Σ_{1} Induction and Proper d-r.e. Degrees

Li Wei
Department of Mathematics
National University of Singapore

The Twelfth Asian Logic Conference
17 December, 2011
Wellington

Preliminaries

In the language of arithmetic (including exponential function), we define

Preliminaries

In the language of arithmetic (including exponential function), we define

Definition 1

An expression ϕ is called a Σ_{1} formula if it is in the form of

$$
\begin{aligned}
& \exists x_{1} \exists x_{2} \ldots \exists x_{n} Q_{1}\left(x_{n+1}<y_{1}\right) \ldots Q_{m}\left(x_{n+m}<y_{m}\right) \\
& \psi\left(x_{1}, \ldots, x_{n+m} ; y_{1}, \ldots, y_{m} ; a_{1}, \ldots, a_{k}\right)
\end{aligned}
$$

where Q_{1}, \ldots, Q_{m} are either \forall or \exists, and ψ is conjunctions and disjunctions of equalities and inequalities of exponential polynomials.

Fragments of Peano Arithmetic

Peano Arithmetic (PA)
(1) $\forall x(S(x) \neq 0)$
(2) $\forall x \forall y(S(x)=S(y) \rightarrow x=y)$
(3) $\forall x(x+0=x)$
(4) $\forall x \forall y(x+S(y)=S(x+y))$
(5) $\forall x(x \times 0=0)$
(6) $\forall x(x \times S(y)=x \times y+x)$
(7) (Induction Schema) $(\forall y<x(\phi(y)) \rightarrow \phi(x)) \rightarrow \forall x(\phi(x))$

Fragments of Peano Arithmetic

Peano Arithmetic (PA)
(1) $\forall x(S(x) \neq 0)$
(2) $\forall x \forall y(S(x)=S(y) \rightarrow x=y)$
(3) $\forall x(x+0=x)$
(4) $\forall x \forall y(x+S(y)=S(x+y))$
(5) $\forall x(x \times 0=0)$
(6) $\forall x(x \times S(y)=x \times y+x)$
(7) (Induction Schema) $(\forall y<x(\phi(y)) \rightarrow \phi(x)) \rightarrow \forall x(\phi(x))$

We use P^{-}to denote (1)-(6) plus that exponential functions are total.

Definition $2\left(\Sigma_{1} \operatorname{Induction}\left(I \Sigma_{1}\right)\right)$
$P^{-}+$Induction Schema restricted to Σ_{1} formulae.

Bounding Schema

Definition 3 (Bounding Schema)

For a formula $\phi(y, z)$,
$\forall y<x \exists z(\phi(y, z)) \rightarrow \exists b \forall y<x \exists z<b(\phi(y, z))$

Bounding Schema

Definition 3 (Bounding Schema)

For a formula $\phi(y, z)$,

$$
\forall y<x \exists z(\phi(y, z)) \rightarrow \exists b \forall y<x \exists z<b(\phi(y, z))
$$

Definition $4\left(\Sigma_{1}\right.$ Bounding $\left.\left(B \Sigma_{1}\right)\right)$

$P^{-}+$Bounding Schema restricted to Σ_{1} formulae.

Theorem 5 (Paris and Kirby)

$$
I \Sigma_{1} \rightarrow B \Sigma_{1} \nrightarrow I \Sigma_{1}
$$

Theorem 5 (Paris and Kirby)

$$
I \Sigma_{1} \rightarrow B \Sigma_{1} \nrightarrow I \Sigma_{1}
$$

Corollary 6
There is a model of $B \Sigma_{1}+\neg / \Sigma_{1}$.

Theorem 5 (Paris and Kirby)

$$
I \Sigma_{1} \rightarrow B \Sigma_{1} \nrightarrow I \Sigma_{1}
$$

Corollary 6

There is a model of $B \Sigma_{1}+\neg / \Sigma_{1}$.

REMARK

In such a model, there is a Σ_{1} definable proper initial segment closed under successor. It is a Σ_{1} cut I. There is a Δ_{1} cofinal function f from the cut I to the whole model.

Definition 7

- Set A is r.e. iff there is a Σ_{1} formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$

Definition 7

- Set A is r.e. iff there is a Σ_{1} formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$
- Set R is recursive iff R and \bar{R} are r.e.

Definition 7

- Set A is r.e. iff there is a Σ_{1} formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$
- Set R is recursive iff R and \bar{R} are r.e.
- Set D is d-r.e. iff there are r.e. sets A and B such that $D=A-B$

Definition 7

- Set A is r.e. iff there is a Σ_{1} formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$
- Set R is recursive iff R and \bar{R} are r.e.
- Set D is d-r.e. iff there are r.e. sets A and B such that $D=A-B$
- A set F is finite iff there is some number n with

$$
n=\sum_{k \in F} 2^{k}
$$

Definition 7

- Set A is r.e. iff there is a Σ_{1} formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$
- Set R is recursive iff R and \bar{R} are r.e.
- Set D is d-r.e. iff there are r.e. sets A and B such that $D=A-B$
- A set F is finite iff there is some number n with

$$
n=\sum_{k \in F} 2^{k}
$$

- A set X is regular iff for every finite set $F, X \cap F$ is finite.

Definition 8

- $A \leq_{T} B$ iff there is an r.e. set Φ such that for any finite set F, $\overline{F \subseteq A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \bar{B}(\langle F, 1, P, N\rangle \in \Phi)$ $F \subseteq \bar{A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \bar{B}(\langle F, 0, P, N\rangle \in \Phi)$

Definition 8

- $A \leq_{T} B$ iff there is an r.e. set Φ such that for any finite set F, $\overline{F \subseteq A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \bar{B}(\langle F, 1, P, N\rangle \in \Phi)$ $F \subseteq \bar{A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \bar{B}(\langle F, 0, P, N\rangle \in \Phi)$
- $A \equiv_{T} B$ iff $A \leq_{T} B$ and $B \leq_{T} A$

Definition 8

- $A \leq_{T} B$ iff there is an r.e. set Φ such that for any finite set F, $\overline{F \subseteq A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \bar{B}(\langle F, 1, P, N\rangle \in \Phi)$ $F \subseteq \bar{A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \bar{B}(\langle F, 0, P, N\rangle \in \Phi)$
- $A \equiv_{T} B$ iff $A \leq_{T} B$ and $B \leq_{T} A$
- The Turing degree of $A: \mathbf{a}=\left\{B: B \equiv_{T} A\right\}$.

Definition 9

- Turing degree a is r.e. if there is $A \in \mathbf{a}$ such that A is r.e.

Definition 9

- Turing degree a is r.e. if there is $A \in \mathbf{a}$ such that A is r.e.
- Turing degree a is $\underline{d-r . e}$. if there is $D \in \mathbf{a}$ such that D is d-r.e.

Definition 9

- Turing degree a is r.e. if there is $A \in \mathbf{a}$ such that A is r.e.
- Turing degree a is d-r.e. if there is $D \in \mathbf{a}$ such that D is d-r.e.
- Turing degree \mathbf{a} is proper d-r.e. if it is d-r.e. but not r.e.

Conclusion 10 (Mytilinaios)

If a theorem is provable using finite injury method, then it is provable in $I \Sigma_{1}$.

Turing Degrees in models of $B \Sigma_{1}+\neg \mid \Sigma_{1}$

Theorem 11 (Slaman and Woodin)
In a model of $B \Sigma_{1}+\neg / \Sigma_{1}$, its Σ_{1} cut is of minimal degree.

Turing Degrees in models of $\mathrm{B} \Sigma_{1}+\neg \mid \Sigma_{1}$

Theorem 11 (Slaman and Woodin)

In a model of $B \Sigma_{1}+\neg / \Sigma_{1}$, its Σ_{1} cut is of minimal degree.

Corollary 12
Sacks' Splitting theorem fails in a model of $B \Sigma_{1}+\neg / \Sigma_{1}$.

Turing Degrees in models of $B \Sigma_{1}+\neg \mid \Sigma_{1}$

Theorem 11 (Slaman and Woodin)
In a model of $B \Sigma_{1}+\neg / \Sigma_{1}$, its Σ_{1} cut is of minimal degree.

Corollary 12
Sacks' Splitting theorem fails in a model of $B \Sigma_{1}+\neg / \Sigma_{1}$.

Theorem 13 (Chong and Mourad)
In a model of $B \Sigma_{1}+\neg / \Sigma_{1}$, there are two incomparable r.e., that is, Friedberg-Muchnik Theorem holds.

Turing Degrees in models of $B \Sigma_{1}+\neg \mid \Sigma_{1}$

Cooper's Theorem

Theorem 14 (Cooper)
There exists a proper d-r.e. degree in the standard model of PA.

Cooper's Theorem

Theorem 14 (Cooper)
There exists a proper d-r.e. degree in the standard model of PA.

Proof.
Finite injury method.

Cooper's Theorem

Theorem 14 (Cooper)
There exists a proper d-r.e. degree in the standard model of PA.

Proof.
Finite injury method.

Corollary 15
$I \Sigma_{1} \vdash$ there exists a proper d-r.e. degree.

Question

Does $\mathrm{B} \Sigma_{1}+\neg \mathrm{I} \Sigma_{1} \vdash$ there exists a proper d-r.e. degree?

Question

Does $\mathrm{B} \Sigma_{1}+\neg \mathrm{I} \Sigma_{1} \vdash$ there exists a proper d-r.e. degree?
Ans: Yes.

Proper d-r.e. in $B \Sigma_{1}+\neg I \Sigma_{1}$

Theorem 16
If $M \models B \Sigma_{1}+\neg I \Sigma_{1}$, then there exists a d-r.e. set $D \not \Sigma_{T} \emptyset^{\prime}$

Proper d-r.e. in $B \Sigma_{1}+\neg I \Sigma_{1}$

Theorem 16

If $M \models B \Sigma_{1}+\neg I \Sigma_{1}$, then there exists a d-r.e. set $D \not \Sigma_{T} \emptyset^{\prime}$

Theorem 17

If $M \models B \Sigma_{1}+\neg I \Sigma_{1}$, then there exists a bounded d-r.e. set $D \not \mathbb{L}_{T} \emptyset^{\prime}$

Theorem 18 (Chong and Mourad)
(Coding Lemma) If $X \subseteq I$ such that X and $I-X$ are Σ_{1}, then X is coded (there exists a finite set F with $F \cap I=X$).

The "most complicated" bounded d-r.e. set

The "most complicated" bounded d-r.e. set

Let $g:\left[0,2^{a \times a}\right] \rightarrow[[0, a]]^{2}$ be a Σ_{1} full enumeration of all pairs $i<j \leq a$.

The "most complicated" bounded d-r.e. set

Let $g:\left[0,2^{a \times a}\right] \rightarrow[[0, a]]^{2}$ be a Σ_{1} full enumeration of all pairs $i<j \leq a$.
Let $\hat{H}=\left\{(x, i) \in\left[0,2^{a \times a}\right] \times[0, a]: i \in g(x)\right\}$

The "most complicated" bounded d-r.e. set

Let $g:\left[0,2^{a \times a}\right] \rightarrow[[0, a]]^{2}$ be a Σ_{1} full enumeration of all pairs $i<j \leq a$.
Let $\hat{H}=\left\{(x, i) \in\left[0,2^{a \times a}\right] \times[0, a]: i \in g(x)\right\}$
$A=\left\{x<2^{a \times a}: \exists i \in I((x, i) \in \hat{H} \wedge(\forall j<i)(x, j) \notin \hat{H})\right\}$

The "most complicated" bounded d-r.e. set

Let $g:\left[0,2^{a \times a}\right] \rightarrow[[0, a]]^{2}$ be a Σ_{1} full enumeration of all pairs $i<j \leq a$.
Let $\hat{H}=\left\{(x, i) \in\left[0,2^{a \times a}\right] \times[0, a]: i \in g(x)\right\}$
$A=\left\{x<2^{a \times a}: \exists i \in I((x, i) \in \hat{H} \wedge(\forall j<i)(x, j) \notin \hat{H})\right\}$
$B=\left\{x<2^{a \times a}: \exists i<j \in I((x, i),(x, j) \in \hat{H})\right\}$

The "most complicated" bounded d-r.e. set

Let $g:\left[0,2^{a \times a}\right] \rightarrow[[0, a]]^{2}$ be a Σ_{1} full enumeration of all pairs $i<j \leq a$.
Let $\hat{H}=\left\{(x, i) \in\left[0,2^{a \times a}\right] \times[0, a]: i \in g(x)\right\}$
$A=\left\{x<2^{a \times a}: \exists i \in I((x, i) \in \hat{H} \wedge(\forall j<i)(x, j) \notin \hat{H})\right\}$
$B=\left\{x<2^{a \times a}: \exists i<j \in I((x, i),(x, j) \in \hat{H})\right\}$
$D=A-B \subseteq\left[0,2^{a \times a}\right)$.

The "most complicated" bounded d-r.e. set

Let $g:\left[0,2^{a \times a}\right] \rightarrow[[0, a]]^{2}$ be a Σ_{1} full enumeration of all pairs $i<j \leq a$.
Let $\hat{H}=\left\{(x, i) \in\left[0,2^{a \times a}\right] \times[0, a]: i \in g(x)\right\}$
$A=\left\{x<2^{a \times a}: \exists i \in I((x, i) \in \hat{H} \wedge(\forall j<i)(x, j) \notin \hat{H})\right\}$
$B=\left\{x<2^{a \times a}: \exists i<j \in I((x, i),(x, j) \in \hat{H})\right\}$
$D=A-B \subseteq\left[0,2^{a \times a}\right)$.
Claim: $D \not \mathbb{z}_{T} \emptyset^{\prime}$.

Question
$\mathrm{B} \Sigma_{1}+\neg \mathrm{I} \Sigma_{1} \vdash$ there exists a proper d-r.e. degree below $\mathbf{0}^{\prime}$?

Question

$\mathrm{B} \Sigma_{1}+\neg \mathrm{I} \Sigma_{1} \vdash$ there exists a proper d-r.e. degree below $\mathbf{0}^{\prime}$?
Ans: No.

Question

$\mathrm{B} \Sigma_{1}+\neg \mathrm{I} \Sigma_{1} \vdash$ there exists a proper d-r.e. degree below $\mathbf{0}^{\prime}$?

Ans: No.
Theorem 19
$B \Sigma_{1}+\neg \Sigma_{1} \vdash$ there is no proper d-r.e. degree below $\mathbf{0}^{\prime}$

Lemma 20

Suppose D is d-r.e. and $D \leq_{T} \emptyset^{\prime}$.
(1) If D is regular, then $D \equiv_{T} \emptyset$ or $D \geq_{T} I$;
(2) if D is not regular, $D \geq_{T} I$.

Lemma 20

Suppose D is d-r.e. and $D \leq_{T} \emptyset^{\prime}$.
(1) If D is regular, then $D \equiv_{T} \emptyset$ or $D \geq_{T} I$;
(2) if D is not regular, $D \geq_{T} I$.

Lemma 21

Suppose D is d-r.e. and $D \leq_{T} \emptyset^{\prime}$. For every $m \in I$, there is some $b \in I$ such that

$$
\begin{aligned}
& (\forall x \in[0, f(m)])[(x \in A[f(b)]) \vee \\
& \left.\quad\left(x \in B \rightarrow \exists N \subseteq \overline{\emptyset^{\prime}}(\langle\{x\}, 0, N\rangle \in \Phi[f(b)])\right)\right]
\end{aligned}
$$

Question

$\mathrm{B} \Sigma_{1}+\neg \mathrm{I} \Sigma_{1} \vdash$ there is a non-r.e. degree below $\mathbf{0}^{\prime}$

Question

$\mathrm{B} \Sigma_{1}+\neg \mathrm{I} \Sigma_{1} \vdash$ there is a non-r.e. degree below $\mathbf{0}^{\prime}$

Ans. No.

Definition 22

Suppose $M \models B \Sigma_{1}+\neg I \Sigma_{1}$ and $I=\omega$ is a Σ_{1} cut of M. M is saturated if every real is coded in M.

Definition 22

Suppose $M \models B \Sigma_{1}+\neg I \Sigma_{1}$ and $I=\omega$ is a Σ_{1} cut of M. M is saturated if every real is coded in M.

Theorem 23 (Slaman and Woodin)
There exists a saturated model.

Working in saturated models

Suppose M is saturated, and $D \leq_{T} \emptyset^{\prime}$ via Φ.
Lemma 24
(1) If D is regular, then $D \equiv_{T} \emptyset$;
(2) if D is not regular, $D \geq_{T} I$.
honest, white liar and malicious liar

Pick any $i, m \in I$, let

$$
D_{i, m}=\left\{x \in[0, f(m)]: \Phi^{\emptyset^{\prime}}(x)[f(i)]=1\right\}
$$

honest, white liar and malicious liar

Pick any $i, m \in I$, let

$$
D_{i, m}=\left\{x \in[0, f(m)]: \Phi^{\emptyset^{\prime}}(x)[f(i)]=1\right\}
$$

According to the behavior of x, it is divided into three sorts

honest, white liar and malicious liar

Pick any $i, m \in I$, let

$$
D_{i, m}=\left\{x \in[0, f(m)]: \Phi^{\emptyset^{\prime}}(x)[f(i)]=1\right\}
$$

According to the behavior of x, it is divided into three sorts
(1) there is no $j>i$ such that $D_{j, m}(x) \neq D_{i, m}(x)$.

Then we say x is i-honest.

honest, white liar and malicious liar

Pick any $i, m \in I$, let

$$
D_{i, m}=\left\{x \in[0, f(m)]: \Phi^{\emptyset^{\prime}}(x)[f(i)]=1\right\}
$$

According to the behavior of x, it is divided into three sorts
(1) there is no $j>i$ such that $D_{j, m}(x) \neq D_{i, m}(x)$.

Then we say x is i-honest.
(2) there is some $j>i$ such that $D_{j, m}(x) \neq D_{i, m}(x)$, but still $D_{i, m}(x)=D(x)$
Then we say x is a i-white liar.

honest, white liar and malicious liar

Pick any $i, m \in I$, let

$$
D_{i, m}=\left\{x \in[0, f(m)]: \Phi^{\emptyset^{\prime}}(x)[f(i)]=1\right\}
$$

According to the behavior of x, it is divided into three sorts
(1) there is no $j>i$ such that $D_{j, m}(x) \neq D_{i, m}(x)$.

Then we say x is i-honest.
(2) there is some $j>i$ such that $D_{j, m}(x) \neq D_{i, m}(x)$, but still $D_{i, m}(x)=D(x)$
Then we say x is a i-white liar.
(3) there is some $j>i$ such that $D_{j, m}(x) \neq D_{i, m}(x)$, and $D_{i, m}(x) \neq D(x)$.
Then we say x is a i-malicious liar for stage i.

Lemma 25

If $D \leq_{T} \emptyset^{\prime}$ then
for each $i \in I$ there is some $j \in I$ such that all i-white liars are found.

Tier Program II.

For each $m \in \omega$, we inductively construct a sequence of pairs $\left\{i_{n}^{m}\right\}_{n \in \omega} \subset \omega$ such that
(i) $i_{0}^{m}=0$ and
(ii) for any n, i_{n+1}^{m} is the least stage j when all i_{n}^{m}-white liars in [$0, f(m)$] are found.

As M is saturated, $\left\{\left\langle i_{0}^{m}, i_{1}^{m}, \ldots, i_{n(m)}^{m}\right\rangle\right\}_{m \in \omega}$ is coded.

As M is saturated, $\left\{\left\langle i_{0}^{m}, i_{1}^{m}, \ldots, i_{n(m)}^{m}\right\rangle\right\}_{m \in \omega}$ is coded.
We may separate $[0, f(m)]$ into $n(m)+1$ parts:

$$
K_{i}^{m}=\left\{x \in[0, f(m)]: g^{m}(x)=i\right\}
$$

for each $i \leq n(m)$, where $g^{m}:[0, f(m)] \rightarrow \omega$,

$$
x \mapsto \mu n\left(\forall k \in\left(i_{n}^{m}, i_{n+1}^{m}\right]\right)\left(D_{i, m}(x)=D_{k, m}(x)\right)
$$

As M is saturated, $\left\{\left\langle i_{0}^{m}, i_{1}^{m}, \ldots, i_{n(m)}^{m}\right\rangle\right\}_{m \in \omega}$ is coded.
We may separate $[0, f(m)]$ into $n(m)+1$ parts:

$$
K_{i}^{m}=\left\{x \in[0, f(m)]: g^{m}(x)=i\right\}
$$

for each $i \leq n(m)$, where $g^{m}:[0, f(m)] \rightarrow \omega$,

$$
x \mapsto \mu n\left(\forall k \in\left(i_{n}^{m}, i_{n+1}^{m}\right]\right)\left(D_{i, m}(x)=D_{k, m}(x)\right)
$$

On K_{i}^{m}, enumerate $f(i)$-malicious liars, which determine $D \upharpoonright K_{i}^{m}$.

Reference

\& The degree of a Σ_{n} cut, Chong and Mourad, Annals of Pure and Applied Logic, 1990
$*_{0}$ M. Mytilianios, Finite injury and Σ_{1} induction, Journals of Symbolic Logic, 1989
\& Mourad, PhD thesis, University of Chicago, 1989
\& Slaman and Woodin, Σ_{1} collection and the finite injury priority method

Thank you!

