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E. Fischer, B. Godlin, E. Katz,

T. Kotek, E. Ravve, P. Tittmann, B. Zilber

Discussions:

P. Bürgisser, B. Courcelle, A. Durand,

M. Grohe, M. Kaminski, P. Koiran, K. Meer, V. Turaev

2



ACCMCC and ALC, December 2011 Graph polynomials

Graph polynomials
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Graph polynomials

Graph polynomials are uniformly defined families of graph invariants

which are (possibly) multivariate polynomials in some polynomial ring R,

usually Q,R or C. We find

• Graph polynomials as generating functions;

• Graph polynomials as counting certain types of colorings;

• Graph polynomials defined by recurrence relations;

• Graph polynomials as counting weighted homomorphisms (=partition functions).

A general study addresses the following:

• Representability of graph polynomials;

• How to compare graph polynomials;

• The distinguishing power of graph polynomials;

• Universality properties of graph polynomials;
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Prominent (classical) graph polynomials

• The chromatic polynomial (G. Birkhoff, 1912)

• The Tutte polynomial and its colored versions
(W.T. Tutte 1954, B. Bollobas and O. Riordan, 1999);

• The characteristic polynomial
(T.H. Wei 1952, L.M. Lihtenbaum 1956, L. Collatz and U. Sinogowitz 1957)

• The various matching polynomials (O.J. Heilman and E.J. Lieb, 1972)

• Various clique and independent set polynomials (I. Gutman and F. Harary 1983)

• The Farrel polynomials (E.J. Farrell, 1979)

• The cover polynomials for digraphs (F.R.K. Chung and R.L. Graham, 1995)

• The interlace-polynomials
(M. Las Vergnas, 1983, R. Arratia, B. Bollobás and G. Sorkin, 2000)

• The various knot polynomials (of signed graphs)
(Alexander polynomial, Jones polynomial, HOMFLY-PT polynomial, etc)
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Applications of classical graph polynomials

There are plenty of applications of these graph polynomials in

• Graph theory proper and knot theory;

• Chemistry and biology;

• Statistical mechanics (Potts and Ising models)

• Social networks and finance mathematics;

• Quantum physics and quantum computing

And what about the many other graph polynomials?
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Outline of this talk

• Evaluations of graph polynomials

• Turing complexity vs BSS complexity

• The chromatic and the Tutte polynomial: A case study

• The Difficult Point Property (DPP)

• The class SOLEVAL as the BSS-analog for !P.

• The DPP Conjectures
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Evaluations of graph polynomials
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Evaluations of graph polynomials, I

Let P (G; X̄) be a graph polynomial in the indeterminates X1, . . . , Xn.

Let R be a subfield of the complex numbers C.

For ā ∈ Rn, P (−; ā) is a graph invariant taking values in R.

We could restrict the graphs to be from a class (graph property) C of graphs.

What is the complexity of computing P (−; ā) for
graphs from C ?

• If for all graphs G ∈ C the value of P (−; ā) is a graph invariant taking
values in N, we can work in the Turing model of computation.

• Otherwise we identify the graph G with its adjacency matrix MG, and we
work in the Blum-Schub-Smale (BSS) model of computation.
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Our goal

We want to discuss and extend the classical result of

F. Jaeger and D.L. Vertigan and D.J.A. Welsh

on the complexity of evaluations of the Tutte polynomial. They show:

• either evaluation at a point (a, b) ∈ C2 is polynomial time computable in
the Turing model, and a and b are integers,

• or some !P-complete problem is reducible to the evaluation at (a, b) ∈ C2.

• To stay in the Turing model of computation, they assume that (a, b) is
in some finite dimensional extension of the field Q.

The proof of the second part is a hybrid statement:
The reduction is more naturally placed in the BSS model of computation,
However, !P-completeness has no suitable counterpart in the BSS model.

It seems to us more natural to work entirely
in the BSS model of computation.
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Evaluations of graph polynomials, II

• A graph invariant or graph parameter is a function f :
⋃

n{0,1}
n×n → R

which is invariant under permutations of columns and rows of the input
adjacency matrix.

• A graph transformation is a function T :
⋃

n{0,1}
n×n →

⋃
n{0,1}

n×n which
is invariant under permutations of columns and rows of the input adja-
cency matrix.

• The BSS-P-time computable functions over R, PR, are the functions
f : {0,1}n×n → R BSS-computable in time O(nc) for some fixed c ∈ N.

• Let f1, f2 be graph invariants. f1 is BSS-P-time reducible to f2, f1 ≤P f2
if there are BSS-P-time computable functions T and F such that

(i) T is a graph transformation ;

(ii) For all graphs G with adjacency matrix MG we have
f1(MG) = F (f2(T (MG)))

• two graph invaraints f1, f2 are BSS-P-time equivalent, f1 ∼BSS−P f2,
if f1 ≤BSSP

f2 and f2 ≤BSSP
f1.
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Evaluations of graph polynomials, III:
Degrees and Cones

What are difficult graph parameters in the BSS-model?

Let g, g′ be a graph parameters computable in exponential time
in the BSS-model, i.e., g, g′ ∈ EXPBSS.

BSS-Degrees We denote by [g]BSS and [g]T the equivalence class (BSS-
degree) of all graph parameters g′ ∈ EXPBSS under the equivalence rela-
tion ∼BSS−P .

BSS-Cones We denote by < g >BSS the class (BSS-cone) {g′ ∈ EXPBSS :
g ≤BSS−P g′}.

NP-completeness There are BSS-NP-complete problems, and instead of
specifing them, we consider NP to be a degree (which may vary with the
choice of the Ring R).

NP-hardness The cone of an NP-complete problem forms the NP-hard prob-
lems.
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Decision problems, functions and graph parameters

• The BSS model deals traditionally with decision problems

where the input is an R-vector.

• A function f maps R-vectors into R.

f(X̄) = a becomes a decision problem.

• There is no well developed theory of degrees and cones

of functions in the BSS model.

• In the study of graph polynomials decision problems and functions

have as input (0,1)-matrices and the decision problems and functions

have to be graph invariants.
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Evaluations of graph polynomials, IV

We work in BSS model over R.

We define

EASYBSS(P, C) = {ā ∈ Rn : P (−; ā) is BSS-P-time computable }

and

HARDBSS(P, C) = {ā ∈ Rn : P (−; ā) is BSS-NP-hard }

We use EASYBSS(P ) and HARDBSS(P ) if C is the class of all finite graphs.

How can we describe EASY(P, C) and HARD(P, C)?
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Turing Complexity vs BSS complexity
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Problems with hybrid complexity, I

Let f1, f2 be two graph parameters taking values in N

as a subset of the ring R.

We have two kind of reductions:

• T-P-time Turing reductions (via oracles) in the Turing model.

f1 ≤T−P f2 iff f1 can be computed in T-P-Time using f2 as an oracle.

• BSS-P-time reductions over the ring R.

f1 ≤BSS−P f2 iff f1 can be computed in BSS-P-Time using f2 as an oracle.

• In the Turing model there is a natural class of problems !P for counting,

problems which contains many evaluation of graph polynomials.

However, !P is NOT CLOSED under T-P-reductions.

• In the BSS model no corresponding class seems to accomodate graph
polynomials.
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Problems with hybrid complexity, II

• We shall propose a new candidate, the

class SOLEVALR of evaluations of SOL-polynomials,

the graph polynomials definable in Second Order Logic as described

by T. Kotek, JAM, and B. Zilber (2008, 2011).

• The main problem with hybrid complexity is the apparent incompatibility

of the two notions of polynomial reductions, f1 ≤T−P f2 and f1 ≤BSS−P f2

even in the case where f1 and f2 are both in !P.

• The number of 3-colorings of a graph, !3COL, and

the number of acyclic orientations !ACYCLOR

are T-P-equivalent, and !P-complete in the Turing model.

• In the BSS model we have !3COL ≤BSS−P !ACYCLOR,

but it is open whether !ACYCLOR ≤BSS−P !3COL holds.
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Case study:

The chromatic polynomial and

the Tutte polynomial
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The (vertex) chromatic polynomial

Let G = (V (G), E(G)) be a graph, and λ ∈ N.

A λ-vertex-coloring is a map

c : V (G) → [λ]

such that (u, v) ∈ E(G) implies that c(u) (= c(v).

We define χ(G,λ) to be the number of λ-vertex-colorings

Theorem: (G. Birkhoff, 1912)

χ(G,λ) is a polynomial in Z[λ].

Proof:

(i) χ(En) = λn where En consists of n isolated vertices.

(ii) For any edge e = E(G) we have χ(G− e, λ) = χ(G,λ) + χ(G/e, λ).

19



ACCMCC and ALC, December 2011 Case study

Interpretation of χ(G,λ) for λ (∈ N

What’s the point in considering λ (∈ N?

R. Stanley, 1973 For simple graphs G, | χ(G,−1) | counts the

number of acyclic orientations of G.

R. Stanley, 1973 There are also combinatorial interpretations of χ(G,−m)

for each m ∈ N, which are more complicated to state.

Open: What about χ(G,λ) for each m ∈ R− Z?

Open: What about χ(G,λ) for each m ∈ C− R?
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The complexity of the chromatic polynomial, I

Theorem:

• χ(G,0), χ(G,1) and χ(G,2) are P-time computable (Folklore)

• χ(G,3) is !P-complete (Valiant 1979).

• χ(G,−1) is !P-complete (Linial 1986).

Question:

What is the complexity of computing χ(G,λ) for

λ = λ0 ∈ Q

or even for

λ = λ0 ∈ C?
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The complexity of the chromatic polynomial, II

Let G1 $% G2 denote the join of two graphs.

We observe that

χ(G $% Kn, λ) = (λ)n · χ(G,λ− n) (&)

Hence we get

(i) χ(G $% K1,4) = 4 · χ(G,3)

(ii) χ(G $% Kn,3+ n) = (n+ 3)n · χ(G,3)

hence for n ∈ N with n ≥ 3 it is !P-complete.

This works in the Turing model of computation
for λ in some Turing-computable field extending Q.
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The complexity of the chromatic polynomial, III

If we have have an oracle for some q ∈ Q − N which allows us to compute
χ(G, q) we can compute χ(G, q′) for any q′ ∈ Q as follows:

Algorithm A(q, q′, | V (G) |):

(i) Given G the degree of χ(G, q) is at most n =| V (G) |.

(ii) Use the oracle and (&) to compute n+ 1 values of χ(G,λ).

(iii) Using Lagrange interpolation we can compute χ(G, q′) in polynomial time.

We note that this algorithm is purely algebraic and works for all graphs G,
q ∈ (F )− N and q′ ∈ F for any field F extending Q.

Hence we get that for all q1, q2 ∈ C− N the graph parameters
are polynomially reducible to each other.

Furthermore, for 3 ≤ i ≤ j ∈ N, χ(G, i) is reducible to χ(G, j).

This works in the BSS-model of computation.
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The complexity of the chromatic polynomial, IV

We summarize the situation for the chromatic polynomial as follows:

(i) EASYBSS(χ) = {0,1,2} and HARDBSS(χ) = C− {0,1,2}.

(ii) HARDBSS(χ) can be split into two sets:

(ii.a) HARD!P(χ): the graph parameters which are counting functions in !P in the sense
of Valiant, with χ(−,3) ≤P χ(−, j) for j ∈ N and 3 ≤ j.

All graph parameters in HARD!P(χ) are !P-complete in the Turing model.

(ii.b) HARDBSS−NP(χ): the graph parameters which are not counting functions.

In the BSS model they are all polynomially reducible to each other,
and all graph parameters in HARD!P(χ) are P-reducible to each of the graph pa-
rameters in HARDBSS(χ).

(ii.c) In the BSS-model the graph parameter χ(−,3) is P-reducible to all the parameters
in HARDBSS(χ).

(ii.d) Inside HARDBSS(χ) we have:

χ(−,3) ≤BSSP χ(−,4) ≤BSSP . . . χ(−, j) . . . ≤BSS−P χ(−, a) ∼BSSP χ(−,−1)

with j ∈ N− {0,1,2} and a ∈ C− N.
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The complexity of the chromatic polynomial, V

We have a Dichotomy Theorem for the evaluations of χ(−, λ):

(i) EASYBSS(χ) = {0,1,2}

Over C this is a quasi-algebraic set (a finite boolean combination of
algebraic sets) of dimension 0.

(ii) All graph parameters in HARDBSS(χ)

are at least as difficult as χ(−,3)

(via BSS-P-reductions)

This is a quasi-algebraic set of dimension 1.
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Evaluating the Tutte polynomial (Jaeger, Vertigan, Welsh)

The Tutte polynomial T(G,X, Y ) is a bivariate polynomial

and χ(G,λ) ≤P T(G,1− λ,0).

We have the following Dichotomy Theorem:

(i) EASYBSS(T) = {(x, y) ∈ C2 : (x− 1)(y − 1) = 1} ∪ Except, with

Except = {(0,0), (1,1), (−1,−1), (0,−1), (−1,0), (i,−i), (−i, i), (j, j2), (j2, j)}

and j = e
2πi

3

Over C this is a quasi-algebraic set of dimension 1.

(ii) All graph parameters in HARDBSS(T) are at least as hard as T(G,1−λ,0).

This is a quasi-algebraic set of dimension 2.
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The proof and its generalizations

• (&) is replaced by two (or more) operations:

stretching and thickening.

• Lagrange interpolation is done on a grid.

• There are considerable technical challenges in details of

the proof for the Tutte polynomial.

• Allthough in all successfull generalizations to other cases,

the same general outline of the proof is always similar,

substantial challenges in the details have to be overcome.
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Evaluations of graph polynomials, V:
How hard is !3COL = χ(−,3)?

• It is known that 3-colorability of graphs can be phrased as problem of
solvability of quadratic equations and therefore is NPR-hard and NPC-
hard in the BSS-model (Hillar and Lim, 2010).

• For C, Malajovich and Meer (2001) proved an analogue of Ladner’s The-
orem for the BSS-model over C:

Assuming that PC (= NPC there are infinitely many different BSS-degrees
between them.

• Although the problem χ(−,3) (= 0? is NPC-hard we do not know whether
there is a ∈ C− N for which computing χ(−, a) is really harder!

• In particular, we know that χ(a,3) ≤BSS−P χ(−,−1),

but we do not know whether

χ(a,−1) ≤BSS−P χ(−,3)
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The Difficult Point Property (DPP)
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Difficult Point Property, I

Given a graph polynomial P (G, X̄) in n indeterminates X1, . . . , Xn

we are interested in the set HARDBSS(P ).

(i) We say that P has the weak difficult point property (WDPP) if

there is a quasi-algebraic subset D ⊂ Cn of co-dimension ≤ n− 1

which is contained in HARDBSS(P ).

(ii) We say that P has the strong difficult point property (SDPP) if

there is a quasi-algebraic subset D ⊂ Cn of co-dimension ≤ n− 1

such that D = HARDBSS(P ) and C−D = EASYBSS(P ).

In both cases EASYBSS(P ) is of dimension ≤ n− 1, and for almost all points
ā ∈ Cn the evaluation of P (−, ā) is BSS-NP-hard.

χ(G;λ) and T(G;X,Y ) both have the SDPP.
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Difficult Point Property, II

We compare WDPP and SDPP to Dichtomy Properties.

(i) We say that P has the dichotomy property (DiP) if

HARDBSS(P ) ∪ EASYBSS(P ) = Cn.

Clearly, if PC (= NPC, HARDBSS(P ) ∩ EASYBSS(P ) = ∅.

(ii) WDPP is not a dichtomy property, but SDPP a dichotomy property.

(iii) The two versions of DPP have a quantitative aspect:

EASYBSS(P) is small.
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The class SOLEVALR as the

BSS-analog for !P.
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Uniform definability of subset expansions

of graph polynomials

in (Monadic) Second Order Logic SOL (MSOL)

After: T. Kotek and J.A. Makowsky and B. Zilber,
On Counting Generalized Colorings,
In: Model Theoretic Methods in Finite Combinatorics,
M. Grohe and J.A. Makowsky, eds.,
Contemporary Mathematics, vol. 558 (2011), pp. 207-242
American Mathematical Society,
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Simple (M)SOL-graph polynomials

Let ind(G, i) denote the number of independent sets of size i of a graph G.

The graph polynomial ind(G,X) =
∑

i ind(G, i) ·Xi, can be written also as

ind(G,X) =
∑

I⊆V (G)

∏

v∈I

X

where I ranges over all independent sets of G.
To be an independent set is definable by a formula of Monadic Second Order
Logic (MSOL) φ(I).

A simple (M)SOL-definable graph polynomial p(G,X) is a polynomial of
the form

p(G,X) =
∑

A⊆V (G):φ(A)

∏

v∈A

X

where A ranges over all subsets of V (G) satisfying φ(A)

and φ(A) is a (M)SOL-formula.
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General (M)SOL-graph polynomials

For the general case

• One allows several indeterminates X1, . . . , Xt.

• One gives an inductive definition.

• One allows an ordering of the vertices.

• One requires the definition to be invariant under the ordering, i.e.,
different orderings still give the same polynomial.

• This also allows to define the modular counting quantifiers
Cm,q ”there are, modulo q exactly m elements...”

The general case includes the chromatic polynomial and

the Tutte polynomial and its variations,
and virtually all graph polynomials from the literature.
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1, 2, many SOL-definable graph polynomials

It is now easy to define many (also non-prominent) graph polynomials

without further combinatorial motivation.

• Let ci,j,k(G) denote the number of triples of subsets of A,B,C ⊆ E(G)
such that |A| = i, |B| = j, |C| = k and 〈G,A,B,C〉 |= φ(A,B,C) where φ is
any SOL-formula. Then

f(G;X,Y, Z) =
∑

i,j,k

ci,j,k(G)XiY jZK

is an SOL-definable graph polynomial.

• The generalized chromatic polynomials introduced by Kotek, JAM and
Zilber (2008) are all SOL-definable provided the coloring condition is also
SOL-definable.

• The PhD theses of my students I. Averbouch and T. Kotek
contain detailed studies of new graph polynomials with

combinatorial motivations.
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The class SOLEVALR

We now propose an analog to Valiant’s counting class !P for the BSS-model.

Assume N ⊂ R.

A function f :
⋃

n{0,1}
n×n → R is in SOLEVALR if it is the evaluation

of some SOL-definable graph polynomial.

Facts and questions:

Fact: If f ∈ SOLEVALR then it is in EXPTIMER and even in PSPACER.

Fact: Every graph parameter f ∈ !P is in SOLEVALR.

Question: Is SOLEVALR contained in a single BSS-degree?

In particular, is [χ(−,−1)]BSS its maximal degree?

Question: What is the BSS-degree structure of SOLEVALR?
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The DPP conjectures
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The DPP conjectures

We have conjectured the following:

J.A. Makowsky,
From a Zoo to a Zoology: Towards a general theory of graph polynomials,
Theory of Computing Systems, vol. 43 (2008), pp. 542-562.

Let P be an SOL-definable graph polynomial in n indeterminates.

Assume that for some ā ∈ Cn evaluation of P (−, ā) is BSS-NP-hard over C.

Weak DPP Conjecture: Then P has the WDPP.

Strong DPP Conjecture: Then P has the SDPP.

In the following we present more evidence for these conjectures.
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Partition functions as graph polynomials

• Let A ∈ Cn×n a symmetric and G be a graph. Let

ZA(G) =
∑

σ:V (G)→[n]

∏

(v,w)∈E(G)

Aσ(v),σ(w)

ZA is called a partition function.

• Let X be the matrix (Xi,j)i,j≤n of indeterminates.

Then ZX is a graph polynomial in n2 indeterminates,

ZA is an evaluation of ZX, and ZX is MSOL-definable.
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Partition have the SDPP

• J. Cai, X. Chen and P. Lu (2010),

building on A. Bulatov and M. Grohe (2005),

proved a dichotomy theorem for ZX where R = C.

• Analyzing their proofs reveals:

ZX satsifies the SDPP for R = C.

• There are various generalizations of this to Hermitian matrices,

M. Thurley (2009),

and beyond.
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More SOL-definable graph polynomials with the DPP, I

SDPP: the cover polynomial C(G, x, y) introduced
by Chung and Graham (1995)
by Bläser, Dell 2007, Bläser, Dell, Fouz 2011

SDPP: the bivariate matching polynomial for multigraphs,
by Averbouch and JAM, 2007

SDPP: the harmonious chromatic polynomial,
by Kotek and JAM, 2007

WDPP: the Bollobás-Riordan polynomial, generalizing the Tutte polynomial
and introduced by Bollobás and Riordan (1999),
by Bläser, Dell and JAM 2008, 2010.

WDPP: the interlace polynomial (aka Martin polynomial) introduced by Mar-
tin (1977) and independently by Arratia, Bollobás and Sorkin (2000),
by Bläser and Hoffmann, 2007, 2008
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Generalized chromatic polynomials

Let f : V (G) → [k] be a coloring of the vertices of G = (V (G), E(G)).

(i) f is proper if (uv) ∈ E(G) implies that f(u) (= f(v). In other words if for
every i ∈ [k] the counter-image [f−1(i)] induces an independent set.

(ii) f is convex if for every i ∈ [k] the counter-image [f−1(i)] induces a
connected graph.

(iii) f is t-improper if for every i ∈ [k] the counter-image [f−1(i)] induces a
graph of maximal degree t..

(iv) f is H-free if for every i ∈ [k] the counter-image [f−1(i)] induces an H-free
graph.

(v) f is acyclic if for every i, j ∈ [k] the union [f−1(i)] ∪ [f−1(i)] induces an
acyclic graph.

By Kotek, JAM, Zilber (2008), for all the above properties,
counting the number of colorings is a polynomial in k.
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More SOL-definable graph polynomials with the DPP, II

T. Kotek and JAM (2011) have shown

SDPP: The graph polynomial for convex colorings.

SDPP: The graph polynomial for t-improper colorings (for multigraphs).

SDPP: The bivariate chromatic polynomial introduced by Döhmen, Pönitz
and Tittman in 2003.

WDPP: The graph polynomial for acyclic colorings.

C. Hoffmann’s PhD thesis (written under M. Bläser, 2010) contains a general

sufficient criterion which allows to establish the WDPP for a wide class of

(mostly non-prominent) graph polynomials.
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A good test problem: H-free colorings.

We look at the generalized chromatic polynomial χH−free(G; k), which, for
k ∈ N counts the number of H-free colorings of G.

• For H = K2, χH−free(G; k) = χ(G; k), and we have the SDPP.

• For H = K3, χH−free(G; k) counts the triangle free-colorings.

• From [ABCM98] it follows that χH−free(G; k) is #P-hard for every k ≥ 3
and H of size at least 2.

D. Achlioptas, J. Brown, D. Corneil, and M. Molloy. The existence of uniquely -G

colourable graphs. Discrete Mathematics, 179(1-3):1–11, 1998.

• In [Achlioptas97] it is shown that computing χH−free(G; 2) is NP-hard for
every H of size at most 2.

D. Achlioptas. The complexity of G-free colourability. DMATH: Discrete Mathematics,

165, 1997.

• Characterize H for which χH−free(G; k) satisfies the SDPP (WDPP).
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Thank you for your attention !
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Model Theoretic Methods in Finite Combinatorics

M. Grohe and J.A. Makowsky, eds.,

Contemporary Mathematics, vol. 558 (2011), pp. 207-242

American Mathematical Society,

Appeares on December 18, 2011

Especially the papers

• Application of Logic to Combinatorial Sequences
and Their Recurrence Relations
E. Fischer, T. Kotek, and J. A. Makowsky

• On Counting Generalized Colorings
T. Kotek, J. A. Makowsky, and B. Zilber

• Counting Homomorphisms and Partition Functions
M. Grohe and M. Thurley
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• F. Jaeger, D.L. Vertigan, D.J.A. Welsh,
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The Complexity of the Cover Polynomial.
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On the Complexity of the Interlace Polynomial,
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