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I T is a (complete) theory formulated in the language L.
I We work in a big saturated modelM |= T.
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I a, b, ... are (finite) tuples inM.
I A, B, ... are small sets inM.
I α, ... are ordinals.
I I , J are sequences of tuples inM.
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Indiscernible Sequence

(*)

We write
tp(a/A) = tp(b/A),

if there is an A-automorphism σ ofM with σa = b.

Usually, tp(a/A) is defined as the set {φ(x) ∈ L(A) : M |= φ(a)}. By the

saturation ofM, we have the above equivalence.
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What is the indiscernibility?
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On the Existence of Indiscernible Trees

Indiscernible Sequence

Indiscernible Sequence

Definition
I = (ai)i∈α is called an A-indiscernible sequence if whenever
i1 < ... < in < α and j1 < ... < jn < α, then

tp(ai1, ..., ain/A) = tp(aj1, ..., ajn/A).
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Indiscernible Sequence

Remark
The following are equivalent.
I I = (ai)i∈α is an A-indiscernible sequence.
I For any order preserving map f : α → α, there is an

A-automorphism σ ofM such that

ai 7→ af (i) (∀i ∈ α).
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Existence of Indiscernible Sequence

1. Let I = (ai)i∈ω be a trivial sequence (i.e. ai = const).
Then I is an indiscernible sequence.

2. There is a non-trivial indiscernible sequence.
I In (Q, <), 0, 1, 2, .... is an indisecernible sequence.
I In the field C, a transcendence basis of C/Q is an

indiscernible sequence over Q (in any ordering).
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Existence of Indiscernible Sequence

Let (xi)i∈ω be a sequence of variables. Let Γ((xi)i∈ω) be a set
of L-formulas (possibly with parameters).

Definition
We say that Γ has the subsequence property if there is
I = (ai)i∈ω such that any subsequence J of I realizes Γ.

J of the form (af (i))i∈ω ( f strictly increasing) is called a subsequence.
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Indiscernible Sequence

Examples of Γ

The following Γ’s have the subsequence property.

1. Γ = {xi , x j : i < j < ω}.
2. Γ = {xi ’s are linearly independent}, in a vector space.

3. Γ = {xi < x j : i < j < ω}, in R.

4. Γ = {xi < x j : i < j < ω} ∪ {xi is a prime number : i ∈
ω}, in Peano Arithmetic.
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Indiscernible Sequence

Existence of Indiscernible Sequence

Fact
If Γ has the subsequence property, then Γ is realized by an
indiscernible sequence.
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Indiscernible Sequence

Proof
I Let I = (ai)i∈ω be any realization of Γ.
I Let φ(x1, ..., xn) be any formula.
I Let F be an n-place function defined by:

F(ai1, ..., ain) =

1 M |= φ(ai1, ..., ain),

0 o.w.

I By Ramsey’s theorem, there is a subsequence
J = (af (i))i∈ω of I such that F(af (i1), ..., af (in)) is constant
for any i1 < · · · < in.

I By the subsequence property, this shows the existence
of φ-indiscernible sequence realizing Γ.

I Compactness yields the existence of full indiscernible
sequence.
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Indiscernible Sequence

Example of Arguments with Indiscernible Sequences

The following is a classical fact in model theory (T
countable).

Suppose that T is ω1-categorical. Then T is ω-stable.

T is ω-stable iff for any countable A there are at most countably many

ai ’s with tp(ai) , tp(a j) (i , j).
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Indiscernible Sequence

Proof

I We can assume T has Skolem functions.
I Choose an indiscernible sequence I with the order type
ω1.

I Let M be the Skolem closure (definable closure) of I .
I Then M |= T and |M | = ω1.
I By the indiscernibility of I , M has the property: if A ⊂ M

is countable then {tp(a/A) : a ∈ M} is also countable.
I By the ω1-categoricity, every model N |= T with
|N| = ω1 has this property. So, T must be ω-stable.
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Indiscernible Tree

First recall:
I = (ai)i∈ω is an indiscernible sequence ⇐⇒ for any
X,Y ⊂ ω,

ot p(X) = ot p(Y)⇒ tp(aX) = tp(aY)

In words, I is an indiscernible sequence if whenver X and Y have a

similar shape then tp(aX) = tp(aY).
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Indiscernible Tree

How can we define the notion of ‘indiscernibility’ for trees?

First we recall the definition of tree.
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Indiscernible Tree

Tree

Definition
An ordered set O = (O, <) is called a tree if every
I a = {b ∈ O : b < a} is linearly ordered by <.
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Indiscernible Tree

Example of Trees

1. A linearly ordered set is a tree.

2. 2<ω (the set of all finite {0, 1}-sequences) becomes a
tree by <ini (initial segment).

3. ω<ω (the set of all finite ω-sequences) is a tree.

We are mainly interested in ω<ω and its subtree.
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ω<ω
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Indiscernible Tree

We want to say that I = (ai)i∈O is an indiscernible tree if the
following condition holds:

X and Y have a similar shape⇒ tp(aX) = tp(aY).
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Indiscernible Tree

Are they similar?
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Indiscernible Tree

We introduce a language Ls for describing ω<ω.

Definition
Let Ls = {<ini , <lex,∩, <len, P0, P1, P2, ...}. We consider the
following structure on ω<ω: For η, ν ∈ ω<ω,

1. η <ini ν ⇔ η is a proper initial segment of ν;

2. η <lex ν ⇔ η is less than ν in the lexicographic order;

3. η ∩ ν = the longest common initial segment of η and ν;

4. η <len ν ⇔ len(η) < len(ν), where len(η) is the length of
the sequence η;

5. Pn(η) ⇔ the length of η is n.
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Indiscernible Tree

I ⟨01⟩ <ini ⟨010⟩, ⟨0102⟩ <lex ⟨012⟩.
I ⟨010⟩ ∩ ⟨012⟩ = ⟨01⟩.
I P2(⟨01⟩).
I ⟨012⟩ <len ⟨0102⟩.
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Indiscernible Tree

Definition

1. L0 = {<lex, <ini ,∩} and L1 = L0 ∪ {<len}.
2. For X,Y ⊂ ω<ω,

I X ∼s Y ⇐⇒ at pLs(X) = at pLs(Y).
I X ∼i Y ⇐⇒ at pL i (X) = at pL i (Y) (i = 0, 1).

at pstands for ‘atomic type’.
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L0 ⊂ L1 ⊂ Ls
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Indiscernible Tree (Weak Sense)

Definition
We say A = (aη)η∈ω<ω is a weakly indiscernible tree if

X ∼s Y ⇒ tp(aX) = tp(aY),

where aX = (aη)η∈X.

This notion was introduced by Shelah. However, weak
indiscernibility is our terminology.
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Indiscernible Tree

Definition
Let Γ((xη)η∈ω<ω) be a set of L-formulas. We say that
Γ((xη)η∈ω<ω) has the weak subtree property if there is a
realization A = (aη)η∈ω<ω such that if σ : ω<ω → ω<ω is an
Ls-embedding then Aσ = (aσ(η))η∈ω<ω realizes Γ.
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Existence of Indiscernible Trees

Theorem (Shelah)

If Γ has the weak subtree property, then Γ is realized by a
weakly indiscernible tree.
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The following fact is used to prove the theorem.

Fact (Shelah)

Let O = λ<n be a tree, and f : Ok → µ a k-place function. If
λ is sufficiently large (depending only on µ), then there is an
Ls-embedding σ : ω<n → λ<n such that f (σ(X)) = f (σ(Y))
for any k-tuples X,Y ⊂ ω<n with X ∼s Y.
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Example of Γ having the weak subtree property

Example (Negation of Simplicity)

Suppose that T is not simple (in the sense of Shelah). Then
there is k ∈ ω, a formula φ(y, x) and a set (aη)η∈ω<ω such that

1. {φ(y, aη|n) : n ∈ ω} is consistent for each path η ∈ ωω

and

2. for each η ∈ ω<ω the set {φ(y, aη̂⟨n⟩) : n ∈ ω} is
k-inconsistent.

The condition for (aη)η∈ω<ω to satisfy (1) and (2) can be
expressed by a set Γ((xη)η∈ω<ω) of L-formulas.

This Γ has the weak subtree property.
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Indiscernible Tree

Example
In the real closed field R = (R, 0, 1,+, ·, <), we have
A = (aη, bη)η∈ω<ω as shown in the following picture.

By re-choosing A from some elementary extension, A can
be assumed to be a weakly indiscernible tree.
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Indiscernible tree in stronger sense

Definition
Γ((xη)η∈ω<ω) has the subtree property
⇐⇒ ∃A = (aη)η∈ω<ω s.t.
∀σ : ω<ω → ω<ω (L1-embedding), Aσ = (aσ(η))η∈X |= Γ.

Definition
Γ((xη)η∈ω<ω) has the strong subtree property
⇐⇒ ∃A = (aη)η∈ω<ω s.t.
∀σ : ω<ω → ω<ω (L0-embedding), Aσ = (aσ(η))η∈X |= Γ.
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Indiscernible tree in stronger sense

Theorem (Takeuchi and T)

1. If Γ((xη)η∈ω<ω) has the subtree property, then Γ is
realized by an indiscernible tree.

2. If Γ((xη)η∈ω<ω) has the strong subtree property, then Γ is
realized by a strongly indiscernible tree.
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Indiscernible tree in stronger sense

Sketch of Proof

STP⇒ ∃ indiscernible tree
I Subtree Property implies Weak Subtree Property.
I So, we can choose A |= Γ, which is a weakly

indiscernible tree.
I Applying Ramsey’s theorem to A (+ compactness), we

can choose an indiscernible tree B realizing Γ.
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Indiscernible tree in stronger sense

I We have seen that if T is not simple then there is a set Γ
expressing the nonsimplicity.

I Γ has the weak subtree property, so there is a weakly
indiscernible tree realizing Γ.

I However, we sometimes want more ‘indiscernibility’ for
studying this Γ.

I But this Γ does not have the subtree property nor the
strong subtree property. .

I Thus, we introduce another type of ‘indiscernibility’.
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Indiscernible Trees in Other Settings

Now we consider the subtree

O = {η ∈ ω<ω : η(2n) = 0 for all n ∈ ω},

of ω<ω. We regard O as an Ls-substructure of ω<ω.
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Indiscernible Trees in Other Settings

We call a set {η} ∪ {ηˆ⟨n⟩ : n ∈ ω} ⊂ O a family if η ∈ O has
odd length.
I F(η1, η2) ⇐⇒ η1 and η2 belong to the same family;
I E(η) ⇐⇒ len(η) is even;
I η1 <F η2 ⇐⇒ len(η1) ≤ 2n < len(η2) for some n ∈ ω.

I Ls,F = Ls ∪ {F, E},
I L0,F = L0 ∪ {F, E},
I L1,F = L1 ∪ {F, E, <F}.
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Indiscernible Trees in Other Settings

Definition
We say Γ((xη)η∈O) has L i,F-subtree property if there is a
realization A |= Γ such that for every L i,F-embedding
σ : O→ O the image Aσ realizes Γ.
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Theorem (Takeuchi and T)

Suppose Γ((xη)η∈O) has L i,F-subtree property. Γ is realized
by an L i,F-indiscernible tree.
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Application

Proposition (Shelah)

Suppose that T has the tree property. Then 1 or 2:

1. There is a tree C = (cη)η∈ω<ω and a formula ψ such that
I For each path η ∈ ωω, {ψ(x, cη|n) : n ∈ ω} is consistent;
I ψ(x, cη) ∧ ψ(x, cν) is inconsistent for any incomparable η

and ν ∈ ω<ω.

2. There are sets I i = (bi, j) j∈ω (i ∈ ω) with the following
properties:

I For each path η ∈ ωω, {φ(x, bi,η(i)) : i ∈ ω} is consistent;
I For each i ∈ ω, {φ(x, bi, j) : j ∈ ω} is 2-contradictory.
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Picture
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Proof by Picture
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Some other applications
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Thank you.
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