Group Colorings and Bernoulli Subflows

Su Gao

Department of Mathematics University of North Texas

ALC 2011

December 15, 2011 Wellington, New Zealand

This is joint work with Steve Jackson and Brandon Seward.

A coloring property for countable groups, Mathematical Proceedings of the Cambridge Philosophical Society 147 (2009), no. 3, 579–592.

Group colorings and Bernoulli subflows, manuscript in preparation.

- 4 同 6 4 日 6 4 日 6

Variations of 2-colorings ACP Almost Equality and Near 2-corloings An Open Problem

Free Bernoulli subflows 2-colorings

Free Bernoulli subflows

Let G be a countable group.

・ロン ・回 と ・ヨン ・ヨン

Variations of 2-colorings ACP Almost Equality and Near 2-corloings An Open Problem

Free Bernoulli subflows 2-colorings

Free Bernoulli subflows

Let G be a countable group.

Bernoulli G-flow: the G-space $2^{G} = \{0, 1\}^{G}$ with the shift action

$$(g \cdot x)(h) = x(g^{-1}h)$$

・ロト ・回ト ・ヨト ・ ヨト

æ

Variations of 2-colorings ACP Almost Equality and Near 2-corloings An Open Problem

Free Bernoulli subflows 2-colorings

Free Bernoulli subflows

Let G be a countable group.

Bernoulli G-flow: the G-space $2^G = \{0, 1\}^G$ with the shift action

$$(g \cdot x)(h) = x(g^{-1}h)$$

a periodic element $x \in 2^G$: $g \cdot x = x$ for some period $1_G \neq g \in G$

Variations of 2-colorings ACP Almost Equality and Near 2-corloings An Open Problem

Free Bernoulli subflows 2-colorings

Free Bernoulli subflows

Let G be a countable group.

Bernoulli G-flow: the G-space $2^G = \{0, 1\}^G$ with the shift action

$$(g \cdot x)(h) = x(g^{-1}h)$$

a periodic element $x \in 2^G$: $g \cdot x = x$ for some period $1_G \neq g \in G$ the free part F(G): consists of $x \in 2^G$ such that for no $g \neq 1_G$, $g \cdot x = x$ (aperiodic elements)

Variations of 2-colorings ACP Almost Equality and Near 2-corloings An Open Problem

Free Bernoulli subflows 2-colorings

Free Bernoulli subflows

Let G be a countable group.

Bernoulli G-flow: the G-space $2^G = \{0, 1\}^G$ with the shift action

$$(g \cdot x)(h) = x(g^{-1}h)$$

a periodic element $x \in 2^G$: $g \cdot x = x$ for some period $1_G \neq g \in G$ the free part F(G): consists of $x \in 2^G$ such that for no $g \neq 1_G$, $g \cdot x = x$ (aperiodic elements)

The free part is an invariant dense G_{δ} subset of 2^{G} .

Variations of 2-colorings ACP Almost Equality and Near 2-corloings An Open Problem

Free Bernoulli subflows 2-colorings

Free Bernoulli Subflows

Su Gao Group Colorings and Bernoulli Subflows

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Free Bernoulli subflows and 2-colorings Variations of 2-colorings

ACP Almost Equality and Near 2-corloings An Open Problem Free Bernoulli subflows 2-colorings

Free Bernoulli Subflows

Let G be a countable group, and consider the Bernoulli G-flow 2^{G} .

・ロン ・回 と ・ ヨ と ・ ヨ と

Free Bernoulli subflows and 2-colorings Variations of 2-colorings

ACP Almost Equality and Near 2-corloings An Open Problem Free Bernoulli subflows 2-colorings

Free Bernoulli Subflows

Let G be a countable group, and consider the Bernoulli G-flow 2^G . subflow: closed invariant subset of 2^G

ヘロン 人間 とくほと くほとう

æ

Free Bernoulli subflows 2-colorings

Free Bernoulli Subflows

Let G be a countable group, and consider the Bernoulli G-flow 2^{G} . subflow: closed invariant subset of 2^{G}

free subflow: closed invariant subset of F(G), the free part of 2^G

Free Bernoulli subflows 2-colorings

Free Bernoulli Subflows

Let G be a countable group, and consider the Bernoulli G-flow 2^{G} . subflow: closed invariant subset of 2^{G}

free subflow: closed invariant subset of F(G), the free part of 2^G

Question (Glasner–Uspenskij) Does there exist a free subflow for every countably infinite group *G*?

Free Bernoulli subflows 2-colorings

Free Bernoulli Subflows

Let G be a countable group, and consider the Bernoulli G-flow 2^{G} . subflow: closed invariant subset of 2^{G}

free subflow: closed invariant subset of F(G), the free part of 2^G

Question (Glasner–Uspenskij) Does there exist a free subflow for every countably infinite group *G*?

The answer was known to be yes for \mathbb{Z} , $S_{<\infty}$, torsion-free hyperbolic groups (including the free groups), residually finite groups, etc. (Dranishnikov-Shroeder, Glasner-Uspenskij)

Free Bernoulli subflows 2-colorings

Free Bernoulli Subflows

Let G be a countable group, and consider the Bernoulli G-flow 2^{G} . subflow: closed invariant subset of 2^{G}

free subflow: closed invariant subset of F(G), the free part of 2^G

Question (Glasner–Uspenskij) Does there exist a free subflow for every countably infinite group *G*?

The answer was known to be yes for \mathbb{Z} , $S_{<\infty}$, torsion-free hyperbolic groups (including the free groups), residually finite groups, etc. (Dranishnikov-Shroeder, Glasner-Uspenskij)

Theorem (GJS, 2008) For every countably infinite group G there exists a free Bernoulli subflow.

Free Bernoulli subflows 2-colorings

Constructing free subflows

 \iff constructing $x \in 2^{G}$ so that $\overline{[x]} \subseteq F(G)$ i.e., $x \in 2^{G}$ such that every $y \in \overline{[x]}$ is aperiodic

イロト イヨト イヨト イヨト

æ

Free Bernoulli subflows 2-colorings

Constructing free subflows

 \iff constructing $x \in 2^G$ so that $\overline{[x]} \subseteq F(G)$ i.e., $x \in 2^G$ such that every $y \in \overline{[x]}$ is aperiodic

Fact $x \in 2^G$ is aperiodic iff for any $s \in G$ there is $t \in G$ such that

 $x(t) \neq x(st).$

Free Bernoulli subflows 2-colorings

Constructing free subflows

 \iff constructing $x \in 2^G$ so that $\overline{[x]} \subseteq F(G)$ i.e., $x \in 2^G$ such that every $y \in \overline{[x]}$ is aperiodic

 1_G

Fact $x \in 2^G$ is aperiodic iff for any $s \in G$ there is $t \in G$ such that

 $x(t) \neq x(st).$

S

Free Bernoulli subflows 2-colorings

Constructing free subflows

 \iff constructing $x \in 2^G$ so that $\overline{[x]} \subseteq F(G)$ i.e., $x \in 2^G$ such that every $y \in \overline{[x]}$ is aperiodic

Fact $x \in 2^G$ is aperiodic iff for any $s \in G$ there is $t \in G$ such that

 $x(t) \neq x(st).$

Free Bernoulli subflows 2-colorings

2-Colorings

Let G be a countable group. A 2-coloring on G is a function $x: G \to \{0,1\}$ such that

for any $s \in G$ with $s \neq 1_G$, there is a finite set $T \subseteq G$ such that

$$\forall g \in G \ \exists t \in T \ x(gt) \neq x(gst).$$

イロン イヨン イヨン イヨン

Free Bernoulli subflows 2-colorings

2-Colorings

Let G be a countable group. A 2-coloring on G is a function $x: G \to \{0,1\}$ such that

for any $s\in G$ with $s\neq 1_G,$ there is a finite set $T\subseteq G$ such that

$$\forall g \in G \ \exists t \in T \ x(gt) \neq x(gst).$$

Lemma (GJS, Pestov) x is a 2-coloring on G iff $\overline{[x]}$ is a free subflow.

Free Bernoulli subflows 2-colorings

for any $s\in G$ with $s\neq 1_G,$ there is a finite set $T\subseteq G$ such that

 $\forall g \in G \ \exists t \in T \ x(gt) \neq x(gst).$

(x blocks s for all $s \neq 1_G$)

イロン イヨン イヨン イヨン

Free Bernoulli subflows 2-colorings

for any $s\in G$ with $s\neq 1_G,$ there is a finite set $T\subseteq G$ such that

 $\forall g \in G \ \exists t \in T \ x(gt) \neq x(gst).$

(x blocks s for all $s \neq 1_G$)

イロト イポト イヨト イヨト

Free Bernoulli subflows 2-colorings

for any $s\in G$ with $s\neq 1_G,$ there is a finite set $T\subseteq G$ such that

 $\forall g \in G \ \exists t \in T \ x(gt) \neq x(gst).$

(x blocks s for all $s \neq 1_G$)

イロト イポト イヨト イヨト

Free Bernoulli subflows 2-colorings

for any $s\in G$ with $s\neq 1_G,$ there is a finite set $T\subseteq G$ such that

 $\forall g \in G \ \exists t \in T \ x(gt) \neq x(gst).$

(x blocks s for all $s \neq 1_G$)

Free Bernoulli subflows 2-colorings

for any $s\in G$ with $s\neq 1_G,$ there is a finite set $T\subseteq G$ such that

 $\forall g \in G \ \exists t \in T \ x(gt) \neq x(gst).$

(x blocks s for all $s \neq 1_G$)

Free Bernoulli subflows 2-colorings

On \mathbb{Z} it is fairly easy to construct aperiodic elements, and it is significantly harder to construct 2-colorings.

In particular, any 2-coloring cannot contain arbitrarily long subsequences of 1's; otherwise the constant 1 element (certainly periodic!) would be a limit point of the orbit.

Since 2-colorings (especially on general countable groups) are not easy to construct, we certainly hope that it is then not easy to destroy the 2-coloring property!

Question If x is a 2-coloring on G and y = x (i.e. $\{g \in G : x(g) \neq y(g)\}$ is finite), is y necessarily a 2-coloring?

イロン イヨン イヨン イヨン

Strong 2-colorings Almost 2-colorings Near 2-colorings

Strong 2-colorings

For $x, y \in 2^{G}$, we write $x =^{*} y$ if $\{g \in G : x(g) \neq y(g)\}$ is finite.

イロン イヨン イヨン イヨン

Strong 2-colorings Almost 2-colorings Near 2-colorings

Strong 2-colorings

For $x, y \in 2^G$, we write $x =^* y$ if $\{g \in G : x(g) \neq y(g)\}$ is finite. A strong 2-coloring is a 2-coloring $x \in 2^G$ such that any $y =^* x$ is also a 2-coloring.

・ロン ・回と ・ヨン・

Strong 2-colorings Almost 2-colorings Near 2-colorings

Strong 2-colorings

For $x, y \in 2^G$, we write $x =^* y$ if $\{g \in G : x(g) \neq y(g)\}$ is finite. A strong 2-coloring is a 2-coloring $x \in 2^G$ such that any $y =^* x$ is also a 2-coloring.

Theorem

For any countably infinite group G there exists a strong 2-coloring on G.

Strong 2-colorings Almost 2-colorings Near 2-colorings

Strong 2-colorings

For $x, y \in 2^G$, we write $x =^* y$ if $\{g \in G : x(g) \neq y(g)\}$ is finite. A strong 2-coloring is a 2-coloring $x \in 2^G$ such that any $y =^* x$ is also a 2-coloring.

Theorem

For any countably infinite group G there exists a strong 2-coloring on G.

Corollary

For any countably infinite group G the set of all 2-colorings on G is dense.

Strong 2-colorings Almost 2-colorings Near 2-colorings

Strong 2-colorings

Question

Are all 2-colorings strong 2-colorings?

イロン 不同と 不同と 不同と

æ

Strong 2-colorings Almost 2-colorings Near 2-colorings

Strong 2-colorings

Question

Are all 2-colorings strong 2-colorings?

This requires us to consider elements $y \in G$ such that y = x for some 2-coloring x.

Strong 2-colorings Almost 2-colorings Near 2-colorings

Strong 2-colorings

Question

Are all 2-colorings strong 2-colorings?

This requires us to consider elements $y \in G$ such that $y =^{*} x$ for some 2-coloring x.

Lemma

x is a strong 2-coloring iff x is a 2-coloring and for any $1_G \neq s \in G$ there are *infinitely many* $t \in G$ such that $x(t) \neq x(st)$.

Strong 2-colorings Almost 2-colorings Near 2-colorings

Almost 2-colorings

An element $y \in G$ is an almost 2-coloring if there exists a 2-coloring x on G with y = x.

・ロン ・回と ・ヨン・

æ

Strong 2-colorings Almost 2-colorings Near 2-colorings

Almost 2-colorings

An element $y \in G$ is an almost 2-coloring if there exists a 2-coloring x on G with y = x.

We say that G has the almost 2-coloring property (ACP) if every almost 2-coloring on G is a 2-coloring.

イロン イヨン イヨン イヨン
Strong 2-colorings Almost 2-colorings Near 2-colorings

Almost 2-colorings

An element $y \in G$ is an almost 2-coloring if there exists a 2-coloring x on G with y = x.

We say that G has the almost 2-coloring property (ACP) if every almost 2-coloring on G is a 2-coloring.

Lemma

G has the ACP iff every 2-coloring on G is a strong 2-coloring

Strong 2-colorings Almost 2-colorings Near 2-colorings

Almost 2-colorings

An element $y \in G$ is an almost 2-coloring if there exists a 2-coloring x on G with y = x.

We say that G has the almost 2-coloring property (ACP) if every almost 2-coloring on G is a 2-coloring.

Lemma

G has the ACP iff every 2-coloring on G is a strong 2-coloring iff every almost 2-coloring on G is a strong 2-coloring.

Strong 2-colorings Almost 2-colorings Near 2-colorings

Near 2-colorings

Let G be a countable group, $x \in 2^G$, and $1_G \neq s \in G$. We say that x nearly blocks s if there are finite sets $S, T \subseteq G$ such that

$$\forall g \notin S \exists t \in T \ x(gt) \neq x(gst).$$

x is a near 2-coloring if x nearly blocks s for all $1_G \neq s \in G$.

Strong 2-colorings Almost 2-colorings Near 2-colorings

Near 2-colorings

Let G be a countable group, $x \in 2^G$, and $1_G \neq s \in G$. We say that x nearly blocks s if there are finite sets $S, T \subseteq G$ such that

$$\forall g \notin S \exists t \in T \ x(gt) \neq x(gst).$$

x is a near 2-coloring if x nearly blocks s for all $1_G \neq s \in G$. Obviously

 $\begin{array}{l} \textit{strong 2-coloring} \Longrightarrow \textit{2-coloring} \Longrightarrow \textit{almost 2-coloring} \\ \Longrightarrow \textit{near 2-coloring} \end{array}$

Strong 2-colorings Almost 2-colorings Near 2-colorings

Lemma

Every aperiodic near 2-coloring is a 2-coloring.

Strong 2-colorings Almost 2-colorings Near 2-colorings

Lemma

Every aperiodic near 2-coloring is a 2-coloring.

Call $x \in 2^{G}$ a pathological periodic element if it is a periodic almost 2-coloring.

イロン イヨン イヨン イヨン

3

Strong 2-colorings Almost 2-colorings Near 2-colorings

Lemma

Every aperiodic near 2-coloring is a 2-coloring.

Call $x \in 2^{G}$ a pathological periodic element if it is a periodic almost 2-coloring.

ACP \Leftrightarrow there is no pathological periodic element in 2^{G} .

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

ACP

Su Gao Group Colorings and Bernoulli Subflows

<ロ> (四) (四) (三) (三) (三)

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Lemma

Let G be countably infinite and x an almost 2-coloring on G. Then the stabilizer of x

$$\{g \in G : g \cdot x = x\}$$

is finite.

・ロン ・回と ・ヨン ・ヨン

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Su Gao Group Colorings and Bernoulli Subflows

<ロ> (四) (四) (三) (三) (三)

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite.

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$.

・ロト ・回ト ・ヨト ・ヨト

2

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$.

・ロト ・回ト ・ヨト ・ヨト

3

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$. Let $T \subseteq G$ be a finite set witnessing that y blocks s.

イロン イヨン イヨン イヨン

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$. Let $T \subseteq G$ be a finite set witnessing that y blocks s. Consider $B = AT^{-1} \cup AT^{-1}s^{-1}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$. Let $T \subseteq G$ be a finite set witnessing that y blocks s. Consider $B = AT^{-1} \cup AT^{-1}s^{-1}$. Since B is finite and N is infinite, there is $g_0 \in N - B$.

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$. Let $T \subseteq G$ be a finite set witnessing that y blocks s. Consider $B = AT^{-1} \cup AT^{-1}s^{-1}$. Since B is finite and N is infinite, there is $g_0 \in N - B$. Since $N \leq G$, we also have $g_0 s \in N$.

소리가 소문가 소문가 소문가

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$. Let $T \subseteq G$ be a finite set witnessing that y blocks s. Consider $B = AT^{-1} \cup AT^{-1}s^{-1}$. Since B is finite and N is infinite, there is $g_0 \in N - B$. Since $N \leq G$, we also have $g_0 s \in N$. Note that for all $t \in T$, $g_0 t$, $g_0 st \notin A$ since $g_0 \notin B$.

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$. Let $T \subseteq G$ be a finite set witnessing that y blocks s. Consider $B = AT^{-1} \cup AT^{-1}s^{-1}$. Since B is finite and N is infinite, there is $g_0 \in N - B$. Since N < G, we also have $g_0 s \in N$. Note

that for all $t \in T$, $g_0t, g_0st \notin A$ since $g_0 \notin B$. Thus for all $t \in T$,

$$y(g_0t) = x(g_0t) = x(t) = x(g_0st) = y(g_0st).$$

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$. Let $T \subseteq G$ be a finite set witnessing that y blocks s.

Consider $B = AT^{-1} \cup AT^{-1}s^{-1}$. Since *B* is finite and *N* is infinite, there is $g_0 \in N - B$. Since $N \leq G$, we also have $g_0s \in N$. Note that for all $t \in T$, $g_0t, g_0st \notin A$ since $g_0 \notin B$. Thus for all $t \in T$,

$$y(g_0t) = x(g_0t) = x(t) = x(g_0st) = y(g_0st).$$

This contradicts the assumption that y blocks s with witness T.

・ロン ・回 と ・ ヨ と ・ ヨ と

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Proof.

Assume $N = \{g \in G : g \cdot x = x\}$ is infinite. Let $y =^* x$ be a 2-coloring on G and $A = \{g \in G : x(g) \neq y(g)\}$. Fix any $1_G \neq s \in N$. Let $T \subseteq G$ be a finite set witnessing that y blocks s.

Consider $B = AT^{-1} \cup AT^{-1}s^{-1}$. Since *B* is finite and *N* is infinite, there is $g_0 \in N - B$. Since $N \leq G$, we also have $g_0s \in N$. Note that for all $t \in T$, $g_0t, g_0st \notin A$ since $g_0 \notin B$. Thus for all $t \in T$,

$$y(g_0t) = x(g_0t) = x(t) = x(g_0st) = y(g_0st).$$

This contradicts the assumption that y blocks s with witness T. \Box

・ロン ・回 と ・ ヨ と ・ ヨ と

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Corollary

Let G be a countable group. If every nontrivial subgroup of G is infinite, then G has the ACP. In particular, all free groups (including \mathbb{Z}) have the ACP.

イロン イヨン イヨン イヨン

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Corollary

Let G be a countable group. If every nontrivial subgroup of G is infinite, then G has the ACP. In particular, all free groups (including \mathbb{Z}) have the ACP.

We also showed that ACP holds for nilpotent groups, FC groups, etc.

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Theorem

The group $\mathbb{Z}_2 * \mathbb{Z}_2$ does not have the ACP.

イロン イヨン イヨン イヨン

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

Theorem

The group $\mathbb{Z}_2 * \mathbb{Z}_2$ does not have the ACP.

Fact: $\mathbb{Z}_2 * \mathbb{Z}_2$ is almost abelian (solvable of rank 2).

1 a ab aba
$$(ab)^2$$
 $(ab)^2a$ \cdots
b ba bab $(ba)^2$ $b(ab)^2$ $(ba)^3$ \cdots

・ロン ・回と ・ヨン・

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

A Complete Characterization of ACP

Su Gao Group Colorings and Bernoulli Subflows

・ロン ・回と ・ヨン・

ACP for free groups An almost abelian group without ACP A complete characterization of ACP

A Complete Characterization of ACP

Theorem

Let G be a countably infinite group. Then G has the ACP iff for any $g \in G$, there is $h \in \langle g \rangle$ such that the centralizer of h

$$C(h) = \{k \in G : kh = hk\}$$

is infinite.

Almost Equality and Indestructibility of Periodicity

Theorem TFAE for a countably infinite group G: (1) There is an "indestructible" periodic element, i.e., there is a periodic $x \in 2^G$ such that any $y =^* x$ is also periodic. (2) G contains a nonabelian free subgroup.

- 4 回 ト 4 ヨ ト 4 ヨ ト

The relation $=^{**}$

$$x = ** y \text{ if } |\{g \in G : x(g) \neq y(g)\}| = 1.$$

▲□→ ▲圖→ ▲厘→ ▲厘→

The relation $=^{**}$

$$x = ** y \text{ if } |\{g \in G : x(g) \neq y(g)\}| = 1.$$

Theorem TFAE for a countably infinite group G: (1) There is a "not easily destructible" periodic element, i.e., there is a periodic $x \in 2^G$ such that every $y =^{**} x$ is also periodic. (2) G contains a subgroup which is a free product of nontrivial groups.

Near 2-colorings

Near 2-colorings

Theorem

If x is a near 2-coloring, then either x is a 2-coloring or else every $y = {}^{**} x$ is a 2-coloring.

Near 2-colorings

Theorem

If x is a near 2-coloring, then either x is a 2-coloring or else every $y = {}^{**} x$ is a 2-coloring.

Corollary

Every near 2-coloring is an almost 2-coloring.

- 4 同 6 4 日 6 4 日 6

An Open Problem

An Open Problem

Problem Is there a pathological periodic element x (on $\mathbb{Z}_2 * \mathbb{Z}_2$) so that $x =^* y$ for a *minimal* 2-coloring y?

イロン イヨン イヨン イヨン

2

An Open Problem

Problem Is there a pathological periodic element x (on $\mathbb{Z}_2 * \mathbb{Z}_2$) so that $x =^* y$ for a *minimal* 2-coloring y?

Fact: There is no minimal pathological periodic element. (If $x = {}^{*} y$ then $\overline{[x]} - [x] \subseteq \overline{[y]}$.)
Free Bernoulli subflows and 2-colorings Variations of 2-colorings ACP Almost Equality and Near 2-corlorings An Open Problem

Thank you!

★ロ→ ★御→ ★注→ ★注→ 「注