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Outline: VUW

Any quantum simple harmonic oscillator has zero-point energy:

E0 =
1

2
~ω.

There are many physical situations in which this zero-point energy
is undoubtedly real and physical.

There are other physical situations in which this zero-point energy
has a much more ambiguous status.

Lead in to my subsequent lectures:

Zero-point energies in QFT.
Casimir energies.
Sakharov-style induced gravity.

Key message:
— Whenever possible concentrate on physical energy differences.
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Introduction: VUW

Introduction
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Introduction: VUW

Theorem

For the quantum SHO:

En =

(
n +

1

2

)
~ω

Theorem

For the quantum SHO the lowest energy state is:

E0 =
1

2
~ω

This is often called the zero-point energy.

What is the zero-point energy good for?
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Bound states VUW

Bound states
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Bound states VUW

Consider a non-positive potential that asymptotes to zero:

V (x) ≤ 0; V (±∞)→ 0.

Approximate the potential around its local minima by:

V (x) = −∆ +
1

2
V ′′0 (x − x0)2 + . . .

Approximate bound state energies are:

En ≈ −∆ +

(
n +

1

2

)
~
√

V ′′0
m

; En < 0.
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Bound states VUW

The number of bound states is approximately:

N ≈ ∆

~ω
+

1

2
=

∆

~

√
m

V ′′0
+

1

2
.

To get at least one bound state (n = 0, N = 1) we need:

∆ &
1

2
~ω =

1

2
~
√

V ′′0
m
.

To prevent bound states:

∆ .
1

2
~ω =

1

2
~
√

V ′′0
m
.

Zero-point energy controls the number of bound states...
(at least approximately)...
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Bound states VUW

Example — sech2 potential (simplified Pöschl–Teller potential):

V (x) = − ∆

cosh2(x/a)
≈ −∆ +

∆

a2
x2 + . . .

Estimate number of bound states using ZPE:

N ≈ ∆

~ω
+

1

2
=

∆

~

√
m

V ′′0
+

1

2
=

1

2

(√
2∆ma2

~
+ 1

)
.
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Bound states VUW

Define:

∆ =
~2

2ma2
λ(λ− 1)

Exact eigen-energies (standard exercise):

En = − ~2

2ma2
(λ− 1− n)2; 0 ≤ n ≤ λ− 1

Exact number of bound states:

N = floor(λ) = floor

[
1

2

(√
2∆ma2

~
+ 1

)]

Number of bound states, (if not precise eigen-energies),
agrees with the estimate from zero-point energy...
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Bound states VUW

There are many excruciatingly precise and technical theorems
on the existence/non-existence/number of bound states...

But the zero-point energy argument gets to the heart of the matter
quickly and incisively...

Zero-point energies are physically real...
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Lamb shift: VUW

Lamb shift

Matt Visser (VUW) L1 of 4: Zero-point energy 12 / 41



Lamb shift VUW

To see that there is a non-zero Lamb shift is deceptively easy...

Energy difference:

∆E = E
(
2S1/2

)
− E

(
2P1/2

)
.

To estimate the numerical value is much more subtle...

Key trick:
Assume electrons are “buffeted” by zero-point fluctuations and write:

V =
e2

r
→ e2

|~r + ~rzpf |
= exp (~rzpf · ∇)

e2

r

≈
{

1 + (~rzpf · ∇) +
1

2
(~rzpf · ∇)2 + . . .

}
e2

r
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Aside: Taylor series: VUW

Aside:
Taylor series:

exp(~a · ~∇) f (~x) = f (~x + ~a)

You may not have seen it presented this way before...

But this really is Taylor’s theorem for Cω (analytic) functions...

Simply expand the exponential on the LHS...
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Lamb shift: VUW

Average over zero point fluctuations,
making minimal (isotropy) assumptions:

〈~rzpf 〉 = 0; 〈~rzpf ⊗ ~rzpf 〉 =
1

3
〈(~rzpf )2〉 I3×3.

Then:

〈V 〉 ≈
{

1 +
1

6
〈(~rzpf )2〉∇2 + . . .

}
e2

r

≈ e2

r
− 1

6
〈(~rzpf )2〉 4π δ3(~r) + . . .

This implies s-wave slightly less tightly bound than p-wave...

∆E =
2π

3
〈(~rzpf )2〉 |ψ(0)|2...
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Lamb shift: VUW

So “all” you now need to do is to estimate 〈(~rzpf )2〉....
Have fun...

With a little work:

〈(~rzpf )2〉 ≈ 1

2π2
α

(
~
mc

)2

ln(4/α).

With a little more work

∆E = E
(
2S1/2

)
− E

(
2P1/2

)
≈ α5mc2

6π
ln

(
1

πα

)
.

Clear message:
Zero-point fluctuations have real physical effects...
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Casimir effect: VUW

Casimir effect
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Casimir effect: VUW

Introduce some conducting boundaries...

Solve for the eigen-frequencies ωn.

Formally sum:

ECasimir =
∑
n

1

2
~ωn

Being more careful, compare two suitably chosen systems ...

Calculate Casimir energy differences:

∆ECasimir =
∑
n

1

2
~ (ωn − ω∗n)

See Lecture 3 for theory details...

Review the experimental situation...

Zero-point energies are real...
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Spontaneous emission: VUW

Spontaneous emission
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Spontaneous emission VUW

There is an argument, based on the Einstein A and B coefficients,
that the zero-point energies simply have to be physically real
in order to be consistent with the experimentally observed
phenomenon of spontaneous emission....

(Wikipedia says so, it must be true...)

(Details mercifully suppressed for now...)
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Spontaneous emission VUW

Conclusion:

For each 3-vector ~k, and each polarization mode, the electromagnetic
field is associated with a SHO of frequency ω = c |~k |...
So for n photons in this SHO one has

En =

(
n +

1

2

)
~ω

The total energy (per polarization) in the electromagnetic field is then

Etot =
V

(2π)3

∫
d3~k

(
n(~k) +

1

2

)
~ω(~k)

Even in the quantum vacuum state one has

Etot =
V

(2π)3

∫
d3~k

1

2
~ω(~k)
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Spontaneous emission VUW

But the integral ∫
d3~k

1

2
~ω(~k) =

∫
d3~k

1

2
~c |~k|

diverges...

WTF?

We need to think about this...

Carefully...
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Zero-point energy density: VUW

Zero-point energy density
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Zero-point energy density: VUW

The zero-point energy density in the electromagnetic field is:

ρzpe = 2× ~c
2

∫
d3k

(2π)3
|~k|.

Introduce a cutoff:

ρzpe = 2× ~c
2

∫ K

0

d3k

(2π)3
|~k | =

~c
2π2

∫ K

0
dk k3 =

~c
8π2

K 4

Extremely naively,
(much better will be done tomorrow in Lecture 2),
let us assert that the cutoff is at the Planck scale...
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Significance of the Planck scale: VUW

Significance of the

Planck scale
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Significance of the Planck scale: VUW

Quantum mechanics tells us that an elementary particle
of mass m can be reasonably easily localized within a distance

λCompton =
~
mc

known as the Compton wavelength.

Matt Visser (VUW) L1 of 4: Zero-point energy 26 / 41



Significance of the Planck scale: VUW

-

6

Mass

Compton wavelength

Matt Visser (VUW) L1 of 4: Zero-point energy 27 / 41



Significance of the Planck scale: VUW

Classical gravity tells us that a particle of mass m will disappear down
a black hole if the particle is smaller than its Schwarzschild radius

rSchwarzschild =
2Gm

c2
.
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Significance of the Planck scale: VUW
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Significance of the Planck scale: VUW

A heavy enough elementary particle should disappear
down its own little black hole.

We expect this to happen when the Compton wavelength
equals the Schwarzschild radius.

Set λCompton = rSchwarzschild...

Solve for the mass m of the particle...

This defines the Planck mass:

MPlanck =

√
~c
G
.

If we plot the Compton wavelength as a function of mass,
and the Schwarzschild radius as a function of mass,
the Planck mass is the place that the two graphs cross.
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Significance of the Planck scale: VUW
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Significance of the Planck scale: VUW

Once we have the Planck mass, the Planck energy is easy:
Take EPlanck = mPlanckc

2 to get

EPlanck =

√
~c5
G
.

The Compton wavelength of a Planck mass particle,
λPlanck = ~/(mPlanckc), is defined to be the Planck length

`Planck =
√
~cG .

Finally the Planck time is defined to be the time required for light
to travel one Planck length, TPlanck = `Planck/c, so that

TPlanck =

√
~G
c
.

Matt Visser (VUW) L1 of 4: Zero-point energy 32 / 41



Significance of the Planck scale: VUW

From the theorists’ perspective, one of the most frustrating aspects of
our times is that all the interesting physics, (interesting from the
point of view of quantum gravity that is), seems to be taking place at
or above the Planck scale — but our current technology is simply not
up to the task of building a Planck scale accelerator.

From the way I defined the Planck scale above, it should be
reasonably clear that the Planck regime is the border between
classical physics (the Schwarzschild radius) and quantum physics
(the Compton wavelength).
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Significance of the Planck scale: VUW

Historically, Planck scale was first discussed by Max Planck in 1899.

At the time quantum physics was in its infancy, the Planck constant
just having been discovered as way of parameterizing the unexpected
behaviour of black body radiation.

Because of the then ill-understood nature of quantum physics,
the Planck scale seemed at the time to be merely an accident of
“algebraic numerology” — you put ~, c and G together in various
ways and out popped masses, times, and distances.

It is only after the development of quantum physics that the
significance of the Planck scale as the harbinger of quantum gravity
was appreciated.
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Significance of the Planck scale: VUW

The Planck scale.

Symbol Name Value

mPlanck Planck mass 2.18× 10−8 kilogram
21.8 micro-gramme
1.22× 1019 GeV/c2

EPlanck Planck energy 1.22× 1019 GeV

`Planck Planck length 1.62× 10−35 metres

TPlanck Planck time 5.39× 10−44 seconds
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Significance of the Planck scale: VUW

Extremely naive suggestion:

Cutoff the ZPE at Planck scale...

ρzpe =
~c
8π2

K 4 =
~c
8π2

(
2π

`Planck

)4

= 2π2
EPlanck

`Planck
3
.

This is a ludicrously high energy density...
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Worst prediction in particle physics? VUW

Worst prediction in

particle physics?
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Worst prediction in particle physics? VUW

The (extremely naive) estimate

ρzpe = 2π2
EPlanck

`Planck
3
,

is about 10123 times higher than the observed average energy density
in the universe...

So the universe should curl up into a little ball 10−35 metres across?

Infamously referred to as “the worst prediction in particle physics”...

Actually it is a downright silly prediction...

The real situation is much better than this extremely naive estimate...

Details in Lecture 2 tomorrow...
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Conclusions
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Conclusions: VUW

Zero-point energies are objectively real...

Zero-point energies are interesting...

Zero-point energies are sometimes tricky...

More tomorrow in Lecture 2...
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End: VUW

VUW

End of Lecture 1.

VUW
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