
Fractal Classes of Matroids
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There exist strong theorems for matroids representable over finite
fields, but it all turns to custard for infinite fields.

In what follows GF (q) is a finite field and F is an infinite field.

No harm in thinking of F as the real numbers.
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matroids has a finite number of GF (q)-representable excluded
minors.
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Custard
The class of F-representable matroids is not well-quasi-ordered.



Conjecture

Let M be a minor-closed class of GF (q)-representable matroids.
Then there is a polynomial-time algorithm to decide if a
GF (q)-representable matroid belongs to M.
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Bad News All Round
For both GF (q) and F, it requires exponentially many rank
evaluations to decide if a matroid given by a rank oracle is
representable over the field.

Good News
If q is prime, then an n-element matroid can be proved not to be
representable over GF (q) using only O(n2) rank evaluations.

We conjecture that the good news extends to all finite fields.
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Rota’s Conjecture

There are a finite number of excluded minors for
GF (q)-representability.

Well-known custard
There are an infinite number of excluded minors for
F-representability.

Deeper Custard

Let M be an F-representable matroid. Then there is an excluded
minor for F-representability that contains M as a minor.



Rota’s Conjecture

There are a finite number of excluded minors for
GF (q)-representability.

Well-known custard
There are an infinite number of excluded minors for
F-representability.

Deeper Custard

Let M be an F-representable matroid. Then there is an excluded
minor for F-representability that contains M as a minor.



Rota’s Conjecture

There are a finite number of excluded minors for
GF (q)-representability.

Well-known custard
There are an infinite number of excluded minors for
F-representability.

Deeper Custard

Let M be an F-representable matroid. Then there is an excluded
minor for F-representability that contains M as a minor.



How deep can the custard get?

Let F(n) denote the number of n-element F-representable
matroids, and F+(n) denote the number of n-element excluded
minors for F-representable matroids.

Deep Custard Conjecture

lim
n→∞

F(n)

F(n) + F+(n)
= 0.
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Let M be a minor-closed class of matroids. Let µ(n) be the
number of n-element members of M and let µ+(n) denote the
number of n-element excluded minors for M. Let

f (n) =
µ(n)

µ(n) + µ+(n)
.

Then M is a fractal class of matroids if limn→∞ f (n) exists and is
equal to 0.

Geelen’s Conjecture

Fractal classes of matroids do not exist.
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Let St denote the class of spikes that have at most t
circuit-hyperplanes together with their minors.

Theoremoid
If t ≥ 5, then St is a fractal class of matroids.



Say that the minor-closed class M is smooth if limn→∞ f (n) exists
and is equal to 1.

Conjecture
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Let M be a minor-closed class of matroids, let M1 denote the
members of M together with their excluded minors, M2 denote
the members of M1 together with their excluded minors etc.
Then M is recursively fractal if Mi is a fractal class for all i .
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I think the following is true.

Propositionoid

If M is smooth, then Mi is smooth for all i .



Relatively Fractal Classes

Let M and N be minor-closed classes of matroids such that
M⊆ N . Then M is fractal relative to N if the excluded minors
for M that belong to N dominate the members of M.

In other words we change our universe to a subclass of matroids.
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What About Graphs?

Note that there are infinite antichains of graphs in the subgraph
order.

Let G be a class of graphs closed under subgraphs. Let µ(n)
denote the number of members of G with n edges and µ+(n)
denote the number of minimal forbidden subgraphs for G with n
eges. Then G is subgraph fractal if blah blah blah.

Robin Thomas asked:

Do subgraph fractal classes exist?

The belief is probably not.
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Is this just ad hoc combinatorics?
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I Pigeonhole matroids.

I Standard complexity classes.

I Imposing structure leads to good algorithms.
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Structure theory is possible for matroids over infinite fields.

Conjecture

A matroid with huge branch width has one of the following as a
minor: Un,2n; the cycle matroid of a large grid; the bicycle matroid
of a large grid or its dual.

Would be a stunning theorem but . . .

Over infinite fields, bounding branch width doesn’t help. All sorts
of problems; even in rank 3.
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membership decidable?

I Are there helpful width parameters for F-representable
matroids?
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infinite fields. Is the custard just as deep for R∞ as for F?
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grant application?



Questions

I For which minor-closed classes of F-representable matroids is
membership decidable?

I Are there helpful width parameters for F-representable
matroids?

I Let R∞ denote the class of matroids representable over all
infinite fields. Is the custard just as deep for R∞ as for F?

I Would the terminology “fractal matroid” help or hinder a
grant application?



Questions

I For which minor-closed classes of F-representable matroids is
membership decidable?

I Are there helpful width parameters for F-representable
matroids?

I Let R∞ denote the class of matroids representable over all
infinite fields. Is the custard just as deep for R∞ as for F?

I Would the terminology “fractal matroid” help or hinder a
grant application?



Questions

I For which minor-closed classes of F-representable matroids is
membership decidable?

I Are there helpful width parameters for F-representable
matroids?

I Let R∞ denote the class of matroids representable over all
infinite fields. Is the custard just as deep for R∞ as for F?

I Would the terminology “fractal matroid” help or hinder a
grant application?


