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Introduction

A major theme of applied computability theory is the study of the
algorithmic properties of countable structures and their presentations,
and of the logical content of theorems concerning them.

Partial orders, in particular, have been investigated extensively.

Downey, Hirschfeldt, Lempp, and Solomon (2003) – Szpilrajn’s
Theorem

Hirschfeldt and Shore (2007) – CAC and ADS

Jockusch, Kjos-Hanssen, Lempp, Lerman, and Solomon (2009) –
Notions of stability for partial orders

Greenberg, Montalbán, and Slaman (2011) – Degree spectra of
linear orders
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Introduction

There are several approaches taken in such analyses.

Most commonly, we restrict attention to computable orders and
study the effectivity (or lack thereof) of particular combinatorial
constructions or objects of interest.

In computable model theory we might consider noncomputable
orders, and inquire instead about which ones admit computable
(isomorphic) copies, or more generally, in which Turing degrees
copies can be found and how complicated the witnessing
isomorphisms are.

In reverse mathematics we formalize theorems pertaining to partial
orders, and calibrate the strengths of these theorems according to
which set-existence axioms are necessary to prove them.

There is a fruitful interplay between these approaches.



Computably enumerable partial orders

We restrict to partial orders on ω, and identify these with their relations.

Thus, a partial order (ω,≤P) is c.e. if ≤P is a c.e. binary relation.
Similarly for co-c.e. partial orders.

Theorem (Roy, 1993). There exists a c.e. antisymmetric binary relation
which is not isomorphic to any computable such relation.

Theorem (Cholak, Dzhafarov, Schweber, Shore). There exists a co-c.e.
partial order on ω which is not isomorphic to any c.e. such partial order,
and conversely.
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Proof. We first code numbers as follows.

Fix markers a, b, c , f and l .

Partition the rest of ω as follows, with the following relations under ≤P :
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Computably enumerable partial orders

We ensure the coding is recoverable computably in any copy.

The number u is coded by:

f l

au,0 au,1 au,2 · · · au,u−1 au,u

cu,0 cu,1 · · · cu,u−1



Computably enumerable partial orders

Let U be a Σ02-complete set, with R computable such that
u ∈ U ⇐⇒ (∃x)(∀y)R(u, x , y).

Initially, set bx ≤ au,k for all u and k .

For each u and x , if there is a y such that ¬R(u, x , y), set bx �P au,k
for all k < u + 1.

Then u ∈ U if and only if there is an x such that bx ≤P au,0, . . . , au,u.

If ≤P had a c.e. copy, U would then be Σ01-definable, contradiction.



Generalizations of ADS and CAC

A class of relations related to co-c.e. partial orders is that of inclusion
orders on families of sets. For computable families, inclusion is co-c.e.

But since a family of sets �Ai : i ∈ ω� may have repetitions, we do not
necessarily obtain a co-c.e. partial order isomorphic to the inclusion order
on simply by setting i ≤ j if Ai ⊆ Aj . However, we do obviously obtain a
preorder.

This is a characterization:

Proposition. Every co-c.e. preorder on ω is isomorphic to the inclusion
order on a computable family of sets.
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Generalizations of ADS and CAC

Recall the following combinatorial principles:

Chain/antichain principle (CAC). Every partial order on N has either an
infinite chain or an infinite antichain.

Ascending/descending sequence principle (ADS). Every linear order on N
has either an infinite ascending sequence or an infinite descending
sequence.

These principles were studied in the context of computability theory and
reverse mathematics by Hirschfeldt and Shore (2007).

It is easy to see that CAC implies ADS over RCA0. The converse is open.
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Generalizations of ADS and CAC

We can formalize the notion of a c.e. order on N in RCA0. Formally, this
is a function whose range consists of pairs that satisfy the axioms of a
partial order.

We can similarly formalize co-c.e. partial orders, as well as c.e. preorders
and co-c.e. preorders.

Thus, we can formulate analogues of CAC and ADS for c.e. and co-c.e.
partial orders, and c.e. and co-c.e. preorders, and study their
proof-theoretic strength.



Generalizations of ADS and CAC

Proposition (Cholak, Dzhafarov, Schweber, and Shore). Over RCA0, the
following are equivalent:

(1) ADS;
(2) ADS for c.e. partial orders on N;
(3) ADS for co-c.e. partial orders on N;
(4) ADS for c.e. preorders on N;
(5) ADS for co-c.e. preorders on N;
(6) ADS for preorders on N.

Proof sketch. Straightforward, except for the implications (1) =⇒ (4)
and (1) =⇒ (5). Here a use of BΣ02 is necessary, in the form

If �Ai : i ∈ N� is a family of sets such that for some finite F �= ∅, each Ai
equals some Aj with j ∈ F , then {Ai : Ai = Aj} is infinite for some
j ∈ F .
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Generalizations of ADS and CAC

Theorem (Cholak, Dzhafarov, Schweber, and Shore).

(1) There exists a co-c.e. partial order on ω with no infinite
antichains and with all chains computing ∅�.
(2) There exists a c.e. partial order on ω with no infinite chains and
with all infinite antichains computing ∅�.

Corollary Over RCA0, the following are equivalent:

(1) ACA0;
(2) CAC for c.e. partial orders on N;
(3) CAC for co-c.e. partial orders on N;
(4) CAC for c.e. preorders on N;
(5) CAC for co-c.e. preorders on N.
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Generalizations of ADS and CAC

Proof of theorem. Let ti be the least s such that ∅�s � i = ∅� � i (in some
fixed enumeration)

We build a co-c.e. partial order ≤P by stages. Initially, make ≤P agree
with the natural order on ω.

At stage s > 0, we consider consecutive substages i ≤ s.
At substage i , if no number enters ∅� � i at stage s, we do nothing
and go either to substage i + 1 or to stage s + 1, depending on
whether i < s or i = s.

Otherwise, for all j , k with i ≤ j < k ≤ s, we make j �P k and go to
stage s + 1.

Clearly, there are no anti chains, and for any chain c0 ≤P c1 ≤P · · · we
have ti ≤ ci+1.



Universality of degree spectra

Recall that the degree spectrum of a countable structure S is the set of
Turing degrees of copies of S.

The study of degree spectra, and in particular, of which classes of
degrees can be realized as spectra, has been the subject of many
investigations in computable model theory.

Every structure S we consider below will be assumed to be in a
computable language, with computable signature, and automorphically
nontrivial. By Knight’s theorem, the degree spectrum of any such S is
closed upwards.



Universality of degree spectra

Recall that we showed above that c.e. and co-c.e. partial orders on ω do
not coincide. It is not difficult to show that the degree spectra of the
two classes of orderings do.

In fact, more is true:

Theorem (Cholak, Dzhafarov, Schweber, and Shore). For every
∅�-computable structure S on ω there exists a c.e. (and a co-c.e.) partial
order on ω with the same degree spectrum as S. Furthermore, there
exists such a partial order in every c.e. degree containing a copy of S.

So the degree spectra of c.e. partial orders are universal for
∅�-computable structures.
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Universality of degree spectra

For a nice consequence of the theorem, recall the following well-known
result:

Theorem (Slaman; Wehner). There exists a countable structure whose
degree spectrum consists precisely of the nonzero degrees.

Corollary (Cholak, Dzhafarov, Schweber, and Shore). Every nonzero c.e.
degree contains a c.e. (and a co-c.e.) partial order on ω whose degree
spectrum consists precisely of the nonzero degrees.

Proof. Fix any structure S satisfying the Slaman-Wehner theorem, and
let d > 0 be c.e. Then S has a copy in d, and this copy must have the
same degree spectrum as S. By the theorem, there is a c.e. partial order
≤P in d with the same degree spectrum as S.
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Proof of the theorem

Lemma 1 (Folklore). For every structure S with domain ω there exists a
graph R on ω such that R ≡T S and R and S have the same degree
spectrum.

Lemma 2 (Cholak, Dzhafarov, Schweber, and Shore). For every
∅�-computable graph R on ω there exists a c.e. (and a co-c.e.) partial
order ≤P on ω with the same degree spectrum. Furthermore, if R has
c.e. degree then deg(≤P) = deg(R).
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Proof of the theorem

Proof of Lemma 2. Let a ∅�-computable graph R be given.

Fix markers a, g, r0, and r1.

Partition the rest of ω as follows, with the following relations under ≤P :
a r0 r1

...

...

a0

a1

a2

g

...

...

gi ,j ,0 gi ,j ,1 gi ,j ,2 · · ·
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Proof of the theorem

Intuitively:

The ai represent the elements of the domain of a given copy of R.

The gi ,j ,k represent guesses at whether or not R holds of the pair
(ai , aj) in that copy.

r0 and r1 code these guesses, with r0 coding that R(ai , aj) does not
hold, and r1 that it does.

So, initially, we set gi ,j ,k ≤P ai , aj for all i < j and all k , and let no
additional relations hold.
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Proof of the theorem

Let Rs be a computable approximation to R such that
lims Rs(i , j) = R(i , j) for all i < j .

At stage s > 0,for every i < j ≤ s, let k ≤ s be largest such that
Rk(i , j) �= Rk−1(i , j), or 0 if there is no such number.

Say Rk(i , j) = v ∈ {0, 1}.

We make gi ,j ,k ≤P rv and gi ,j ,l ≤P r0, r1 for all l ≤ s not equal to k .

Thus, in the end, all but one gi ,j ,k are below both r0 and r1, and exactly
one is below just one of r0 and r1. The latter gi ,j ,k is below r0 if R(i , j)
does not hold, and below r1 otherwise.
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Proof of the theorem

ai aj

r0 r1

gi ,j ,0 gi ,j ,1 gi ,j ,2 gi ,j ,3 gi ,j ,4 · · ·

Any copy of R can compute a partial order of such order type, and from
any such order we can compute a copy of R.



Thank you for your attention.


