

0
d3k

√
m2 + k2 = 4π

∫ K

0
dk k2

√
m2 + k2

= π

{
K (m2 + K 2)3/2 − 1

2
m2K

√
m2 + K 2

−1

2
m4 ln

(
K +

√
m2 + K 2

m

)}

= π

{
K 4 + m2K 2 +

m4

8
− 1

2
m4 ln(2K/m)

}
+O

(
1

K 2

)
.
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Pauli 1951: Zero-point energy density... VUW

More modern notation:

The net zero-point energy is zero if and only if one imposes
three polynomial-in-mass conditions∑
n

(−1)2Sngn = 0;
∑
n

(−1)2Sngn m2
n = 0;

∑
n

(−1)2Sngn m4
n = 0;

and additionally imposes a fourth logarithmic-in-mass condition∑
n

(−1)2Sngn m4
n ln(m2

n/µ
2) = 0.
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Pauli 1951: Zero-point energy density... VUW

More modern viewpoint:

The net zero-point energy is finite if and only if one imposes the
three polynomial-in-mass conditions∑

n

(−1)2Sngn = 0;
∑
n

(−1)2Sngn m2
n = 0;

∑
n

(−1)2Sngn m4
n = 0.

If this is done, then

ρzpe =
~

64π2

∑
n

(−1)2Sngn m4
n ln(m2

n/µ
2)

is finite.
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Zero-point stress-energy tensor VUW

Zero-point stress-energy

tensor
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Zero-point stress-energy tensor VUW
Zero-point stress-energy tensor:

(Tzpe)ab =
∑
n

{
(−1)2Sngn

∫
d3k

2ωn(k) (2π)3
~ kan k

b
n

}
.

4-momenta:

ka = (ω(k); k i ) =
(√

m2 + k2; k i
)

Mode contribution:
1

2
~ kakb

Lorentz invariant phase space:

d(LIPS) =
1

(2π)3
d3k

(2ω)
.
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Zero-point stress-energy tensor VUW

Zero-point stress-energy tensor:

(Tzpe)ab =
∑
n

{
(−1)2Sngn

∫
d3k

2ωn(k) (2π)3
~
[
ωn(k)2 ωn(k) k j

ωn(k) k i k ik j

]ab}
.

Rotational invariance:

(Tzpe)ab =
∑
n

{
(−1)2Sngn

∫
d3k

2ωn(k) (2π)3
~
[
ωn(k)2 0

0 1
3k

2 δij

]ab}
.

Therefore:

(Tzpe)ab =

[
ρzpe 0

0 pzpe δ
ij

]
.
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Zero-point stress-energy tensor VUW

Explicitly:

(Tzpe)ab =

[
ρzpe 0

0 pzpe δ
ij

]
,

with

ρzpe =
∑
n

{
(−1)2Sngn

1

2
~
∫

d3k

(2π)3

√
m2

n + k2
}
,

and

pzpe =
∑
n

{
(−1)2Sngn ~

∫
d3k

(2π)3 2
√

m2
n + k2

k2

3

}
.
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Zero-point stress-energy tensor VUW

Note:

Formulae similar to

ρzpe = ±~
2

∫
d3k

(2π)3

√
m2 + k2;

pzpe = ±~
6

∫
d3k

(2π)3
k2√

m2 + k2
;

are not uncommon...

Zero-point pressure is as important as zero-point energy...
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Lorentz invariance VUW

Lorentz invariance
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Lorentz invariance VUW

Lorentz invariance requires:

ρzpe + pzpe = 0.

That is:

ρzpe + pzpe =
∑
n

{
(−1)2Sngn ~

∫
d3k

2
√

m2
n + k2(2π)3

(
m2

n +
4

3
k2
)}

= 0.

This is an extremely powerful constraint...
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Lorentz invariance VUW

Key integral:∫ K

0

d3k√
m2 + k2

(
m2 +

4

3
k2
)

= 4π

∫ K

0

dk√
m2 + k2

(
k2m2 +

4

3
k4
)

=
4π

3
K 3
√

K 2 + m2

=
π

6

(
8K 4 + 4m2K 2 −m4

)
+O

(
1

K 2

)
.
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Lorentz invariance VUW

Consequently:

(Lorentz invariance)⇐⇒ (Pauli’s three polynomial-in-mass constraints)

That is:

(Lorentz invariance)⇐⇒

∑
n

(−1)2Sngn = 0;
∑
n

(−1)2Sngn m2
n = 0;

∑
n

(−1)2Sngn m4
n = 0.
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Lorentz invariance VUW

Consequently:

(Lorentz invariance)⇐⇒ (zero-point energy-density is finite)

Explicitly:

ρzpe = −pzpe =
~

64π2

∑
n

(−1)2Sngn m4
n ln(m2

n/µ
2).

Where automatically:∑
n

(−1)2Sngn = 0;
∑
n

(−1)2Sngn m2
n = 0;

∑
n

(−1)2Sngn m4
n = 0.
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Implications? VUW

Implications?
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Implications? VUW

This analysis impacts on a number of wider issues:

Beyond standard model (BSM) physics.

Naive estimates of the cosmological constant.

Supersymmetry (being neither necessary nor sufficient).

Sakharov-style induced gravity.
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BSM physics? VUW

BSM physics?
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BSM physics? VUW

Split into SM & BSM sectors:

∑
BSM

(−1)2Sngn = −
∑
SM

(−1)2Sngn;

∑
BSM

(−1)2Sngn m2
n = −

∑
SM

(−1)2Sngn m2
n;

∑
BSM

(−1)2Sngn m4
n = −

∑
SM

(−1)2Sngn m4
n.

There must be BSM physics...

Matt Visser (VUW) L2 of 4: Lorentz invariance/ZPE 30 / 56



Cosmological constant? VUW

Cosmological constant?
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Cosmological constant? VUW

Common assertion:
ρcc = ρzpe = −pzpe .

Define mass scales:∑
SM

(−1)2Sngn m4
n ln(m2

n/µ
2
SM) = 0;

∑
BSM

(−1)2Sngn m4
n ln(m2

n/µ
2
BSM) = 0.

Calculate ρcc in terms of these mass scales...
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Cosmological constant? VUW

ρcc = ρzpe = −pzpe

=
~

64π2

∑
n

(−1)2Sngn m4
n ln(m2

n/µ
2)

=
~

64π2

∑
n

(−1)2Sngn m4
n ln(m2

n/µ
2
BSM)

=
~

64π2

∑
SM

(−1)2Sngn m4
n ln(m2

n/µ
2
BSM)

+
~

64π2

∑
BSM

(−1)2Sngn m4
n ln(m2

n/µ
2
BSM)

=
~

64π2

∑
SM

(−1)2Sngn m4
n ln(m2

n/µ
2
BSM)
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Cosmological constant? VUW

ρcc = ρzpe = −pzpe

=
~

64π2

∑
SM

(−1)2Sngn m4
n ln(m2

n/µ
2
BSM)

=
~

64π2

∑
SM

(−1)2Sngn m4
n ln(m2

n/µ
2
SM)

+
~

64π2

∑
SM

(−1)2Sngn m4
n ln(µ2SM/µ

2
BSM)

=
~

64π2

∑
SM

(−1)2Sngn m4
n ln(µ2SM/µ

2
BSM).
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Cosmological constant? VUW

That is:

ρcc = ρzpe = −pzpe = − ~
64π2

{∑
SM

(−1)2Sngn m4
n

}
ln

(
µ2BSM
µ2SM

)
.

Here µBSM is the only unknown...
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Supersymmetry: Neither necessary nor sufficient VUW

Supersymmetry:

Neither necessary

nor sufficient
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Supersymmetry: Neither necessary nor sufficient VUW

Supersymmetry is not necessary in order to set up and understand
any of the preceding analysis.

Pauli’s 1951 lectures pre-date even the earliest versions of
supersymmetry by some 20 years.

Zumino certainly knew of, partially inspired by, Pauli’s result...

Unbroken supersymmetry automatically satisfies Pauli’s constraints...

Unbroken supersymmetry also in violent conflict with empirical reality.

Broken supersymmetry, (spontaneously broken or explicitly broken),
need not satisfy the second and third (m2 or m4) Pauli constraints.

(The first Pauli constraint will survive supersymmetry breaking.)

Matt Visser (VUW) L2 of 4: Lorentz invariance/ZPE 37 / 56



Supersymmetry: Neither necessary nor sufficient VUW

If desired one can rewrite the sum over the particle spectrum in
Pauli’s constraints as a “supertrace”,∑

n

(−1)2Sn gn Xn = Str[X ].

But this is merely a book-keeping device...

This is not an appeal to supersymmetry...

Supersymmetry, or lack thereof, is at best logically orthogonal
to the questions addressed in this seminar.
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Sakharov-style induced gravity VUW

Sakharov-style induced gravity
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Sakharov-style induced gravity VUW

The analysis so far is strictly a flat-space Minkowski result...

But due to the locally Euclidean nature of spacetime it will still
govern the dominant short-distance physics in curved spacetime.

There will certainly be sub-leading curvature-dependent terms —
which are more easily dealt with by a short-distance asymptotic
expansion of the heat kernel in terms of Seeley–DeWitt coefficients.

This naturally leads to the concept of Sakharov-like induced gravity.

The present analysis could easily be modified and extended to further
elucidate the induced gravity scenario.

More on this in Lecture 4.
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Sakharov-style induced gravity VUW

Care must be taken to add and subtract only finite regulated
physically meaningful quantities, before sending the regulator to
infinity.

Over-enthusiastic application of curved space (or even flat space)
renormalization techniques can easily eliminate the interesting parts
of the physics.
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Some numbers: VUW

Some numbers
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Some numbers: VUW

Pauli’s three sum rules can be written as:

∑
BSM

(−1)2Sngn = NBSM = −
∑
SM

(−1)2Sngn;

∑
BSM

(−1)2Sngn m2
n = (M2)2 = −

∑
SM

(−1)2Sngn m2
n;

∑
BSM

(−1)2Sngn m4
n = (M4)4 = −

∑
SM

(−1)2Sngn m4
n.
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Some numbers: VUW

Pauli’s three sum rules can be written as (book-keeping only):

StrBSM [1] = NBSM = −StrSM [1];

StrBSM [m2] = (M2)2 = −StrSM [m2];

StrBSM [m4] = (M4)4 = −StrSM [m4].

Set:
d = (−1)2Sg
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Some numbers: VUW

Table: Calculations of StrSM [1], StrSM [m̂2], StrSM [m̂4], and StrSM [m̂4 ln m̂2],
working in the SM sector after spontaneous electro-weak symmetry breaking.

particle d mass/GeV m̂ = m/mH d × m̂2 d × m̂4 d × m̂4 ln(m̂2)

Higgs 1 125.02 1 1 1 0

Z0 3 91.1876 0.729384099 1.59600349 0.849075713 -0.535859836

W± 6 80.385 0.642977124 2.480517489 1.025494502 -0.905811363
top -12 173.21 1.385458327 -23.0339373 -44.21352229 -28.82995836

bottom -12 4.66 0.037274036 -0.016672245 -2.31636E-05 0.000152392
charm -12 1.27 0.010158375 -0.001238311 -1.27784E-07 1.17292E-06
strange -12 0.096 0.000767877 -7.07562E-06 -4.17204E-12 5.98427E-11

up -12 0.0022 1.75972E-05 -3.71593E-09 -1.15068E-18 2.51947E-17
down -12 0.0047 0.000037594 -1.69597E-08 -2.39693E-17 4.8843E-16
gluons 16 0 0 0 0 0
tau -4 1.77686 0.014212606 -0.000807993 -1.63213E-07 1.38849E-06

muon -4 0.105658375 0.000845132 -2.85699E-06 -2.0406E-12 2.88786E-11
electron -4 0.000510999 4.08734E-06 -6.68253E-11 -1.11641E-21 2.77039E-20
neutrinos -12 0.000000002 1.59974E-11 -3.07102E-21 -7.85929E-43 3.90742E-41
photon 2 0 0 0 0 0

StrSM [X] -68 — — -17.97614482 -41.33897553 -30.27147461
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Some numbers: VUW

Within the SM sector, the three quantities StrSM [m̂2], StrSM [m̂4],
and StrSM [m̂4 ln m̂2] are utterly dominated by the top quark — with
the top quark accounting for some 80% to 95% of the SM effect.

This happens for two reasons, first the top quark is simply the
heaviest SM particle, and secondly the degeneracy factor for quarks
(g = 12) is so high.

Even if one looks slightly beyond the top quark itself, between them
the Higgs, Z 0, W±, and top quark are the only particles making any
appreciable contribution to these quantities from within the SM
sector.
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Some numbers: VUW

Note

NBSM = 68; M2 = 4.240 mH ; M4 = 2.536 mH .

Assuming the Pauli constraints, there are at least 68 bosonic
degrees of freedom in the BSM sector.

The m2 and m4 sum rules, which determine M2 and M4,
indicate that the BSM spectrum is boson dominated.
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Some numbers: VUW

Define

StrSM [m4 ln(m2/µ2SM)] = 0; StrBSM [m4 ln(m2/µ2BSM)] = 0.

Then

µ2SM = m2
H exp

(
StrSM [m̂4 ln m̂2]

StrSM [m̂4]

)
= 2.080 m2

H = (1.442)2 m2
H .

Unfortunately we have no similar result for µBSM ...

The BSM spectrum is, (at this stage), not all that tightly constrained.
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Some numbers: VUW

The cosmological constant can be estimated by

ρcc = ρzpe = −pzpe = − ~
64π2

{
StrSM [m4]

}
ln

(
µ2BSM
µ2SM

)
= 0.06545 ~ m4

H ln

(
µ2BSM
µ2SM

)
.

Here µBSM is the only place that unknown BSM physics now enters
into the cosmological constant.

At least the energy scale for the cosmological constant is not off by
the extremely naive factor 10123; it is now more like 1055.

It is not supersymmetry that is responsible for this reduction;
it is the much more basic symmetry of Lorentz invariance for the
zero-point stress-energy.
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Some numbers: VUW

Observational data regarding the cosmological constant now suggests

ln

(
µ2BSM
µ2SM

)
. 10−55.

Rather than being a fine tuning, it is probably best to interpret this as
an extremely tight observational (rather than theoretical) constraint
on the BSM spectrum.

Equivalently

StrSM [m̂4 ln(m̂2)] + StrBSM [m̂4 ln(m̂2)] . 10−55,

while each of these terms individually is of order ±30.
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Some numbers: VUW

Table: Str[1], Str[m̂2], Str[m̂4], and Str[m̂4 ln m̂2] in the SM sector —
— before electro-weak symmetry breaking

particle d (mass/GeV) m̂ = m/mH d × m̂2 d × m̂4 d × m̂4 ln |m̂2|
Higgs 4 (125.02)i i −4 +4 0
W 6 0 0 0 0 0
top -12 0 0 0 0 0

bottom -12 0 0 0 0 0
charm -12 0 0 0 0 0
strange -12 0 0 0 0 0

up -12 0 0 0 0 0
down -12 0 0 0 0 0
gluons 16 0 0 0 0 0

(leptons)L -12 0 0 0 0 0
(leptons)R -12 0 0 0 0 0

hyper-photon 2 0 0 0 0 0

StrSM [X] −68 — — −4 +4 0
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Some numbers: VUW

Note that StrSM [1] = −68 is unchanged, as it should be.

Spontaneous symmetry breaking merely moves bosonic and fermionic
modes around, it does not create or destroy modes.
So StrBSM [1] = +68 as previously.
The BSM sector contains at least 68 bosonic degrees of freedom.

Note that StrSM [m2] = −4m2
H and StrSM [m4] = +4m4

H are both
changed compared to the broken phase.

This is not unexpected, and actually gives us extremely useful
information...
Enforcing Pauli’s sum rules, this implies that both StrBSM [m2] and
StrBSM [m4] must change during spontaneous symmetry breaking.
This in turn implies that at least part of the BSM spectrum must be
sensitive to the onset of spontaneous symmetry breaking...
So at least part of the BSM spectrum must couple to the Higgs.
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Some numbers: VUW

Before spontaneous symmetry breaking the BSM spectrum satisfies:

StrBSM [1] = +68; StrBSM [m2] = 4m2
H ; StrBSM [m4] = −4m4

H .

The BSM sector is (still) boson dominated as it should be.

But now StrBSM [m4] = −4m4
H in the unbroken phase...

So there must be at least one fermion in the BSM spectrum...

So at least 69 bosonic degrees of freedom in the BSM sector...

This is as far as I have been able to push things, (so far), based on
these very general principles...
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Conclusions: VUW

Conclusions
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Conclusions: VUW

The key message to extract from this lecture is the central importance of
Lorentz invariance in controlling the finiteness of the zero-point
stress-energy tensor:

Lorentz invariance
=⇒ the three polynomial-in-mass Pauli constraints
=⇒ finiteness.

Finiteness
=⇒ the three polynomial-in-mass Pauli constraints
=⇒ Lorentz invariance.

This deep and intimate connection between the fundamental physical
issues of symmetry and finiteness seems rather oddly to not have
previously been developed to the extent that it could.
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End: VUW

VUW

End of Lecture 2.

VUW
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