Akito Tsuboi

University of Tsukuba

Asian Logic Conference 20 December, 2011

イロト イボト イヨト イヨト 二日

Outline

- 1. Indiscernible Sequence
- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

Outline

1. Indiscernible Sequence

- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

Outline

- 1. Indiscernible Sequence
- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

Outline

- 1. Indiscernible Sequence
- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

Outline

- 1. Indiscernible Sequence
- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

► *T* is a (complete) theory formulated in the language *L*.

• We work in a big saturated model $\mathcal{M} \models T$.

- ► *T* is a (complete) theory formulated in the language *L*.
- We work in a big saturated model $\mathcal{M} \models T$.

Indiscernible Sequence

Notations

• a, b, \dots are (finite) tuples in \mathcal{M} .

- A, B, \dots are small sets in \mathcal{M} .
- α , ... are ordinals.
- I, J are sequences of tuples in \mathcal{M} .
- $M \prec \mathcal{M}$.
- Formulas are denoted by φ, ψ, \dots

Indiscernible Sequence

Notations

イロト イボト イヨト イヨト 二日

- a, b, \dots are (finite) tuples in \mathcal{M} .
- A, B, ... are small sets in \mathcal{M} .
- α , ... are ordinals.
- I, J are sequences of tuples in \mathcal{M} .
- $M \prec \mathcal{M}$.
- Formulas are denoted by φ, ψ, \dots

Indiscernible Sequence

Notations

イロト イボト イヨト イヨト 二日

- a, b, \dots are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .
- α,... are ordinals.
- I, J are sequences of tuples in \mathcal{M} .
- $M \prec \mathcal{M}$.
- Formulas are denoted by φ, ψ, \dots

Indiscernible Sequence

Notations

イロト イボト イヨト イヨト 二日

- a, b, \dots are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .
- α,... are ordinals.
- I, J are sequences of tuples in \mathcal{M} .
- $M \prec \mathcal{M}$.
- Formulas are denoted by $\varphi, \psi, ...$

Indiscernible Sequence

Notations

- a, b, \dots are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .
- α,... are ordinals.
- I, J are sequences of tuples in \mathcal{M} .
- $M \prec \mathcal{M}$.
- Formulas are denoted by φ, ψ, \dots

- Indiscernible Sequence

Notations

- a, b, \dots are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .
- α,... are ordinals.
- I, J are sequences of tuples in \mathcal{M} .
- $M \prec \mathcal{M}$.
- Formulas are denoted by $\varphi, \psi, ...$

(*)

We write

$\operatorname{tp}(a/A) = \operatorname{tp}(b/A),$

if there is an *A*-automorphism σ of \mathcal{M} with $\sigma a = b$.

Usually, tp(a/A) is defined as the set { $\varphi(x) \in L(A) : \mathcal{M} \models \varphi(a)$ }. By the saturation of \mathcal{M} , we have the above equivalence.

(*)

We write

$$\operatorname{tp}(a/A) = \operatorname{tp}(b/A),$$

if there is an *A*-automorphism σ of \mathcal{M} with $\sigma a = b$.

Usually, tp(a/A) is defined as the set { $\varphi(x) \in L(A) : \mathcal{M} \models \varphi(a)$ }. By the saturation of \mathcal{M} , we have the above equivalence.

What is the indiscernibility?

Indiscernible Sequence

Definition

 $I = (a_i)_{i \in \alpha}$ is called an *A*-indiscernible sequence if whenever $i_1 < ... < i_n < \alpha$ and $j_1 < ... < j_n < \alpha$, then

$$\operatorname{tp}(a_{i_1}, ..., a_{i_n}/A) = \operatorname{tp}(a_{j_1}, ..., a_{j_n}/A).$$

Remark

The following are equivalent.

- $I = (a_i)_{i \in \alpha}$ is an *A*-indiscernible sequence.
- For any order preserving map $f : \alpha \to \alpha$, there is an *A*-automorphism σ of \mathcal{M} such that

$$a_i \mapsto a_{f(i)} \ (\forall i \in \alpha).$$

Existence of Indiscernible Sequence

1. Let $I = (a_i)_{i \in \omega}$ be a trivial sequence (i.e. $a_i = \text{const}$). Then I is an indiscernible sequence.

2. There is a non-trivial indiscernible sequence.

- In (Q, <), 0, 1, 2, is an indisecernible sequence.</p>
- In the field C, a transcendence basis of C/Q is an indiscernible sequence over Q (in any ordering).

Existence of Indiscernible Sequence

- 1. Let $I = (a_i)_{i \in \omega}$ be a trivial sequence (i.e. $a_i = \text{const}$). Then *I* is an indiscernible sequence.
- 2. There is a non-trivial indiscernible sequence.
 - ▶ In (\mathbb{Q} , <), 0, 1, 2, is an indisecernible sequence.
 - In the field C, a transcendence basis of C/Q is an indiscernible sequence over Q (in any ordering).

Existence of Indiscernible Sequence

- 1. Let $I = (a_i)_{i \in \omega}$ be a trivial sequence (i.e. $a_i = \text{const}$). Then *I* is an indiscernible sequence.
- 2. There is a non-trivial indiscernible sequence.
 - ▶ In (\mathbb{Q} , <), 0, 1, 2, is an indisecernible sequence.
 - In the field C, a transcendence basis of C/Q is an indiscernible sequence over Q (in any ordering).

Existence of Indiscernible Sequence

- 1. Let $I = (a_i)_{i \in \omega}$ be a trivial sequence (i.e. $a_i = \text{const}$). Then I is an indiscernible sequence.
- 2. There is a non-trivial indiscernible sequence.
 - ▶ In (\mathbb{Q} , <), 0, 1, 2, is an indisecernible sequence.
 - In the field C, a transcendence basis of C/Q is an indiscernible sequence over Q (in any ordering).

・ロト・日本・モン・モン・モン・モン・シスペーン
23/100

Existence of Indiscernible Sequence

Let $(x_i)_{i\in\omega}$ be a sequence of variables. Let $\Gamma((x_i)_{i\in\omega})$ be a set of *L*-formulas (possibly with parameters).

Definition

We say that Γ has the subsequence property if there is $I = (a_i)_{i \in \omega}$ such that any subsequence J of I realizes Γ .

J of the form $(a_{f(i)})_{i \in \omega}$ (*f* strictly increasing) is called a subsequence.

Existence of Indiscernible Sequence

Let $(x_i)_{i\in\omega}$ be a sequence of variables. Let $\Gamma((x_i)_{i\in\omega})$ be a set of *L*-formulas (possibly with parameters).

Definition

We say that Γ has the subsequence property if there is $I = (a_i)_{i \in \omega}$ such that any subsequence J of I realizes Γ .

J of the form $(a_{f(i)})_{i \in \omega}$ (f strictly increasing) is called a subsequence.

Existence of Indiscernible Sequence

Let $(x_i)_{i\in\omega}$ be a sequence of variables. Let $\Gamma((x_i)_{i\in\omega})$ be a set of *L*-formulas (possibly with parameters).

Definition

We say that Γ has the subsequence property if there is $I = (a_i)_{i \in \omega}$ such that any subsequence J of I realizes Γ .

J of the form $(a_{f(i)})_{i \in \omega}$ (f strictly increasing) is called a subsequence.

The following Γ 's have the subsequence property.

- 1. $\Gamma = \{x_i \neq x_j : i < j < \omega\}.$
- 2. $\Gamma = \{x_i \text{ 's are linearly independent}\}, in a vector space.$
- 3. $\Gamma = \{x_i < x_j : i < j < \omega\}, \text{ in } \mathbb{R}.$
- 4. $\Gamma = \{x_i < x_j : i < j < \omega\} \cup \{x_i \text{ is a prime number } : i \in \omega\}$, in Peano Arithmetic.

The following Γ 's have the subsequence property.

1.
$$\Gamma = \{x_i \neq x_j : i < j < \omega\}.$$

2. $\Gamma = \{x_i \text{'s are linearly independent}\}, \text{ in a vector space.}$

- 3. $\Gamma = \{x_i < x_j : i < j < \omega\}, \text{ in } \mathbb{R}.$
- 4. $\Gamma = \{x_i < x_j : i < j < \omega\} \cup \{x_i \text{ is a prime number } : i \in \omega\}$, in Peano Arithmetic.

The following Γ 's have the subsequence property.

1.
$$\Gamma = \{x_i \neq x_j : i < j < \omega\}.$$

- 2. $\Gamma = \{x_i \text{ 's are linearly independent}\}, \text{ in a vector space.}$
- 3. $\Gamma = \{x_i < x_j : i < j < \omega\}, \text{ in } \mathbb{R}.$
- 4. $\Gamma = \{x_i < x_j : i < j < \omega\} \cup \{x_i \text{ is a prime number } : i \in \omega\}$, in Peano Arithmetic.

The following Γ 's have the subsequence property.

1.
$$\Gamma = \{x_i \neq x_j : i < j < \omega\}.$$

2. $\Gamma = \{x_i \text{ 's are linearly independent}\}, \text{ in a vector space.}$

3.
$$\Gamma = \{x_i < x_j : i < j < \omega\}, \text{ in } \mathbb{R}.$$

4. $\Gamma = \{x_i < x_j : i < j < \omega\} \cup \{x_i \text{ is a prime number } : i \in \omega\}$, in Peano Arithmetic.

The following Γ 's have the subsequence property.

1.
$$\Gamma = \{x_i \neq x_j : i < j < \omega\}$$

2. $\Gamma = \{x_i \text{'s are linearly independent}\}, \text{ in a vector space.}$

3.
$$\Gamma = \{x_i < x_j : i < j < \omega\}, \text{ in } \mathbb{R}.$$

4. $\Gamma = \{x_i < x_j : i < j < \omega\} \cup \{x_i \text{ is a prime number } : i \in \omega\}$, in Peano Arithmetic.

Existence of Indiscernible Sequence

Fact

If Γ has the subsequence property, then Γ is realized by an indiscernible sequence.

Proof

- Let $I = (a_i)_{i \in \omega}$ be any realization of Γ .
- Let $\varphi(x_1, ..., x_n)$ be any formula.
- ▶ Let *F* be an *n*-place function defined by:

$$F(a_{i_1},...,a_{i_n}) = \begin{cases} 1 & \mathcal{M} \models \varphi(a_{i_1},...,a_{i_n}), \\ 0 & o.w. \end{cases}$$

- By Ramsey's theorem, there is a subsequence J = (a_{f(i)})_{i∈ω} of I such that F(a_{f(i1)}, ..., a_{f(in)}) is constant for any i₁ < ··· < i_n.
- By the subsequence property, this shows the existence of φ -indiscernible sequence realizing Γ .
- Compactness yields the existence of full indiscernible sequence.

Proof

• Let $I = (a_i)_{i \in \omega}$ be any realization of Γ .

• Let $\varphi(x_1, ..., x_n)$ be any formula.

▶ Let *F* be an *n*-place function defined by:

$$F(a_{i_1},...,a_{i_n}) = \begin{cases} 1 & \mathcal{M} \models \varphi(a_{i_1},...,a_{i_n}), \\ 0 & o.w. \end{cases}$$

- ▶ By Ramsey's theorem, there is a subsequence $J = (a_{f(i)})_{i \in \omega}$ of I such that $F(a_{f(i_1)}, ..., a_{f(i_n)})$ is constant for any $i_1 < \cdots < i_n$.
- By the subsequence property, this shows the existence of φ -indiscernible sequence realizing Γ .
- Compactness yields the existence of full indiscernible sequence.

- Indiscernible Sequence

Proof

- Let $I = (a_i)_{i \in \omega}$ be any realization of Γ .
- Let $\varphi(x_1, ..., x_n)$ be any formula.
- ▶ Let *F* be an *n*-place function defined by:

$$F(a_{i_1},...,a_{i_n}) = \begin{cases} 1 & \mathcal{M} \models \varphi(a_{i_1},...,a_{i_n}), \\ 0 & o.w. \end{cases}$$

- By Ramsey's theorem, there is a subsequence J = (a_{f(i)})_{i∈ω} of I such that F(a_{f(i1)}, ..., a_{f(in)}) is constant for any i₁ < ··· < i_n.
- By the subsequence property, this shows the existence of φ -indiscernible sequence realizing Γ .
- Compactness yields the existence of full indiscernible sequence.

Proof

- Let $I = (a_i)_{i \in \omega}$ be any realization of Γ .
- Let $\varphi(x_1, ..., x_n)$ be any formula.
- ▶ Let *F* be an *n*-place function defined by:

$$F(a_{i_1},...,a_{i_n}) = \begin{cases} 1 & \mathcal{M} \models \varphi(a_{i_1},...,a_{i_n}), \\ 0 & o.w. \end{cases}$$

- By Ramsey's theorem, there is a subsequence J = (a_{f(i)})_{i∈ω} of I such that F(a_{f(i1)}, ..., a_{f(in)}) is constant for any i₁ < ··· < i_n.
- By the subsequence property, this shows the existence of φ -indiscernible sequence realizing Γ .
- Compactness yields the existence of full indiscernible sequence.
- Indiscernible Sequence

- Let $I = (a_i)_{i \in \omega}$ be any realization of Γ .
- Let $\varphi(x_1, ..., x_n)$ be any formula.
- ▶ Let *F* be an *n*-place function defined by:

$$F(a_{i_1},...,a_{i_n}) = \begin{cases} 1 & \mathcal{M} \models \varphi(a_{i_1},...,a_{i_n}), \\ 0 & o.w. \end{cases}$$

- ▶ By Ramsey's theorem, there is a subsequence $J = (a_{f(i)})_{i \in \omega}$ of I such that $F(a_{f(i_1)}, ..., a_{f(i_n)})$ is constant for any $i_1 < \cdots < i_n$.
- By the subsequence property, this shows the existence of φ -indiscernible sequence realizing Γ .
- Compactness yields the existence of full indiscernible sequence.

- Indiscernible Sequence

- Let $I = (a_i)_{i \in \omega}$ be any realization of Γ .
- Let $\varphi(x_1, ..., x_n)$ be any formula.
- ▶ Let *F* be an *n*-place function defined by:

$$F(a_{i_1},...,a_{i_n}) = \begin{cases} 1 & \mathcal{M} \models \varphi(a_{i_1},...,a_{i_n}), \\ 0 & o.w. \end{cases}$$

- ▶ By Ramsey's theorem, there is a subsequence $J = (a_{f(i)})_{i \in \omega}$ of I such that $F(a_{f(i_1)}, ..., a_{f(i_n)})$ is constant for any $i_1 < \cdots < i_n$.
- By the subsequence property, this shows the existence of φ-indiscernible sequence realizing Γ.
- Compactness yields the existence of full indiscernible sequence.

- Indiscernible Sequence

- Let $I = (a_i)_{i \in \omega}$ be any realization of Γ .
- Let $\varphi(x_1, ..., x_n)$ be any formula.
- ▶ Let *F* be an *n*-place function defined by:

$$F(a_{i_1},...,a_{i_n}) = \begin{cases} 1 & \mathcal{M} \models \varphi(a_{i_1},...,a_{i_n}), \\ 0 & o.w. \end{cases}$$

- ▶ By Ramsey's theorem, there is a subsequence $J = (a_{f(i)})_{i \in \omega}$ of I such that $F(a_{f(i_1)}, ..., a_{f(i_n)})$ is constant for any $i_1 < \cdots < i_n$.
- By the subsequence property, this shows the existence of φ-indiscernible sequence realizing Γ.
- Compactness yields the existence of full indiscernible sequence.

Indiscernible Sequence

Subsequence J is ϕ -indiscernible.

Example of Arguments with Indiscernible Sequences

The following is a classical fact in model theory (T countable).

Suppose that *T* is ω_1 -categorical. Then *T* is ω -stable.

T is ω -stable iff for any countable *A* there are at most countably many a_i 's with $\mathbf{tp}(a_i) \neq \mathbf{tp}(a_j)$ $(i \neq j)$.

Example of Arguments with Indiscernible Sequences

The following is a classical fact in model theory (T countable).

Suppose that *T* is ω_1 -categorical. Then *T* is ω -stable.

T is ω -stable iff for any countable *A* there are at most countably many a_i 's with $tp(a_i) \neq tp(a_j)$ ($i \neq j$).

イロト イヨト イヨト イヨト 二日

42/100

Example of Arguments with Indiscernible Sequences

The following is a classical fact in model theory (T countable).

Suppose that *T* is ω_1 -categorical. Then *T* is ω -stable.

T is ω -stable iff for any countable *A* there are at most countably many a_i 's with $tp(a_i) \neq tp(a_j)$ ($i \neq j$).

- Indiscernible Sequence

- ▶ We can assume *T* has Skolem functions.
- Choose an indiscernible sequence *I* with the order type ω₁.
- ▶ Let *M* be the Skolem closure (definable closure) of *I*.
- Then $M \models T$ and $|M| = \omega_1$.
- ▶ By the indiscernibility of *I*, *M* has the property: if $A \subset M$ is countable then { $tp(a/A) : a \in M$ } is also countable.
- ► By the ω_1 -categoricity, every model $N \models T$ with $|N| = \omega_1$ has this property. So, *T* must be ω -stable.

- Indiscernible Sequence

- ▶ We can assume *T* has Skolem functions.
- Choose an indiscernible sequence *I* with the order type ω₁.
- Let *M* be the Skolem closure (definable closure) of *I*.
- Then $M \models T$ and $|M| = \omega_1$.
- ▶ By the indiscernibility of *I*, *M* has the property: if $A \subset M$ is countable then {tp(a/A) : $a \in M$ } is also countable.
- ► By the ω_1 -categoricity, every model $N \models T$ with $|N| = \omega_1$ has this property. So, *T* must be ω -stable.

- We can assume *T* has Skolem functions.
- Choose an indiscernible sequence *I* with the order type ω₁.
- ▶ Let *M* be the Skolem closure (definable closure) of *I*.
- Then $M \models T$ and $|M| = \omega_1$.
- ▶ By the indiscernibility of *I*, *M* has the property: if $A \subset M$ is countable then { $tp(a/A) : a \in M$ } is also countable.
- ► By the ω_1 -categoricity, every model $N \models T$ with $|N| = \omega_1$ has this property. So, *T* must be ω -stable.

- We can assume *T* has Skolem functions.
- Choose an indiscernible sequence *I* with the order type ω₁.
- ▶ Let *M* be the Skolem closure (definable closure) of *I*.
- Then $M \models T$ and $|M| = \omega_1$.
- ▶ By the indiscernibility of *I*, *M* has the property: if $A \subset M$ is countable then { $tp(a/A) : a \in M$ } is also countable.
- ► By the ω_1 -categoricity, every model $N \models T$ with $|N| = \omega_1$ has this property. So, *T* must be ω -stable.

- We can assume *T* has Skolem functions.
- Choose an indiscernible sequence *I* with the order type ω₁.
- ▶ Let *M* be the Skolem closure (definable closure) of *I*.
- Then $M \models T$ and $|M| = \omega_1$.
- ▶ By the indiscernibility of *I*, *M* has the property: if $A \subset M$ is countable then {tp(a/A) : $a \in M$ } is also countable.
- ► By the ω_1 -categoricity, every model $N \models T$ with $|N| = \omega_1$ has this property. So, *T* must be ω -stable.

- We can assume *T* has Skolem functions.
- Choose an indiscernible sequence *I* with the order type ω₁.
- ▶ Let *M* be the Skolem closure (definable closure) of *I*.
- Then $M \models T$ and $|M| = \omega_1$.
- By the indiscernibility of *I*, *M* has the property: if A ⊂ M is countable then {tp(a/A) : a ∈ M} is also countable.
- ► By the ω_1 -categoricity, every model $N \models T$ with $|N| = \omega_1$ has this property. So, *T* must be ω -stable.

First recall: $I = (a_i)_{i \in \omega}$ is an indiscernible sequence \iff for any $X, Y \subset \omega$, $otp(X) = otp(Y) \Rightarrow tp(a_X) = tp(a_Y)$

In words, *I* is an indiscernible sequence if whenver *X* and *Y* have a similar shape then $tp(a_X) = tp(a_Y)$.

イロト イヨト イヨト イヨト 二日

First recall: $I = (a_i)_{i \in \omega}$ is an indiscernible sequence \iff for any $X, Y \subset \omega$, $otp(X) = otp(Y) \Rightarrow tp(a_X) = tp(a_Y)$

In words, *I* is an indiscernible sequence if whenver *X* and *Y* have a similar shape then $tp(a_X) = tp(a_Y)$.

イロト イボト イヨト イヨト 二日

Indiscernible Tree

How can we define the notion of 'indiscernibility' for trees?

52/100

First we recall the definition of tree.

How can we define the notion of 'indiscernibility' for trees?

First we recall the definition of tree.

Definition

An ordered set O = (O, <) is called a tree if every $I_a = \{b \in O : b < a\}$ is linearly ordered by <.

Example of Trees

1. A linearly ordered set is a tree.

- 2. $2^{<\omega}$ (the set of all finite {0, 1}-sequences) becomes a tree by $<_{ini}$ (initial segment).
- 3. $\omega^{<\omega}$ (the set of all finite ω -sequences) is a tree.

Example of Trees

- 1. A linearly ordered set is a tree.
- 2. $2^{<\omega}$ (the set of all finite {0, 1}-sequences) becomes a tree by $<_{ini}$ (initial segment).
- 3. $\omega^{<\omega}$ (the set of all finite ω -sequences) is a tree.

Example of Trees

- 1. A linearly ordered set is a tree.
- 2. $2^{<\omega}$ (the set of all finite {0, 1}-sequences) becomes a tree by $<_{ini}$ (initial segment).

イロト イヨト イヨト イヨト 二日

57/100

3. $\omega^{<\omega}$ (the set of all finite ω -sequences) is a tree.

Example of Trees

- 1. A linearly ordered set is a tree.
- 2. $2^{<\omega}$ (the set of all finite {0, 1}-sequences) becomes a tree by $<_{ini}$ (initial segment).
- 3. $\omega^{<\omega}$ (the set of all finite ω -sequences) is a tree.

Indiscernible Tree

59/100

We want to say that $I = (a_i)_{i \in O}$ is an indiscernible tree if the following condition holds:

X and *Y* have a similar shape \Rightarrow **tp**(a_X) = **tp**(a_Y).

æ

We introduce a language L_s for describing $\omega^{<\omega}$.

Definition

Let $L_s = \{<_{ini}, <_{lex}, \cap, <_{len}, P_0, P_1, P_2, ...\}$. We consider the following structure on $\omega^{<\omega}$: For $\eta, \nu \in \omega^{<\omega}$,

- 1. $\eta <_{ini} v \Leftrightarrow \eta$ is a proper initial segment of v;
- 2. $\eta <_{\text{lex}} \nu \Leftrightarrow \eta$ is less than ν in the lexicographic order;
- 3. $\eta \cap v$ = the longest common initial segment of η and v;
- 4. $\eta <_{\text{len}} \nu \Leftrightarrow \text{len}(\eta) < \text{len}(\nu)$, where $\text{len}(\eta)$ is the length of the sequence η ;
- 5. $P_n(\eta) \Leftrightarrow$ the length of η is n.

- Indiscernible Tree

- $\diamond \langle 01 \rangle <_{ini} \langle 010 \rangle, \langle 0102 \rangle <_{lex} \langle 012 \rangle.$
- $\blacktriangleright \langle 010 \rangle \cap \langle 012 \rangle = \langle 01 \rangle.$
- $P_2(\langle 01 \rangle).$
- $\blacktriangleright \langle 012 \rangle <_{len} \langle 0102 \rangle.$

Definition

1.
$$L_0 = \{<_{\text{lex}}, <_{\text{ini}}, \cap\}$$
 and $L_1 = L_0 \cup \{<_{\text{len}}\}$.
2. For $X, Y \subset \omega^{<\omega}$,
 $\therefore X \sim_s Y \iff atp_{L_s}(X) = atp_{L_s}(Y)$.
 $\therefore X \sim_i Y \iff atp_{L_i}(X) = atp_{L_i}(Y) \ (i = 0, 1)$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

64/100

atp stands for 'atomic type'.

Indiscernible Tree

 $L_0 \subset L_1 \subset L_s$

65/100

Indiscernible Tree (Weak Sense)

Definition

We say $A = (a_{\eta})_{\eta \in \omega^{<\omega}}$ is a weakly indiscernible tree if

$$X \sim_{\mathrm{s}} Y \Rightarrow \mathrm{tp}(a_X) = \mathrm{tp}(a_Y),$$

where $a_X = (a_\eta)_{\eta \in X}$.

This notion was introduced by Shelah. However, weak indiscernibility is our terminology.

Indiscernible Tree (Weak Sense)

Definition

We say $A = (a_{\eta})_{\eta \in \omega^{<\omega}}$ is a weakly indiscernible tree if

$$X \sim_{\mathrm{s}} Y \Rightarrow \mathrm{tp}(a_X) = \mathrm{tp}(a_Y),$$

where $a_X = (a_\eta)_{\eta \in X}$.

This notion was introduced by Shelah. However, weak indiscernibility is our terminology.

Definition

Let $\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}})$ be a set of *L*-formulas. We say that $\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}})$ has the weak subtree property if there is a realization $A = (a_{\eta})_{\eta\in\omega^{<\omega}}$ such that if $\sigma : \omega^{<\omega} \to \omega^{<\omega}$ is an L_s -embedding then $A_{\sigma} = (a_{\sigma(\eta)})_{\eta\in\omega^{<\omega}}$ realizes Γ .

Indiscernible Tree

< □ > < 部 > < 言 > < 言 > < 言 > < ○ < ↔ 69/100

Existence of Indiscernible Trees

Theorem (Shelah)

If Γ has the weak subtree property, then Γ is realized by a weakly indiscernible tree.

<ロト < 部ト < 国ト < 国ト < 国 > 三 の へ () 70/100

The following fact is used to prove the theorem.

Fact (Shelah)

Let $O = \lambda^{<n}$ be a tree, and $f : O^k \to \mu$ a *k*-place function. If λ is sufficiently large (depending only on μ), then there is an L_s -embedding $\sigma : \omega^{<n} \to \lambda^{<n}$ such that $f(\sigma(X)) = f(\sigma(Y))$ for any *k*-tuples $X, Y \subset \omega^{<n}$ with $X \sim_s Y$.

Example of Γ having the weak subtree property

Example (Negation of Simplicity)

Suppose that *T* is not simple (in the sense of Shelah). Then there is $k \in \omega$, a formula $\varphi(y, x)$ and a set $(a_{\eta})_{\eta \in \omega^{<\omega}}$ such that

- 1. $\{\varphi(y, a_{\eta|n}) : n \in \omega\}$ is consistent for each path $\eta \in \omega^{\omega}$ and
- 2. for each $\eta \in \omega^{<\omega}$ the set $\{\varphi(y, a_{\eta \land \langle n \rangle}) : n \in \omega\}$ is *k*-inconsistent.

The condition for $(a_\eta)_{\eta \in \omega^{<\omega}}$ to satisfy (1) and (2) can be expressed by a set $\Gamma((x_\eta)_{\eta \in \omega^{<\omega}})$ of *L*-formulas.

This Γ has the weak subtree property.
Example of Γ having the weak subtree property

Example (Negation of Simplicity)

Suppose that *T* is not simple (in the sense of Shelah). Then there is $k \in \omega$, a formula $\varphi(y, x)$ and a set $(a_{\eta})_{\eta \in \omega^{<\omega}}$ such that

- 1. $\{\varphi(y, a_{\eta|n}) : n \in \omega\}$ is consistent for each path $\eta \in \omega^{\omega}$ and
- 2. for each $\eta \in \omega^{<\omega}$ the set $\{\varphi(y, a_{\eta \land \langle n \rangle}) : n \in \omega\}$ is *k*-inconsistent.

The condition for $(a_\eta)_{\eta\in\omega^{<\omega}}$ to satisfy (1) and (2) can be expressed by a set $\Gamma((x_\eta)_{\eta\in\omega^{<\omega}})$ of *L*-formulas.

This Γ has the weak subtree property.

- Indiscernible Tree

74/100

Example

In the real closed field $\mathbb{R} = (\mathbb{R}, 0, 1, +, \cdot, <)$, we have $A = (a_{\eta}, b_{\eta})_{\eta \in \omega^{<\omega}}$ as shown in the following picture.

By re-choosing *A* from some elementary extension, *A* can be assumed to be a weakly indiscernible tree.

Example

In the real closed field $\mathbb{R} = (\mathbb{R}, 0, 1, +, \cdot, <)$, we have $A = (a_{\eta}, b_{\eta})_{\eta \in \omega^{<\omega}}$ as shown in the following picture.

By re-choosing *A* from some elementary extension, *A* can be assumed to be a weakly indiscernible tree.

Example

In the real closed field $\mathbb{R} = (\mathbb{R}, 0, 1, +, \cdot, <)$, we have $A = (a_{\eta}, b_{\eta})_{\eta \in \omega^{<\omega}}$ as shown in the following picture.

By re-choosing A from some elementary extension, A can be assumed to be a weakly indiscernible tree. O = O = O

Indiscernible tree in stronger sense

Definition

$$\begin{split} &\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \text{ has the subtree property} \\ & \Longleftrightarrow \exists A = (a_{\eta})_{\eta\in\omega^{<\omega}} \text{ s.t.} \\ & \forall \sigma: \omega^{<\omega} \to \omega^{<\omega} (L_1\text{-embedding}), A_{\sigma} = (a_{\sigma(\eta)})_{\eta\in X} \models \Gamma. \end{split}$$

Definition

$$\begin{split} &\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \text{ has the strong subtree property} \\ & \Longleftrightarrow \ \exists A = (a_{\eta})_{\eta\in\omega^{<\omega}} \text{ s.t.} \\ & \forall \sigma: \omega^{<\omega} \to \omega^{<\omega} \ (L_0\text{-embedding}), \ A_{\sigma} = (a_{\sigma(\eta)})_{\eta\in X} \models \Gamma. \end{split}$$

Indiscernible tree in stronger sense

Definition

$$\begin{split} &\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \text{ has the subtree property} \\ &\iff \exists A = (a_{\eta})_{\eta\in\omega^{<\omega}} \text{ s.t.} \\ &\forall \sigma: \omega^{<\omega} \to \omega^{<\omega} \ (L_1\text{-embedding}), A_{\sigma} = (a_{\sigma(\eta)})_{\eta\in X} \models \Gamma. \end{split}$$

Definition

$$\begin{split} &\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \text{ has the strong subtree property} \\ & \Longleftrightarrow \ \exists A = (a_{\eta})_{\eta\in\omega^{<\omega}} \text{ s.t.} \\ & \forall \sigma: \omega^{<\omega} \to \omega^{<\omega} \ (L_0\text{-embedding}), \ A_{\sigma} = (a_{\sigma(\eta)})_{\eta\in X} \models \Gamma. \end{split}$$

Theorem (Takeuchi and T)

- 1. If $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ has the subtree property, then Γ is realized by an indiscernible tree.
- 2. If $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ has the strong subtree property, then Γ is realized by a strongly indiscernible tree.

Indiscernible tree in stronger sense

Sketch of Proof

STP \Rightarrow \exists indiscernible tree

- Subtree Property implies Weak Subtree Property.
- So, we can choose A ⊨ Γ, which is a weakly indiscernible tree.
- Applying Ramsey's theorem to A (+ compactness), we can choose an indiscernible tree B realizing Γ .

- Indiscernible tree in stronger sense

Sketch of Proof

STP \Rightarrow \exists indiscernible tree

- Subtree Property implies Weak Subtree Property.
- So, we can choose A ⊨ Γ, which is a weakly indiscernible tree.
- Applying Ramsey's theorem to A (+ compactness), we can choose an indiscernible tree B realizing Γ .

- Indiscernible tree in stronger sense

Sketch of Proof

STP \Rightarrow \exists indiscernible tree

- Subtree Property implies Weak Subtree Property.
- So, we can choose A ⊨ Γ, which is a weakly indiscernible tree.
- Applying Ramsey's theorem to A (+ compactness), we can choose an indiscernible tree B realizing Γ .

- Indiscernible tree in stronger sense

Sketch of Proof

STP \Rightarrow \exists indiscernible tree

- Subtree Property implies Weak Subtree Property.
- So, we can choose A ⊨ Γ, which is a weakly indiscernible tree.
- Applying Ramsey's theorem to A (+ compactness), we can choose an indiscernible tree B realizing Γ .

イロト イポト イヨト イヨト

84/100

- We have seen that if T is not simple then there is a set Γ expressing the nonsimplicity.
- Γ has the weak subtree property, so there is a weakly indiscernible tree realizing Γ.
- However, we sometimes want more 'indiscernibility' for studying this Γ.
- But this Γ does not have the subtree property nor the strong subtree property.
- ► Thus, we introduce another type of 'indiscernibility'.

- We have seen that if T is not simple then there is a set Γ expressing the nonsimplicity.
- Γ has the weak subtree property, so there is a weakly indiscernible tree realizing Γ.
- However, we sometimes want more 'indiscernibility' for studying this Γ.
- But this Γ does not have the subtree property nor the strong subtree property.
- ► Thus, we introduce another type of 'indiscernibility'.

- We have seen that if T is not simple then there is a set Γ expressing the nonsimplicity.
- Γ has the weak subtree property, so there is a weakly indiscernible tree realizing Γ.
- However, we sometimes want more 'indiscernibility' for studying this Γ.
- But this Γ does not have the subtree property nor the strong subtree property.
- ► Thus, we introduce another type of 'indiscernibility'.

- We have seen that if T is not simple then there is a set Γ expressing the nonsimplicity.
- Γ has the weak subtree property, so there is a weakly indiscernible tree realizing Γ.
- However, we sometimes want more 'indiscernibility' for studying this Γ.
- But this Γ does not have the subtree property nor the strong subtree property.
- ► Thus, we introduce another type of 'indiscernibility'.

- We have seen that if T is not simple then there is a set Γ expressing the nonsimplicity.
- Γ has the weak subtree property, so there is a weakly indiscernible tree realizing Γ.
- However, we sometimes want more 'indiscernibility' for studying this Γ.
- But this Γ does not have the subtree property nor the strong subtree property.
- Thus, we introduce another type of 'indiscernibility'.

- Indiscernible Trees in Other Settings

Indiscernible Trees in Other Settings

Now we consider the subtree

 $O = \{\eta \in \omega^{<\omega} : \eta(2n) = 0 \text{ for all } n \in \omega\},\$

of $\omega^{<\omega}$. We regard *O* as an $L_{\rm s}$ -substructure of $\omega^{<\omega}$.

 Indiscernible Trees in Other Settings

We call a set $\{\eta\} \cup \{\eta^{\hat{}}\langle n \rangle : n \in \omega\} \subset O$ a family if $\eta \in O$ has odd length.

• $F(\eta_1, \eta_2) \iff \eta_1$ and η_2 belong to the same family;

•
$$E(\eta) \iff len(\eta)$$
 is even;

▶ $\eta_1 <_F \eta_2 \iff len(\eta_1) \le 2n < len(\eta_2)$ for some $n \in \omega$.

$$\blacktriangleright L_{s,F} = L_s \cup \{F, E\},$$

► $L_{0,F} = L_0 \cup \{F, E\},$

▶ $L_{1,F} = L_1 \cup \{F, E, <_F\}.$

Indiscernible Trees in Other Settings

We call a set $\{\eta\} \cup \{\eta^{\hat{}}\langle n \rangle : n \in \omega\} \subset O$ a family if $\eta \in O$ has odd length.

• $F(\eta_1, \eta_2) \iff \eta_1$ and η_2 belong to the same family;

•
$$E(\eta) \iff len(\eta)$$
 is even;

▶ $\eta_1 <_F \eta_2 \iff len(\eta_1) \le 2n < len(\eta_2)$ for some $n \in \omega$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨー

92/100

$$\blacktriangleright L_{s,F} = L_s \cup \{F,E\},\$$

- ► $L_{0,F} = L_0 \cup \{F, E\},$
- $L_{1,F} = L_1 \cup \{F, E, <_F\}.$

Indiscernible Trees in Other Settings

< □ > < 部 > < 言 > < 言 > < 言 > ○ Q (~ 93/100 - Indiscernible Trees in Other Settings

Definition

We say $\Gamma((x_{\eta})_{\eta \in O})$ has $L_{i,F}$ -subtree property if there is a realization $A \models \Gamma$ such that for every $L_{i,F}$ -embedding $\sigma: O \rightarrow O$ the image A_{σ} realizes Γ .

- Indiscernible Trees in Other Settings

Theorem (Takeuchi and T)

Suppose $\Gamma((x_{\eta})_{\eta \in O})$ has $L_{i,F}$ -subtree property. Γ is realized by an $L_{i,F}$ -indiscernible tree.

Application

Proposition (Shelah)

Suppose that *T* has the tree property. Then 1 or 2:

- 1. There is a tree $C = (c_{\eta})_{\eta \in \omega^{<\omega}}$ and a formula ψ such that
 - ► For each path $\eta \in \omega^{\omega}$, { $\psi(x, c_{\eta|n}) : n \in \omega$ } is consistent;
 - ► $\psi(x, c_{\eta}) \land \psi(x, c_{\nu})$ is inconsistent for any incomparable η and $\nu \in \omega^{<\omega}$.
- 2. There are sets $I_i = (b_{i,j})_{j \in \omega}$ $(i \in \omega)$ with the following properties:
 - For each path $\eta \in \omega^{\omega}$, { $\varphi(x, b_{i,\eta(i)}) : i \in \omega$ } is consistent;
 - For each $i \in \omega$, { $\varphi(x, b_{i,j}) : j \in \omega$ } is 2-contradictory.

- Applications

97/100

Proof by Picture

98/100

Some other applications

References

- 1. S. Shelah, Classification Theory and the Number of Non-Isomorphic Models (Studies in Logic and the Foundations of Mathematics), North-Holland, 1978.
- 2. S. Shelah, Simple unstable theories, Ann. Math. Ligic 19 (1980), pp. 77-203.
- 3. B. Kim and H. Kim, Notions around the tree property I, Annals of Pure and Applied Logic, vol. 162 (2011), no. 9, 698-709.
- 4. K. Takeuchi and A. Tsuboi, On the existence of indiscernible trees, preprint.

Thank you.

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ (~ 101/100