Σ_1 Induction and Proper d-r.e. Degrees

Li Wei

Department of Mathematics National University of Singapore

The Twelfth Asian Logic Conference 17 December, 2011 Wellington

Preliminaries

In the language of arithmetic (including exponential function), we define

Preliminaries

In the language of arithmetic (including exponential function), we define

Definition 1

An expression ϕ is called a $\underline{\Sigma_1}$ formula if it is in the form of

$$\exists x_1 \exists x_2 \dots \exists x_n Q_1(x_{n+1} < y_1) \dots Q_m(x_{n+m} < y_m)$$

$$\psi(x_1, \dots, x_{n+m}; y_1, \dots, y_m; a_1, \dots, a_k)$$

where Q_1, \ldots, Q_m are either \forall or \exists , and ψ is conjunctions and disjunctions of equalities and inequalities of exponential polynomials.

Fragments of Peano Arithmetic

Peano Arithmetic (PA)

(1) $\forall x(S(x) \neq 0)$ (2) $\forall x \forall y(S(x) = S(y) \rightarrow x = y)$ (3) $\forall x(x + 0 = x)$ (4) $\forall x \forall y(x + S(y) = S(x + y))$ (5) $\forall x(x \times 0 = 0)$ (6) $\forall x(x \times S(y) = x \times y + x)$ (7) (Induction Schema) ($\forall y < x(\phi(y)) \rightarrow \phi(x)) \rightarrow \forall x(\phi(x))$

Fragments of Peano Arithmetic

Peano Arithmetic (PA)

(1)
$$\forall x(S(x) \neq 0)$$

(2) $\forall x \forall y(S(x) = S(y) \rightarrow x = y)$
(3) $\forall x(x + 0 = x)$
(4) $\forall x \forall y(x + S(y) = S(x + y))$
(5) $\forall x(x \times 0 = 0)$
(6) $\forall x(x \times S(y) = x \times y + x)$
(7) (Induction Schema) ($\forall y < x(\phi(y)) \rightarrow \phi(x)$) $\rightarrow \forall x(\phi(x))$

We use P^- to denote (1)-(6) plus that exponential functions are total.

Definition 2 (Σ_1 Induction (I Σ_1))

 P^- + Induction Schema restricted to Σ_1 formulae.

Bounding Schema

Definition 3 (Bounding Schema)

For a formula $\phi(y, z)$, $\forall y < x \exists z (\phi(y, z)) \rightarrow \exists b \forall y < x \exists z < b(\phi(y, z))$

Bounding Schema

Definition 3 (Bounding Schema)

For a formula $\phi(y, z)$, $\forall y < x \exists z (\phi(y, z)) \rightarrow \exists b \forall y < x \exists z < b(\phi(y, z))$

Definition 4 (Σ_1 Bounding (B Σ_1))

 P^- + Bounding Schema restricted to Σ_1 formulae.

Theorem 5 (Paris and Kirby)

 $I\Sigma_1 \rightarrow B\Sigma_1 \not\rightarrow I\Sigma_1$

Theorem 5 (Paris and Kirby)

 $I\Sigma_1 \rightarrow B\Sigma_1 \not\rightarrow I\Sigma_1$

Corollary 6

There is a model of $B\Sigma_1 + \neg I\Sigma_1$.

Theorem 5 (Paris and Kirby)

 $I\!\Sigma_1 \rightarrow B\!\Sigma_1 \not\rightarrow I\!\Sigma_1$

Corollary 6

```
There is a model of B\Sigma_1 + \neg I\Sigma_1.
```

Remark

In such a model, there is a Σ_1 definable proper initial segment closed under successor. It is a $\underline{\Sigma_1 \text{ cut}} I$. There is a Δ_1 cofinal function f from the cut I to the whole model.

► Set A is <u>r.e.</u> iff there is a Σ_1 formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$

► Set A is <u>r.e.</u> iff there is a Σ_1 formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$

▶ Set *R* is <u>recursive</u> iff *R* and *R* are r.e.

- ► Set A is <u>r.e.</u> iff there is a Σ_1 formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$
- Set R is <u>recursive</u> iff R and R
 are r.e.
- Set D is <u>d-r.e.</u> iff there are r.e. sets A and B such that D = A − B

- ► Set A is <u>r.e.</u> iff there is a Σ_1 formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$
- Set R is <u>recursive</u> iff R and R
 are r.e.
- Set D is <u>d-r.e.</u> iff there are r.e. sets A and B such that D = A − B
- ► A set *F* is <u>finite</u> iff there is some number *n* with

$$n = \sum_{k \in F} 2^k$$

- ► Set A is <u>r.e.</u> iff there is a Σ_1 formula $\phi(x)$ such that $\forall x(x \in A \Leftrightarrow \phi(x))$
- Set R is <u>recursive</u> iff R and R
 are r.e.
- Set D is <u>d-r.e.</u> iff there are r.e. sets A and B such that D = A − B
- ► A set *F* is <u>finite</u> iff there is some number *n* with

$$n = \sum_{k \in F} 2^k$$

• A set X is regular iff for every finite set F, $X \cap F$ is finite.

• $\underline{A \leq_T B}$ iff there is an r.e. set Φ such that for any finite set F, $\overline{F \subseteq A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \overline{B}(\langle F, 1, P, N \rangle \in \Phi)$ $F \subseteq \overline{A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \overline{B}(\langle F, 0, P, N \rangle \in \Phi)$

- $\underline{A \leq_T B}$ iff there is an r.e. set Φ such that for any finite set F, $\overline{F \subseteq A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \overline{B}(\langle F, 1, P, N \rangle \in \Phi)$ $F \subseteq \overline{A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \overline{B}(\langle F, 0, P, N \rangle \in \Phi)$
- $\underline{A \equiv_T B}$ iff $A \leq_T B$ and $B \leq_T A$

- $\underline{A \leq_T B}$ iff there is an r.e. set Φ such that for any finite set F, $\overline{F \subseteq A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \overline{B}(\langle F, 1, P, N \rangle \in \Phi)$ $F \subseteq \overline{A} \Leftrightarrow \exists P \subseteq B \exists N \subseteq \overline{B}(\langle F, 0, P, N \rangle \in \Phi)$
- $\underline{A \equiv_T B}$ iff $A \leq_T B$ and $B \leq_T A$
- The Turing degree of A: $\mathbf{a} = \{B : B \equiv_T A\}$.

• Turing degree \mathbf{a} is <u>r.e.</u> if there is $A \in \mathbf{a}$ such that A is r.e.

- Turing degree \mathbf{a} is <u>r.e.</u> if there is $A \in \mathbf{a}$ such that A is r.e.
- Turing degree \mathbf{a} is <u>d-r.e.</u> if there is $D \in \mathbf{a}$ such that D is d-r.e.

- Turing degree \mathbf{a} is <u>r.e.</u> if there is $A \in \mathbf{a}$ such that A is r.e.
- Turing degree \mathbf{a} is <u>d-r.e.</u> if there is $D \in \mathbf{a}$ such that D is d-r.e.
- ► Turing degree a is proper d-r.e. if it is d-r.e. but not r.e.

Conclusion 10 (Mytilinaios)

If a theorem is provable using finite injury method, then it is provable in $I\Sigma_1$.

Theorem 11 (Slaman and Woodin)

In a model of $B\Sigma_1 + \neg I\Sigma_1$, its Σ_1 cut is of minimal degree.

Theorem 11 (Slaman and Woodin)

In a model of $B\Sigma_1 + \neg I\Sigma_1$, its Σ_1 cut is of minimal degree.

Corollary 12

Sacks' Splitting theorem fails in a model of $B\Sigma_1 + \neg I\Sigma_1$.

Theorem 11 (Slaman and Woodin)

In a model of $B\Sigma_1 + \neg I\Sigma_1$, its Σ_1 cut is of minimal degree.

Corollary 12

Sacks' Splitting theorem fails in a model of $B\Sigma_1 + \neg I\Sigma_1$.

Theorem 13 (Chong and Mourad)

In a model of $B\Sigma_1 + \neg I\Sigma_1$, there are two incomparable r.e., that is, Friedberg-Muchnik Theorem holds.

Cooper's Theorem

Theorem 14 (Cooper)

There exists a proper d-r.e. degree in the standard model of PA.

Cooper's Theorem

Theorem 14 (Cooper)

There exists a proper d-r.e. degree in the standard model of PA.

Proof.

Finite injury method.

Cooper's Theorem

Theorem 14 (Cooper)

There exists a proper d-r.e. degree in the standard model of PA.

Proof.

Finite injury method.

Corollary 15

 $I\Sigma_1 \vdash$ there exists a proper d-r.e. degree.

Does $\mathsf{B}\Sigma_1 + \neg \mathsf{I}\Sigma_1 \vdash$ there exists a proper d-r.e. degree?

Does $\mathsf{B}\Sigma_1 + \neg \mathsf{I}\Sigma_1 \vdash$ there exists a proper d-r.e. degree?

Ans: Yes.

Proper d-r.e. in $B\Sigma_1 + \neg I\Sigma_1$

Theorem 16

If $M \models B\Sigma_1 + \neg I\Sigma_1$, then there exists a d-r.e. set $D \not\leq_T \emptyset'$

Proper d-r.e. in $B\Sigma_1 + \neg I\Sigma_1$

Theorem 16

If $M \models B\Sigma_1 + \neg I\Sigma_1$, then there exists a d-r.e. set $D \not\leq_T \emptyset'$

Theorem 17

If $M \models B\Sigma_1 + \neg I\Sigma_1$, then there exists a bounded d-r.e. set $D \not\leq_T \emptyset'$

Theorem 18 (Chong and Mourad)

(Coding Lemma) If $X \subseteq I$ such that X and I - X are Σ_1 , then X is coded (there exists a finite set F with $F \cap I = X$).

Let $g:[0,2^{a\times a}]\to [[0,a]]^2$ be a Σ_1 full enumeration of all pairs $i< j\leq a.$

Let $g: [0, 2^{a \times a}] \rightarrow [[0, a]]^2$ be a Σ_1 full enumeration of all pairs $i < j \leq a$. Let $\hat{H} = \{(x, i) \in [0, 2^{a \times a}] \times [0, a] : i \in g(x)\}$

Let $g: [0, 2^{a \times a}] \rightarrow [[0, a]]^2$ be a Σ_1 full enumeration of all pairs $i < j \le a$. Let $\hat{H} = \{(x, i) \in [0, 2^{a \times a}] \times [0, a] : i \in g(x)\}$ $A = \{x < 2^{a \times a} : \exists i \in I((x, i) \in \hat{H} \land (\forall j < i)(x, j) \notin \hat{H})\}$

Let $g: [0, 2^{a \times a}] \rightarrow [[0, a]]^2$ be a Σ_1 full enumeration of all pairs $i < j \le a$. Let $\hat{H} = \{(x, i) \in [0, 2^{a \times a}] \times [0, a] : i \in g(x)\}$ $A = \{x < 2^{a \times a} : \exists i \in I((x, i) \in \hat{H} \land (\forall j < i)(x, j) \notin \hat{H})\}$ $B = \{x < 2^{a \times a} : \exists i < j \in I((x, i), (x, j) \in \hat{H})\}$

Let $g: [0, 2^{a \times a}] \rightarrow [[0, a]]^2$ be a Σ_1 full enumeration of all pairs $i < j \leq a$. Let $\hat{H} = \{(x, i) \in [0, 2^{a \times a}] \times [0, a] : i \in g(x)\}$ $A = \{x < 2^{a \times a} : \exists i \in I((x, i) \in \hat{H} \land (\forall j < i)(x, j) \notin \hat{H})\}$ $B = \{x < 2^{a \times a} : \exists i < j \in I((x, i), (x, j) \in \hat{H})\}$ $D = A - B \subseteq [0, 2^{a \times a}).$

Let $g: [0, 2^{a \times a}] \rightarrow [[0, a]]^2$ be a Σ_1 full enumeration of all pairs $i < j \leq a$. Let $\hat{H} = \{(x, i) \in [0, 2^{a \times a}] \times [0, a] : i \in g(x)\}$ $A = \{x < 2^{a \times a} : \exists i \in I((x, i) \in \hat{H} \land (\forall j < i)(x, j) \notin \hat{H})\}$ $B = \{x < 2^{a \times a} : \exists i < j \in I((x, i), (x, j) \in \hat{H})\}$ $D = A - B \subseteq [0, 2^{a \times a}).$ Claim: $D \not\leq_T \emptyset'$.

 $\mathsf{B}\Sigma_1 + \neg \mathsf{I}\Sigma_1 \vdash$ there exists a proper d-r.e. degree below 0'?

 $\mathsf{B}\Sigma_1 + \neg \mathsf{I}\Sigma_1 \vdash$ there exists a proper d-r.e. degree below 0'?

Ans: No.

 $\mathsf{B}\Sigma_1 + \neg \mathsf{I}\Sigma_1 \vdash$ there exists a proper d-r.e. degree below 0'?

Ans: No.

Theorem 19

 $B\Sigma_1 + \neg I\Sigma_1 \vdash$ there is no proper d-r.e. degree below $\mathbf{0}'$

Lemma 20

Suppose D is d-r.e. and $D \leq_T \emptyset'$. (1) If D is regular, then $D \equiv_T \emptyset$ or $D \geq_T I$; (2) if D is not regular, $D \geq_T I$.

Lemma 20

Suppose D is d-r.e. and $D \leq_T \emptyset'$. (1) If D is regular, then $D \equiv_T \emptyset$ or $D \geq_T I$; (2) if D is not regular, $D \geq_T I$.

Lemma 21

Suppose D is d-r.e. and $D \leq_T \emptyset'$. For every $m \in I$, there is some $b \in I$ such that

$$\begin{split} (\forall x \in [0, f(m)])[(x \in A[f(b)]) \lor \\ (x \in B \to \exists N \subseteq \bar{\emptyset'}(\langle \{x\}, 0, N \rangle \in \Phi[f(b)]))] \end{split}$$

$\mathsf{B}\Sigma_1 + \neg \ \mathsf{I}\Sigma_1 \vdash$ there is a non-r.e. degree below $\mathbf{0}'$

$\mathsf{B}\Sigma_1 + \neg \ \mathsf{I}\Sigma_1 \vdash$ there is a non-r.e. degree below $\mathbf{0}'$

Ans. No.

Suppose $M \models B\Sigma_1 + \neg I\Sigma_1$ and $I = \omega$ is a Σ_1 cut of M.

M is saturated if every real is coded in M.

Suppose $M \models B\Sigma_1 + \neg I\Sigma_1$ and $I = \omega$ is a Σ_1 cut of M.

M is saturated if every real is coded in M.

Theorem 23 (Slaman and Woodin)

There exists a saturated model.

Working in saturated models

Suppose M is saturated, and $D \leq_T \emptyset'$ via Φ .

Lemma 24

(1) If D is regular, then $D \equiv_T \emptyset$; (2) if D is not regular, $D \ge_T I$.

Pick any $i, m \in I$, let

$$D_{i,m} = \{x \in [0, f(m)] : \Phi^{\emptyset'}(x)[f(i)] = 1\}$$

Pick any $i, m \in I$, let

$$D_{i,m} = \{ x \in [0, f(m)] : \Phi^{\emptyset'}(x)[f(i)] = 1 \}$$

According to the behavior of x, it is divided into three sorts

Pick any $i, m \in I$, let

$$D_{i,m} = \{ x \in [0, f(m)] : \Phi^{\emptyset'}(x)[f(i)] = 1 \}$$

According to the behavior of x, it is divided into three sorts

(1) there is no j > i such that $D_{j,m}(x) \neq D_{i,m}(x)$. Then we say x is *i*-honest.

Pick any $i, m \in I$, let

$$D_{i,m} = \{ x \in [0, f(m)] : \Phi^{\emptyset'}(x)[f(i)] = 1 \}$$

According to the behavior of x, it is divided into three sorts

- (1) there is no j > i such that $D_{j,m}(x) \neq D_{i,m}(x)$. Then we say x is *i*-honest.
- (2) there is some j > i such that $D_{j,m}(x) \neq D_{i,m}(x)$, but still $D_{i,m}(x) = D(x)$ Then we say x is a *i*-white liar.

Pick any $i, m \in I$, let

$$D_{i,m} = \{ x \in [0, f(m)] : \Phi^{\emptyset'}(x)[f(i)] = 1 \}$$

According to the behavior of x, it is divided into three sorts

- (1) there is no j > i such that $D_{j,m}(x) \neq D_{i,m}(x)$. Then we say x is *i*-honest.
- (2) there is some j > i such that $D_{j,m}(x) \neq D_{i,m}(x)$, but still $D_{i,m}(x) = D(x)$ Then we say x is a *i*-white liar.
- (3) there is some j > i such that $D_{j,m}(x) \neq D_{i,m}(x)$, and $D_{i,m}(x) \neq D(x)$. Then we say x is a *i*-malicious liar for stage i.

Lemma 25

If $D \leq_T \emptyset'$ then

for each $i \in I$ there is some $j \in I$ such that all *i*-white liars are found.

For each $m\in\omega,$ we inductively construct a sequence of pairs $\{i_n^m\}_{n\in\omega}\subset\omega$ such that

(i)
$$i_0^m = 0$$
 and
(ii) for any n , i_{n+1}^m is the least stage j when all i_n^m -white liars in $[0, f(m)]$ are found.

As M is saturated, $\{\langle i_0^m, i_1^m, \dots, i_{n(m)}^m\rangle\}_{m\in\omega}$ is coded.

As M is saturated, $\{\langle i_0^m, i_1^m, \dots, i_{n(m)}^m \rangle\}_{m \in \omega}$ is coded. We may separate [0, f(m)] into n(m) + 1 parts:

$$K_i^m = \{x \in [0, f(m)] : g^m(x) = i\}$$

for each $i \leq n(m),$ where $g^m: [0,f(m)] \rightarrow \omega,$

$$x \mapsto \mu n(\forall k \in (i_n^m, i_{n+1}^m])(D_{i,m}(x) = D_{k,m}(x))$$

As M is saturated, $\{\langle i_0^m, i_1^m, \dots, i_{n(m)}^m \rangle\}_{m \in \omega}$ is coded. We may separate [0, f(m)] into n(m) + 1 parts:

$$K_i^m = \{x \in [0, f(m)] : g^m(x) = i\}$$

for each $i \leq n(m),$ where $g^m: [0,f(m)] \rightarrow \omega,$

$$x \mapsto \mu n(\forall k \in (i_n^m, i_{n+1}^m])(D_{i,m}(x) = D_{k,m}(x))$$

On K_i^m , enumerate f(i)-malicious liars, which determine $D \upharpoonright K_i^m$.

Reference

- In the degree of a Σ_n cut, Chong and Mourad, Annals of Pure and Applied Logic, 1990
- \checkmark M. Mytilianios, Finite injury and Σ_1 induction, Journals of Symbolic Logic, 1989
- 🖾 Mourad, PhD thesis, University of Chicago, 1989
- \bigstar Slaman and Woodin, Σ_1 collection and the finite injury priority method

Thank you!