An Introduction to Constructive Reverse Mathematics

12th Asian Logic Conference

James Dent
with Douglas Bridges and Maarten McKubre-Jordens

December 9, 2011
What is constructive mathematics?

Existence means constructibility. Constructive proofs embody algorithms. We reject the law of excluded middle \(P \lor \neg P \).

Not a critique of classical mathematics but rather a programme of creating more contentful proofs.

Three main varieties: INT, RUSS, and BISH. BISH is the most fundamental of these.

James Dent
An Introduction to Constructive Reverse Mathematics
What is constructive mathematics?

- Existence means **constructibility**.
What is constructive mathematics?

- Existence means **constructibility**.
- Constructive proofs embody **algorithms**.
What is constructive mathematics?

- Existence means constructibility.
- Constructive proofs embody algorithms.
- We reject:

 - The law of excluded middle $P \lor \neg P$.
 - Double negation elimination $\neg \neg P \Rightarrow P$.

Not a critique of classical mathematics but rather a programme of creating more contentful proofs.

Three main varieties INT, RUSS, and BISH. BISH is the most fundamental of these.
What is constructive mathematics?

- Existence means constructibility.
- Constructive proofs embody algorithms.
- We reject:
 - The law of excluded middle: \(P \lor \neg P \)
What is constructive mathematics?

- Existence means constructibility.
- Constructive proofs embody algorithms.
- We reject:
 - The law of excluded middle: $P \lor \neg P$
 - Double negation elimination: $\neg \neg P \implies P$
What is constructive mathematics?

- Existence means **constructibility**.
- Constructive proofs embody **algorithms**.
- We reject:
 - The **law of excluded middle**: \(P \lor \neg P \)
 - Double negation elimination: \(\neg \neg P \implies P \)

- Not a critique of classical mathematics, but rather a programme of creating more contentful proofs.
What is constructive mathematics?

- Existence means \textit{constructibility}.
- Constructive proofs embody \textit{algorithms}.
- We reject:
 - The \textit{law of excluded middle}: $P \lor \neg P$
 - Double negation elimination: $\neg \neg P \implies P$
- Not a critique of classical mathematics, but rather a programme of creating more contentful proofs.
- Three main varieties: \texttt{INT}, \texttt{RUSS} and \texttt{BISH}.

What is constructive mathematics?

- Existence means constructibility.
- Constructive proofs embody algorithms.
- We reject:
 - The law of excluded middle: $P \lor \neg P$
 - Double negation elimination: $\neg\neg P \implies P$
- Not a critique of classical mathematics, but rather a programme of creating more contentful proofs.
- Three main varieties: INT, RUSS and BISH.
- BISH is the most fundamental of these.
We sort noni and semiiconstructive principles into equivalence classes over \mathbb{BISH}. This is suggestive of augmented "semiiconstructive" systems.

We concern ourselves with three main families of principles:

1. Omniscience principles
2. Fan theorems
3. sntiiSpecker properties
Constructive reverse mathematics

- We sort non- and semi-constructive principles into equivalence classes over BISH.
Constructive reverse mathematics

- We sort non- and semi-constructive principles into equivalence classes over BISH.
- This is suggestive of augmented “semi-constructive” systems.
Constructive reverse mathematics

- We sort non- and semi-constructive principles into equivalence classes over *BISH*.
- This is suggestive of augmented “semi-constructive” systems.
- We concern ourselves with three main families of principles:
Constructive reverse mathematics

- We sort non- and semi-constructive principles into equivalence classes over BISH.
- This is suggestive of augmented “semi-constructive” systems.
- We concern ourselves with three main families of principles:
 - Omniscience principles
Constructive reverse mathematics

- We sort non- and semi-constructive principles into equivalence classes over **BISH**.
- This is suggestive of augmented “semi-constructive” systems.
- We concern ourselves with three main families of principles:
 - Omniscience principles
 - Fan theorems
Constructive reverse mathematics

We sort non- and semi-constructive principles into equivalence classes over BISH.

This is suggestive of augmented “semi-constructive” systems.

We concern ourselves with three main families of principles:

- Omniscience principles
- Fan theorems
- Anti-Specker properties
Omniscience Principles
Omniscience Principles

- These represent some kind of infinite search.
Omniscience Principles

- These represent some kind of infinite search.
- **LPO**: For every binary sequence, either all the terms are equal to 0, or there exists a term equal to 1.
Omniscience Principles

- These represent some kind of infinite search.
- **LPO**: For every binary sequence, either all the terms are equal to 0, or there exists a term equal to 1.
- **MP**: For every binary sequence, if it is impossible for all the terms to be equal to 0, then there exists a term equal to 1.
Omniscience Principles

- These represent some kind of infinite search.
- **LPO:** For every binary sequence, either all the terms are equal to 0, or there exists a term equal to 1.
- **MP:** For every binary sequence, if it is impossible for all the terms to be equal to 0, then there exists a term equal to 1.
- **WLPO:** For every binary sequence, either all the terms are equal to 0, or it is impossible for all the terms to be equal to 0.
Omniscience Principles

- These represent some kind of infinite search.
- **LPO**: For every binary sequence, either all the terms are equal to 0, or there exists a term equal to 1.
- **MP**: For every binary sequence, if it is impossible for all the terms to be equal to 0, then there exists a term equal to 1.
- **WLPO**: For every binary sequence, either all the terms are equal to 0, or it is impossible for all the terms to be equal to 0.
- **LLPO**: For every binary sequence with at most one term equal to 1, either all the even terms are equal to 0, or all the odd terms are equal to 0.
Fan Theorems: Terminology
Fan Theorems: Terminology

- Fan theorems concern subsets of the complete binary fan, 2^\ast.
Fan Theorems: Terminology

- Fan theorems concern subsets of the **complete binary fan**, \(2^*\).
- A **path** in \(2^*\) is just a finite or infinite binary sequence.
Fan Theorems: Terminology

- Fan theorems concern subsets of the complete binary fan, 2^*.
- A path in 2^* is just a finite or infinite binary sequence.
- For a path α, we denote by $\beta = \bar{\alpha}_n$ the sequence consisting of the first n terms of α. We say that β is a restriction of α.

James Dent
An Introduction to Constructive Reverse Mathematics
Fan Theorems: Terminology

- Fan theorems concern subsets of the **complete binary fan**, 2^*.
- A **path** in 2^* is just a finite or infinite binary sequence.
- For a path α, we denote by $\beta = \bar{\alpha}_n$ the sequence consisting of the first n terms of α. We say that β is a **restriction** of α.
- A path α is **blocked** by $B \subseteq 2^*$ iff some restriction of α belongs to B.

Fan Theorems: Terminology
Fan Theorems: Terminology

- $B \subseteq 2^*$ is a **bar** iff each infinite path of 2^* is blocked by B.

$$\forall \alpha \in 2^{N^+} \exists n \in N \left[\overline{\alpha}n \in B \right]$$
Fan Theorems: Terminology

- $B \subseteq 2^*$ is a **bar** iff each infinite path of 2^* is blocked by B.

 $$(\forall \alpha \in 2^{N^+})(\exists n \in N) \left[\alpha n \in B \right]$$

- $B \subseteq 2^*$ is a **uniform bar** iff, furthermore, there exists a number N such that each finite path of length N is blocked by B.

 $$(\exists N \in N)(\forall u \in 2^*: |u| = N)(\exists n \leq N) \left[\bar{u}n \in B \right]$$
Fan Theorems

For example, the fan theorem for detachable bars states

Every detachable bar of \(2^* \) is uniform.

A subset \(B \subseteq 2^* \) is detachable if for each \(u \in 2^* \), either \(u \in B \) or \(u \notin B \).
Fan Theorems

- Brouwer’s **fan theorem for \(\mathcal{B} \)-bars** states:

 \textbf{FT}\(\mathcal{B} \): Every bar for \(2^* \) with the property \(\mathcal{B} \) is a uniform bar.
Fan Theorems

- Brouwer’s fan theorem for \(\neg \)-bars states:
 \[
 \mathbf{FT}_\neg: \text{ Every bar for } 2^* \text{ with the property } \neg \text{ is a uniform bar.}
 \]

- For example, the fan theorem for detachable bars:
 \[
 \mathbf{FT}_\Delta: \text{ Every detachable bar of } 2^* \text{ is uniform.}
 \]
Fan Theorems

- Brouwer’s **fan theorem for ?-bars** states:

 \(\text{FT}_{\forall}: \) Every bar for \(2^* \) with the property \(\forall \) is a uniform bar.

- For example, the **fan theorem for detachable bars**:

 \(\text{FT}_{\Delta}: \) Every detachable bar of \(2^* \) is uniform.

- A subset \(B \subseteq 2^* \) is **detachable** iff, for each \(u \in 2^* \), either \(u \in B \) or \(u \notin B \).
Omniscience Principles and Fan Theorems

LPO \rightarrow FT_{\text{Full}}

WLPO \rightarrow FT_{\Pi_1^0}

LLPO \rightarrow FT_{\Delta}

\text{James Dent}
An Introduction to Constructive Reverse Mathematics
LLPO \iff FT_{Δ}
LLPO $\iff FT_{\Delta}$

- Let B be a detachable bar.
Let B be a detachable bar.

We show that B is uniform by growing a maximal-length finite path x that is not blocked by B.
Let B be a detachable bar.

We show that B is uniform by growing a maximal-length finite path x that is not blocked by B.

We will make use of a predicate $\text{Bl}^k_d(n)$ to mean that the left ($d = 0$) or right ($d = 1$) half of the k^{th} split of the binary fan is uniformly blocked by B at depth n.

$$\text{Bl}^k_d(n) \equiv (\forall u: |u| = n \land \text{StartsWith}(u, \bar{k}\bar{d}))$$

$$\quad (\exists m \leq n)[\bar{u}m \in B]$$

$$\neg\text{Bl}^k_d(n) \equiv (\exists u: |u| = n \land \text{StartsWith}(u, \bar{k}\bar{d}))$$

$$\quad (\forall m \leq n)[\bar{u}m \notin B]$$
LLPO $\iff \text{FT}_\Delta$
\textbf{LLPO} \implies \textbf{FT}_\Delta

- Suppose we have found the first k terms of x.

James Dent
An Introduction to Constructive Reverse Mathematics
LLPO \[\iff \ FT_\Delta\]

- Suppose we have found the first k terms of x.
- Define a binary sequence (a_n) such that:

 Invoking LLPO we see that either all the even terms of (a_n) are zero in which case we set $x_{k+n} = n$ or all the odd terms of (a_n) are zero in which case we set $x_{k+n} = mj$.

\[\text{LLPO} \iff \text{FT}_\Delta \]

- Suppose we have found the first \(k \) terms of \(x \).
- Define a binary sequence \((a_n) \) such that:
 - \(a_n = 0 \) iff:
LLPO \implies FTΔ

- Suppose we have found the first k terms of x.
- Define a binary sequence (a_n) such that:
 - $a_n = 0$ iff:
 - a prior term of (a_n) is 1, or
LLPO \iff FT$_\Delta$

- Suppose we have found the first k terms of x.
- Define a binary sequence (a_n) such that:
 - $a_n = 0$ iff:
 - a prior term of (a_n) is 1, or
 - $(n$ is even $\land \neg BL_1^k(n)) \lor (n$ is odd $\land \neg BL_0^k(n))$
\[\text{LLPO} \implies \text{FT}_\Delta \]

- Suppose we have found the first \(k \) terms of \(x \).
- Define a binary sequence \((a_n) \) such that:
 - \(a_n = 0 \) iff:
 - a prior term of \((a_n) \) is 1, or
 - \(n \) is even \& \(\neg \text{Bl}_1^k(n) \) \(\lor \) \(n \) is odd \& \(\neg \text{Bl}_0^k(n) \)
 - \(a_n = 1 \) iff:
\textbf{LLPO} \implies \textbf{FT}_\Delta

- Suppose we have found the first k terms of x.
- Define a binary sequence (a_n) such that:

 - $a_n = 0$ iff:
 - a prior term of (a_n) is 1, or
 - $(n \text{ is even } \land \neg \text{Bl}_1^k(n)) \lor (n \text{ is odd } \land \neg \text{Bl}_0^k(n))$

 - $a_n = 1$ iff:
 - every prior term of (a_n) is 0, and
Suppose we have found the first k terms of x.

Define a binary sequence (a_n) such that:

- $a_n = 0$ iff:
 - a prior term of (a_n) is 1, or
 - $(n$ is even $\land \neg B1^k(n)) \lor (n$ is odd $\land \neg B1^k(n))$

- $a_n = 1$ iff:
 - every prior term of (a_n) is 0, and
 - $(n$ is even $\land B1^k(n)) \lor (n$ is odd $\land B1^k(n))$
Suppose we have found the first \(k \) terms of \(x \).

Define a binary sequence \((a_n) \) such that:

- \(a_n = 0 \) iff:
 - a prior term of \((a_n) \) is 1, or
 - \((n \text{ is even} \land \neg BL_1^k(n)) \lor (n \text{ is odd} \land \neg BL_0^k(n)) \)

- \(a_n = 1 \) iff:
 - every prior term of \((a_n) \) is 0, and
 - \((n \text{ is even} \land BL_1^k(n)) \lor (n \text{ is odd} \land BL_0^k(n)) \)

Invoking \textbf{LLPO}, we see that either:
Suppose we have found the first k terms of x. Define a binary sequence (a_n) such that:

- $a_n = 0$ iff:
 - a prior term of (a_n) is 1, or
 - $(n \text{ is even } \land \neg Bl_1^k(n)) \lor (n \text{ is odd } \land \neg Bl_0^k(n))$

- $a_n = 1$ iff:
 - every prior term of (a_n) is 0, and
 - $(n \text{ is even } \land Bl_1^k(n)) \lor (n \text{ is odd } \land Bl_0^k(n))$

Invoking LLPO, we see that either:

- all the even terms of (a_n) are zero, in which case we set $x_{k+1} = 1$, or
LLPO \iff FTΔ

- Suppose we have found the first k terms of x.
- Define a binary sequence (a_n) such that:

 - $a_n = 0$ iff:
 - a prior term of (a_n) is 1, or
 - $(n \text{ is even } \land \neg \text{Bl}_1^k(n)) \lor (n \text{ is odd } \land \neg \text{Bl}_0^k(n))$

 - $a_n = 1$ iff:
 - every prior term of (a_n) is 0, and
 - $(n \text{ is even } \land \text{Bl}_1^k(n)) \lor (n \text{ is odd } \land \text{Bl}_0^k(n))$

- Invoking LLPO, we see that either:
 - all the even terms of (a_n) are zero, in which case we set $x_{k+1} = 1$, or
 - all the odd terms of (a_n) are zero, in which case we set $x_{k+1} = 0$.

James Dent | An Introduction to Constructive Reverse Mathematics
Specker’s theorem is a fundamental result in recursive mathematics. Its variation upon it states:

There exists a sequence \((z_n)\) in \([m, n]\) that is eventually bounded away from each point of \([m, n]\).

That is, for each \(x \in [m, n]\), there exist \(N\) and \(\delta > m\) such that

\[|z_n - x| > \delta\]

for all \(n \geq N\).

We call such a sequence a Specker sequence.

The well-known anti-Specker property can be formulated as follows:

\(A[m, n]\) if \((z_n)\) is a sequence in \([m, n] \cup \{\theta\}\) that is eventually bounded away from each point of \([m, n]\), then \(z_n = \theta\) eventually.

\(A[m, n]\) is equivalent to a version of the fan theorem.
Anti-Specker Properties

- **Specker’s theorem** is a fundamental result in recursive mathematics. A variation upon it states:

 Speck: There exists a sequence \((z_n)\) in \([0, 1]\) that is eventually bounded away from each point of \([0, 1]\).
Anti-Specker Properties

▶ **Specker’s theorem** is a fundamental result in recursive mathematics. A variation upon it states:

Speck: There exists a sequence \((z_n)\) in \([0, 1]\) that is eventually bounded away from each point of \([0, 1]\).

▶ That is, for each \(x \in [0, 1]\), there exist \(N\) and \(\delta > 0\) such that

\[|z_n - x| > \delta\]

for all \(n \geq N\).
Anti-Specker Properties

- **Specker’s theorem** is a fundamental result in recursive mathematics. A variation upon it states:

 Speck: There exists a sequence \((z_n)\) in \([0, 1]\) that is eventually bounded away from each point of \([0, 1]\).

- That is, for each \(x \in [0, 1]\), there exist \(N\) and \(\delta > 0\) such that \(|z_n - x| > \delta\) for all \(n \geq N\).

- We call such a sequence a **Specker sequence**.
Anti-Specker Properties

- **Specker’s theorem** is a fundamental result in recursive mathematics. A variation upon it states:

 Speck: There exists a sequence \((z_n)\) in \([0, 1]\) that is eventually bounded away from each point of \([0, 1]\).

- That is, for each \(x \in [0, 1]\), there exist \(N\) and \(\delta > 0\) such that \(|z_n - x| > \delta\) for all \(n \geq N\).

- We call such a sequence a **Specker sequence**.

- The well-known **anti-Specker property** can be formulated as follows:

 \[\text{AS}_{[0,1]}: \text{If } (z_n) \text{ is a sequence in } [0, 1] \cup \{2\} \text{ that is eventually bounded away from each point of } [0, 1], \text{ then } z_n = 2 \text{ eventually.}\]
Anti-Specker Properties

- **Specker’s theorem** is a fundamental result in recursive mathematics. A variation upon it states:

 Speck: There exists a sequence \((z_n) \) in \([0, 1]\) that is eventually bounded away from each point of \([0, 1]\).

- That is, for each \(x \in [0, 1] \), there exist \(N \) and \(\delta > 0 \) such that \(|z_n - x| > \delta \) for all \(n \geq N \).

- We call such a sequence a **Specker sequence**.

- The well-known **anti-Specker property** can be formulated as follows:

 \[\text{AS}_{[0,1]} : \text{ If } (z_n) \text{ is a sequence in } [0, 1] \cup \{2\} \text{ that is eventually bounded away from each point of } [0, 1], \text{ then } z_n = 2 \text{ eventually.} \]

- \(\text{AS}_{[0,1]} \) is equivalent to a version of the fan theorem, \(\text{FT}_c \).
Anti-Specker Properties

The following weak anti-Specker properties are less well understood.

If (z_n) is a sequence in $\mathbb{N} \cup \{0\}$ that is eventually bounded away from each point of \mathbb{N}, then there exists k such that $z_k = 0$.

If (z_n) is a nondecreasing sequence in $\mathbb{N} \cup \{0\}$ that is eventually bounded away from each point of \mathbb{N}, then $z_n = 0$ eventually.

If (z_n) is a sequence in \mathbb{N}, then it is impossible for (z_n) to be eventually bounded away from each point of \mathbb{N}.

If (z_n) is a nondecreasing sequence in \mathbb{N}, then it is impossible for (z_n) to be eventually bounded away from each point of \mathbb{N}.
Anti-Specker Properties

- The following weak anti-Specker properties are less well understood:
Anti-Specker Properties

- The following **weak anti-Specker properties** are less well understood:

 - $\text{AS}_{[0,1]}^{\text{ltd}}$: If (z_n) is a sequence in $[0, 1] \cup \{2\}$ that is eventually bounded away from each point of $[0, 1]$, then there exists k such that $z_k = 2$.
Anti-Specker Properties

- The following weak anti-Specker properties are less well understood:

 - $\text{AS}_{[0,1]}^{\text{ltd}}$: If (z_n) is a sequence in $[0, 1] \cup \{2\}$ that is eventually bounded away from each point of $[0, 1]$, then there exists k such that $z_k = 2$.

 - $\text{AS}_{[0,1]}^\uparrow$: If (z_n) is a nondecreasing sequence in $[0, 1] \cup \{2\}$ that is eventually bounded away from each point of $[0, 1]$, then $z_n = 2$ eventually.
The following **weak anti-Specker properties** are less well understood:

- **$AS_{[0,1]}^{\text{ltd}}$**: If (z_n) is a sequence in $[0, 1] \cup \{2\}$ that is eventually bounded away from each point of $[0, 1]$, then there exists k such that $z_k = 2$.
- **$AS_{[0,1]}^\uparrow$**: If (z_n) is a **nondecreasing** sequence in $[0, 1] \cup \{2\}$ that is eventually bounded away from each point of $[0, 1]$, then $z_n = 2$ eventually.
- **$AS_{[0,1]}^\downarrow$**: If (z_n) is a sequence in $[0, 1]$, then it is impossible for (z_n) to be eventually bounded away from each point of $[0, 1]$.

James Dent | An Introduction to Constructive Reverse Mathematics
Anti-Specker Properties

- The following **weak anti-Specker properties** are less well understood:

 - **$\text{AS}_{[0,1]}^{\text{ltd}}$**: If (z_n) is a sequence in $[0, 1] \cup \{2\}$ that is eventually bounded away from each point of $[0, 1]$, then there exists k such that $z_k = 2$.
 - **$\text{AS}_{[0,1]}^{\uparrow}$**: If (z_n) is a **nondecreasing** sequence in $[0, 1] \cup \{2\}$ that is eventually bounded away from each point of $[0, 1]$, then $z_n = 2$ eventually.
 - **$\text{AS}_{[0,1]}^{\downarrow}$**: If (z_n) is a sequence in $[0, 1]$, then it is impossible for (z_n) to be eventually bounded away from each point of $[0, 1]$.
 - **$\text{AS}_{[0,1]}^{\uparrow \downarrow}$**: If (z_n) is a **nondecreasing** sequence in $[0, 1]$, then it is impossible for (z_n) to be eventually bounded away from each point of $[0, 1]$.
The Picture So Far

- FT_c
- AS_{0,1}
- AS_{0,1}^{\text{ld}}
- AS_{0,1}^{\uparrow}
- FT_{\Delta}
- FT_{c}^{\downarrow}
- AS_{0,1}^{\uparrow}
- +MP
- James Dent
- An Introduction to Constructive Reverse Mathematics
Where To Next?

James Dent
An Introduction to Constructive Reverse Mathematics
Where To Next?

$\text{AS}_{[0,1]} \xrightarrow{+?} \text{AS}_{\text{ltd}}^{[0,1]} \xrightarrow{ \text{+MP} } \text{AS}_{[0,1]}^{\uparrow} \xrightarrow{ \text{+MP} } \text{AS}_{[0,1]}^{\uparrow}$

What separates $\text{AS}_{[0,1]}$ and $\text{AS}_{\text{ltd}}^{[0,1]}$?

Need to somehow construct a nondecreasing Specker sequence from an arbitrary one.
Where To Next?

- $\text{AS}_{[0,1]}^{\text{ltd}} + \text{MP}$ is “close” to $\text{AS}_{[0,1]}$.

Diagram:

\[
\begin{array}{c}
\text{AS}_{[0,1]}^{\text{ltd}} \\
\uparrow \\
\text{AS}_{[0,1]}^{-} \\
\text{AS}_{[0,1]}^{\text{MP}} \\
\downarrow \\
\text{AS}_{[0,1]}^{\text{ltd}} \\
\downarrow \\
\text{AS}_{[0,1]}^{\uparrow} \\
\end{array}
\]
Where To Next?

- \(\text{AS}_{[0,1]} \) + MP is “close” to \(\text{AS}_{[0,1]} \).
- But MP doesn’t seem to be enough to close this gap.

\[\begin{array}{c}
\text{AS}_{[0,1]} \\
\downarrow \\
\text{AS}_{[0,1]} \\
\downarrow
\end{array} \quad \begin{array}{c}
\text{AS}_{[0,1]} \\
\downarrow \\
\text{AS}_{[0,1]} \\
\downarrow
\end{array} \quad \begin{array}{c}
\text{AS}_{[0,1]} \\
\downarrow \\
\text{AS}_{[0,1]} \\
\downarrow
\end{array} \]
Where To Next?

- \(\text{AS}_{[0,1]}^{\text{ltd}} + \text{MP} \) is “close” to \(\text{AS}_{[0,1]} \).
- But \(\text{MP} \) doesn’t seem to be enough to close this gap.

\[
\begin{align*}
\text{AS}_{[0,1]} & \quad \text{AS}_{[0,1]}^{\text{ltd}} \\
\text{AS}_{[0,1]}^{-} & \quad \text{AS}_{[0,1]}^{\uparrow} \\
\text{AS}_{[0,1]}^{\uparrow} & \quad \text{AS}_{[0,1]}^{\text{ltd}} \\
\end{align*}
\]

Need to somehow construct a nondecreasing Specker sequence from an arbitrary one.

James Dent

An Introduction to Constructive Reverse Mathematics
Where To Next?

- $\text{AS}_{[0,1]} + \text{MP}$ is “close” to $\text{AS}_{[0,1]}$.
- But MP doesn’t seem to be enough to close this gap.

- What separates $\text{AS}_{[0,1]}^\neg$ and $\text{AS}_{[0,1]}^\neg$, or $\text{AS}_{[0,1]}^\neg$ and $\text{AS}_{[0,1]}^\neg$?
Where To Next?

- $\text{AS}_{[0,1]}^{\text{ltd}} + \text{MP}$ is “close” to $\text{AS}_{[0,1]}$.
- But MP doesn’t seem to be enough to close this gap.

- What separates $\text{AS}_{[0,1]}^{\leftarrow}$ and $\text{AS}_{[0,1]}^{\leftarrow \rightarrow}$, or $\text{AS}_{[0,1]}^{\text{ltd}}$ and $\text{AS}_{[0,1]}^{\rightarrow}$?
- Need to somehow construct a nondecreasing Specker sequence from an arbitrary one.

James Dent
An Introduction to Constructive Reverse Mathematics
Where To Next?
An Introduction to Constructive Reverse Mathematics
Acknowledgements

Thanks to:

- Douglas Bridges
- Maarten McKubre-Jordens
- The University of Canterbury
Selected references

