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Free Bernoulli subflows

Let G be a countable group.

Bernoulli G -flow: the G -space 2G = {0, 1}G with the shift action

(g · x)(h) = x(g−1h)

a periodic element x ∈ 2G : g · x = x for some period 1G �= g ∈ G

the free part F (G ): consists of x ∈ 2G such that for no g �= 1G ,

g · x = x (aperiodic elements)

The free part is an invariant dense Gδ subset of 2G .
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Free Bernoulli Subflows

Let G be a countable group, and consider the Bernoulli G -flow 2G .

subflow: closed invariant subset of 2G

free subflow: closed invariant subset of F (G ), the free part of 2G

Question (Glasner–Uspenskij) Does there exist a free subflow for

every countably infinite group G?

The answer was known to be yes for Z, S<∞, torsion-free

hyperbolic groups (including the free groups), residually finite

groups, etc. (Dranishnikov-Shroeder, Glasner-Uspenskij)

Theorem (GJS, 2008)

For every countably infinite group G there exists a free Bernoulli

subflow.
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Constructing free subflows

⇐⇒
constructing x ∈ 2G so that [x ] ⊆ F (G )

i.e., x ∈ 2G such that every y ∈ [x ] is aperiodic

Fact x ∈ 2G is aperiodic iff for any s ∈ G there is t ∈ G such that

x(t) �= x(st).
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2-Colorings

Let G be a countable group. A 2-coloring on G is a function

x : G → {0, 1} such that

for any s ∈ G with s �= 1G , there is a finite set T ⊆ G
such that

∀g ∈ G ∃t ∈ T x(gt) �= x(gst).

Lemma (GJS, Pestov)

x is a 2-coloring on G iff [x ] is a free subflow.
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for any s ∈ G with s �= 1G , there is a finite set T ⊆ G
such that

∀g ∈ G ∃t ∈ T x(gt) �= x(gst).

(x blocks s for all s �= 1G )

✏✏✏✏✏✶
s�

g

�
gs
❈
❈
❈
❈
❈❈❖
�gst

t

❈
❈
❈
❈
❈❈❖
�gt

t

Su Gao Group Colorings and Bernoulli Subflows



Free Bernoulli subflows and 2-colorings

Variations of 2-colorings

ACP

Almost Equality and Near 2-corloings

An Open Problem

Free Bernoulli subflows

2-colorings

for any s ∈ G with s �= 1G , there is a finite set T ⊆ G
such that

∀g ∈ G ∃t ∈ T x(gt) �= x(gst).

(x blocks s for all s �= 1G )

✏✏✏✏✏✶
s

�
g

�
gs
❈
❈
❈
❈
❈❈❖
�gst

t

❈
❈
❈
❈
❈❈❖
�gt

t

Su Gao Group Colorings and Bernoulli Subflows



Free Bernoulli subflows and 2-colorings

Variations of 2-colorings

ACP

Almost Equality and Near 2-corloings

An Open Problem

Free Bernoulli subflows

2-colorings

for any s ∈ G with s �= 1G , there is a finite set T ⊆ G
such that

∀g ∈ G ∃t ∈ T x(gt) �= x(gst).

(x blocks s for all s �= 1G )

✏✏✏✏✏✶
s�

g

�
gs

❈
❈
❈
❈
❈❈❖
�gst

t

❈
❈
❈
❈
❈❈❖
�gt

t

Su Gao Group Colorings and Bernoulli Subflows



Free Bernoulli subflows and 2-colorings

Variations of 2-colorings

ACP

Almost Equality and Near 2-corloings

An Open Problem

Free Bernoulli subflows

2-colorings

for any s ∈ G with s �= 1G , there is a finite set T ⊆ G
such that

∀g ∈ G ∃t ∈ T x(gt) �= x(gst).

(x blocks s for all s �= 1G )

✏✏✏✏✏✶
s�

g

�
gs
❈
❈
❈
❈
❈❈❖
�gst

t

❈
❈
❈
❈
❈❈❖
�gt

t

Su Gao Group Colorings and Bernoulli Subflows



Free Bernoulli subflows and 2-colorings

Variations of 2-colorings

ACP

Almost Equality and Near 2-corloings

An Open Problem

Free Bernoulli subflows

2-colorings

for any s ∈ G with s �= 1G , there is a finite set T ⊆ G
such that

∀g ∈ G ∃t ∈ T x(gt) �= x(gst).

(x blocks s for all s �= 1G )

✏✏✏✏✏✶
s�

g

�
gs
❈
❈
❈
❈
❈❈❖
�gst

t

❈
❈
❈
❈
❈❈❖
�gt

t

Su Gao Group Colorings and Bernoulli Subflows



Free Bernoulli subflows and 2-colorings

Variations of 2-colorings

ACP

Almost Equality and Near 2-corloings

An Open Problem

Free Bernoulli subflows

2-colorings

On Z it is fairly easy to construct aperiodic elements, and it is

significantly harder to construct 2-colorings.

In particular, any 2-coloring cannot contain arbitrarily long

subsequences of 1’s; otherwise the constant 1 element (certainly

periodic!) would be a limit point of the orbit.
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Strong 2-colorings

Almost 2-colorings

Near 2-colorings

Since 2-colorings (especially on general countable groups) are not

easy to construct, we certainly hope that it is then not easy to

destroy the 2-coloring property!

Question If x is a 2-coloring on G and y =∗ x (i.e.

{g ∈ G : x(g) �= y(g)} is finite), is y necessarily a 2-coloring?
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Strong 2-colorings

For x , y ∈ 2G , we write x =∗ y if {g ∈ G : x(g) �= y(g)} is finite.

A strong 2-coloring is a 2-coloring x ∈ 2G such that any y =∗ x is

also a 2-coloring.

Theorem

For any countably infinite group G there exists a strong 2-coloring

on G .

Corollary

For any countably infinite group G the set of all 2-colorings on G
is dense.
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Strong 2-colorings

Question

Are all 2-colorings strong 2-colorings?

This requires us to consider elements y ∈ G such that y =∗ x for

some 2-coloring x .

Lemma

x is a strong 2-coloring iff x is a 2-coloring and for any 1G �= s ∈ G
there are infinitely many t ∈ G such that x(t) �= x(st).
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Almost 2-colorings

An element y ∈ G is an almost 2-coloring if there exists a

2-coloring x on G with y =∗ x .

We say that G has the almost 2-coloring property (ACP) if every

almost 2-coloring on G is a 2-coloring.

Lemma

G has the ACP iff every 2-coloring on G is a strong 2-coloring

iff every almost 2-coloring on G is a strong 2-coloring.
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Let G be a countable group, x ∈ 2G , and 1G �= s ∈ G . We say

that x nearly blocks s if there are finite sets S ,T ⊆ G such that

∀g �∈ S ∃t ∈ T x(gt) �= x(gst).

x is a near 2-coloring if x nearly blocks s for all 1G �= s ∈ G .

Obviously

strong 2-coloring =⇒ 2-coloring =⇒ almost 2-coloring
=⇒ near 2-coloring
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Lemma

Every aperiodic near 2-coloring is a 2-coloring.

Call x ∈ 2G a pathological periodic element if it is a periodic

almost 2-coloring.

ACP ⇔ there is no pathological periodic element in 2G .
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ACP

Lemma

Let G be countably infinite and x an almost 2-coloring on G . Then

the stabilizer of x
{g ∈ G : g · x = x}

is finite.
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Proof.

Assume N = {g ∈ G : g · x = x} is infinite. Let y =∗ x be a

2-coloring on G and A = {g ∈ G : x(g) �= y(g)}. Fix any

1G �= s ∈ N. Let T ⊆ G be a finite set witnessing that y blocks s.

Consider B = AT−1 ∪AT−1s−1. Since B is finite and N is infinite,

there is g0 ∈ N − B. Since N ≤ G , we also have g0s ∈ N. Note

that for all t ∈ T , g0t, g0st �∈ A since g0 �∈ B. Thus for all t ∈ T ,

y(g0t) = x(g0t) = x(t) = x(g0st) = y(g0st).

This contradicts the assumption that y blocks s with witness T . �
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A complete characterization of ACP

Corollary

Let G be a countable group. If every nontrivial subgroup of G is

infinite, then G has the ACP. In particular, all free groups

(including Z) have the ACP.

We also showed that ACP holds for nilpotent groups, FC groups,

etc.
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A complete characterization of ACP

Theorem

The group Z2 ∗ Z2 does not have the ACP.

Fact: Z2 ∗ Z2 is almost abelian (solvable of rank 2).

1 a ab aba (ab)2 (ab)2a · · ·
b ba bab (ba)2 b(ab)2 (ba)3 · · ·
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A Complete Characterization of ACP

Theorem

Let G be a countably infinite group. Then G has the ACP iff for

any g ∈ G , there is h ∈ �g� such that the centralizer of h

C (h) = {k ∈ G : kh = hk}

is infinite.
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Almost Equality and Indestructibility of Periodicity

Theorem TFAE for a countably infinite group G :

(1) There is an “indestructible” periodic element, i.e., there is a

periodic x ∈ 2G such that any y =∗ x is also periodic.

(2) G contains a nonabelian free subgroup.
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The relation =∗∗

x =∗∗ y if |{g ∈ G : x(g) �= y(g)}| = 1.

Theorem TFAE for a countably infinite group G :

(1) There is a “not easily destructible” periodic element, i.e., there

is a periodic x ∈ 2G such that every y =∗∗ x is also periodic.

(2) G contains a subgroup which is a free product of nontrivial

groups.
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Near 2-colorings

Theorem

If x is a near 2-coloring, then either x is a 2-coloring or else every

y =∗∗ x is a 2-coloring.

Corollary

Every near 2-coloring is an almost 2-coloring.
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An Open Problem

Problem Is there a pathological periodic element x (on Z2 ∗ Z2)

so that x =∗ y for a minimal 2-coloring y?

Fact: There is no minimal pathological periodic element.

(If x =∗ y then [x ]− [x ] ⊆ [y ].)
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Thank you!
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