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Preliminaries

In the language of arithmetic (including exponential function), we

define

Definition 1

An expression φ is called a Σ1 formula if it is in the form of

∃x1∃x2 . . . ∃xnQ1(xn+1 < y1) . . . Qm(xn+m < ym)

ψ(x1, . . . , xn+m; y1, . . . , ym; a1, . . . , ak)

where Q1, . . . , Qm are either ∀ or ∃, and ψ is conjunctions and
disjunctions of equalities and inequalities of exponential
polynomials.
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Fragments of Peano Arithmetic

Peano Arithmetic (PA)

(1) ∀x(S(x) �= 0)

(2) ∀x∀y(S(x) = S(y) → x = y)

(3) ∀x(x+ 0 = x)

(4) ∀x∀y(x+ S(y) = S(x+ y))

(5) ∀x(x× 0 = 0)

(6) ∀x(x× S(y) = x× y + x)

(7) (Induction Schema) (∀y < x(φ(y)) → φ(x)) → ∀x(φ(x))

We use P− to denote (1)-(6) plus that exponential functions are

total.
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Definition 2 (Σ1 Induction (IΣ1))

P−+ Induction Schema restricted to Σ1 formulae.



Bounding Schema

Definition 3 (Bounding Schema)

For a formula φ(y, z),
∀y < x∃z(φ(y, z)) → ∃b∀y < x∃z < b(φ(y, z))

Definition 4 (Σ1 Bounding (BΣ1))

P−+ Bounding Schema restricted to Σ1 formulae.
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Theorem 5 (Paris and Kirby)

IΣ1 →BΣ1 �→IΣ1

Corollary 6

There is a model of BΣ1 + ¬IΣ1.

Remark

In such a model, there is a Σ1 definable proper initial segment

closed under successor. It is a Σ1 cut I. There is a ∆1 cofinal

function f from the cut I to the whole model.
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Definition 7

� Set A is r.e. iff there is a Σ1 formula φ(x) such that
∀x(x ∈ A ⇔ φ(x))

� Set R is recursive iff R and R̄ are r.e.

� Set D is d-r.e. iff there are r.e. sets A and B such that
D = A−B

� A set F is finite iff there is some number n with

n =
�

k∈F
2k

� A set X is regular iff for every finite set F , X ∩ F is finite.
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Definition 8

� A ≤T B iff there is an r.e. set Φ such that for any finite set F ,
F ⊆ A ⇔ ∃P ⊆ B∃N ⊆ B̄(�F, 1, P,N� ∈ Φ)
F ⊆ Ā ⇔ ∃P ⊆ B∃N ⊆ B̄(�F, 0, P,N� ∈ Φ)

� A ≡T B iff A ≤T B and B ≤T A

� The Turing degree of A: a = {B : B ≡T A}.
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Definition 9

� Turing degree a is r.e. if there is A ∈ a such that A is r.e.

� Turing degree a is d-r.e. if there is D ∈ a such that D is d-r.e.

� Turing degree a is proper d-r.e. if it is d-r.e. but not r.e.
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Conclusion 10 (Mytilinaios)

If a theorem is provable using finite injury method, then it is
provable in IΣ1.



Turing Degrees in models of BΣ1 + ¬IΣ1

Theorem 11 (Slaman and Woodin)

In a model of BΣ1 + ¬IΣ1, its Σ1 cut is of minimal degree.

Corollary 12

Sacks’ Splitting theorem fails in a model of BΣ1 + ¬IΣ1.

Theorem 13 (Chong and Mourad)

In a model of BΣ1 +¬IΣ1, there are two incomparable r.e., that is,
Friedberg-Muchnik Theorem holds.
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Cooper’s Theorem

Theorem 14 (Cooper)

There exists a proper d-r.e. degree in the standard model of PA.

Proof.

Finite injury method.

Corollary 15

IΣ1 � there exists a proper d-r.e. degree.
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Proper d-r.e. in BΣ1 + ¬ IΣ1

Theorem 16

If M |= BΣ1 + ¬ IΣ1, then there exists a d-r.e. set D �≤T ∅�

Theorem 17

If M |= BΣ1 + ¬ IΣ1, then there exists a bounded d-r.e. set
D �≤T ∅�
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Theorem 18 (Chong and Mourad)

(Coding Lemma) If X ⊆ I such that X and I −X are Σ1, then X

is coded (there exists a finite set F with F ∩ I = X).



The “most complicated” bounded d-r.e. set

Let g : [0, 2a×a] → [[0, a]]2 be a Σ1 full enumeration of all pairs

i < j ≤ a.

Let Ĥ = {(x, i) ∈ [0, 2a×a]× [0, a] : i ∈ g(x)}
A = {x < 2a×a : ∃i ∈ I((x, i) ∈ Ĥ ∧ (∀j < i)(x, j) �∈ Ĥ)}
B = {x < 2a×a : ∃i < j ∈ I((x, i), (x, j) ∈ Ĥ)}
D = A−B ⊆ [0, 2a×a).

Claim: D �≤T ∅�.
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Question

BΣ1 + ¬ IΣ1 � there exists a proper d-r.e. degree below 0�?

Ans: No.
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Lemma 20

Suppose D is d-r.e. and D ≤T ∅�.
(1) If D is regular, then D ≡T ∅ or D ≥T I;

(2) if D is not regular, D ≥T I.

Lemma 21

Suppose D is d-r.e. and D ≤T ∅�. For every m ∈ I, there is some
b ∈ I such that

(∀x ∈ [0, f(m)])[(x ∈ A[f(b)])∨
(x ∈ B → ∃N ⊆ ∅̄�(�{x}, 0, N� ∈ Φ[f(b)]))]
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BΣ1 + ¬ IΣ1 � there is a non-r.e. degree below 0�

Ans. No.
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Definition 22

Suppose M |= BΣ1 + ¬ IΣ1 and I = ω is a Σ1 cut of M .

M is saturated if every real is coded in M .

Theorem 23 (Slaman and Woodin)

There exists a saturated model.
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Working in saturated models

Suppose M is saturated, and D ≤T ∅� via Φ.

Lemma 24

(1) If D is regular, then D ≡T ∅;
(2) if D is not regular, D ≥T I.



honest, white liar and malicious liar

Pick any i,m ∈ I, let

Di,m = {x ∈ [0, f(m)] : Φ∅�(x)[f(i)] = 1}

According to the behavior of x, it is divided into three sorts

(1) there is no j > i such that Dj,m(x) �= Di,m(x).
Then we say x is i-honest.

(2) there is some j > i such that Dj,m(x) �= Di,m(x), but still
Di,m(x) = D(x)
Then we say x is a i-white liar.

(3) there is some j > i such that Dj,m(x) �= Di,m(x), and
Di,m(x) �= D(x).
Then we say x is a i-malicious liar for stage i.



honest, white liar and malicious liar

Pick any i,m ∈ I, let

Di,m = {x ∈ [0, f(m)] : Φ∅�(x)[f(i)] = 1}

According to the behavior of x, it is divided into three sorts

(1) there is no j > i such that Dj,m(x) �= Di,m(x).
Then we say x is i-honest.

(2) there is some j > i such that Dj,m(x) �= Di,m(x), but still
Di,m(x) = D(x)
Then we say x is a i-white liar.

(3) there is some j > i such that Dj,m(x) �= Di,m(x), and
Di,m(x) �= D(x).
Then we say x is a i-malicious liar for stage i.



honest, white liar and malicious liar

Pick any i,m ∈ I, let

Di,m = {x ∈ [0, f(m)] : Φ∅�(x)[f(i)] = 1}

According to the behavior of x, it is divided into three sorts

(1) there is no j > i such that Dj,m(x) �= Di,m(x).
Then we say x is i-honest.

(2) there is some j > i such that Dj,m(x) �= Di,m(x), but still
Di,m(x) = D(x)
Then we say x is a i-white liar.

(3) there is some j > i such that Dj,m(x) �= Di,m(x), and
Di,m(x) �= D(x).
Then we say x is a i-malicious liar for stage i.



honest, white liar and malicious liar

Pick any i,m ∈ I, let

Di,m = {x ∈ [0, f(m)] : Φ∅�(x)[f(i)] = 1}

According to the behavior of x, it is divided into three sorts

(1) there is no j > i such that Dj,m(x) �= Di,m(x).
Then we say x is i-honest.

(2) there is some j > i such that Dj,m(x) �= Di,m(x), but still
Di,m(x) = D(x)
Then we say x is a i-white liar.

(3) there is some j > i such that Dj,m(x) �= Di,m(x), and
Di,m(x) �= D(x).
Then we say x is a i-malicious liar for stage i.



honest, white liar and malicious liar

Pick any i,m ∈ I, let

Di,m = {x ∈ [0, f(m)] : Φ∅�(x)[f(i)] = 1}

According to the behavior of x, it is divided into three sorts

(1) there is no j > i such that Dj,m(x) �= Di,m(x).
Then we say x is i-honest.

(2) there is some j > i such that Dj,m(x) �= Di,m(x), but still
Di,m(x) = D(x)
Then we say x is a i-white liar.

(3) there is some j > i such that Dj,m(x) �= Di,m(x), and
Di,m(x) �= D(x).
Then we say x is a i-malicious liar for stage i.



Lemma 25

If D ≤T ∅� then
for each i ∈ I there is some j ∈ I such that all i-white liars are
found.



Tier Program II.

For each m ∈ ω, we inductively construct a sequence of pairs

{imn }n∈ω ⊂ ω such that

(i) i
m
0 = 0 and

(ii) for any n, imn+1 is the least stage j when all imn -white liars in

[0, f(m)] are found.



As M is saturated, {�im0 , i
m
1 , . . . , i

m
n(m)�}m∈ω is coded.

We may separate [0, f(m)] into n(m) + 1 parts:

K
m
i = {x ∈ [0, f(m)] : gm(x) = i}

for each i ≤ n(m), where g
m : [0, f(m)] → ω,

x �→ µn(∀k ∈ (imn , i
m
n+1])(Di,m(x) = Dk,m(x))

On K
m
i , enumerate f(i)-malicious liars, which determine D � Km

i .
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On K
m
i , enumerate f(i)-malicious liars, which determine D � Km

i .
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