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Chapter 1

The special relativity

Most of the special relativity, especially the foundations, can adequately be treated using
matrix algebra — this allows us to put off the use of so-called “index gymnastics” for a
little while. I’ll introduce “index gymnastics” when it becomes useful to do so.

Indeed, most of the special relativity can easily be handled even more simply using
high school algebra. This is both a blessing and a curse. Specifically, it means that any
random nutter capable of getting high school algebra wrong can and will develop his/her
own theory in counterpoint to special relativity — and will then insist on telling you all
about it at length.

Comment: The two appendices have been added to show you that there is still serious
research that can be done regarding special relativity — you will not be expected to an-
swer any questions based on the appendices. ♦

1.1 Minkowski spacetime

Mathematically, the special relativity is synonymous with the geometry of Minkowski
spacetime:

Definition 1
Minkowski spacetime is the pair (IR4, η), that is, IR4 equipped with a distinguished quadratic
form

η ≡


−1 0 0 0

0 +1 0 0
0 0 +1 0
0 0 0 +1

 = η−1

9
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Essentially everything in special relativity can be extracted from this definition, but with-
out a little physics background you will have no idea why this definition was chosen.

First, why IR4? Simply because to specify the location of an event you need to specify
both the place (requiring three real parameters x, y, z), and the time (requiring one real
parameter t). It is convenient (but not logically necessary) to use Cartesian coordinates
in this four-dimensional space+time.

You could, for instance, use spherical polar coordinates on space

(x, y, z)↔ (r, θ, φ)

but doing so does not gain you anything and makes life much messier. For instance, in
spherical polar coordinates (t, r, θ, φ) the distinguished quadratic form becomes

η ≡


−1 0 0 0
0 +1 0 0
0 0 +r2 0
0 0 0 +r2 sin2 θ


with

η−1 ≡


−1 0 0 0
0 +1 0 0
0 0 +r−2 0
0 0 0 +r−2 sin−2 θ

 6= η.

It is sobering to realise that at least some of the nut cases out there already lose contact
with reality at this stage of the game — simply by not being able to handle the coordinate
conversion from cartesian ⇐⇒ spherical polar coordinates.

Next we use the central experimental fact of special relativity:

Experimental fact: [I]
The speed of light (denoted c) is the same for all observers. ♦

Because I am teaching this course in a Mathematics department I will not go into a long
song and dance routine as to how good the experimental evidence is for this statement.
Suffice it to say that essentially all observational data is in its favour. This does not
mean the physics community has given up looking for violations of special relativity, but
we know that if such violations exist then they are definitely either extremely small or
hiding in small ill-explored regions of parameter space. A good recent summary of the
experimental situation (as of 2005) is:

• David Mattingly. Modern tests of Lorentz invariance.
Living Reviews in Relativity 8 (2005) 5.
http://relativity.livingreviews.org/Articles/lrr-2005-5/
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For the purposes of this course I will take special relativity as being an exact description
of empirical reality. (Looking at possible alternatives can wait until you understand the
“standard” point of view.)

Project:
For an example of what happens if you abandon the relativity principle, see for instance
appendix B. (The good news is that I do not expect you to do more than glance at this
appendix, I will not assign any assignment problems based on this appendix.) If you are
extremely bold you could try to extend this appendix in various ways. ♦

This (first) central experimental fact lets us do two things:

• Define x0 ≡ ct, so that Xµ ≡ (x0; ~x) = (ct, x, y, z), and all the components of Xµ

have the same dimensions. This is a convenience, and is not truly fundamental.
The key point here is merely that you have some observer-independent conversion
constant available that lets you convert time differences into distances...1,2

• Justify the definition and introduction of the quadratic form η.

To see how this justification for the introduction of η works, suppose we have two events
X1 and X2 such that a light ray passes from event 1 to event 2. Define the difference

∆X ≡ X2 −X1 ≡ (c∆t; ∆~x)T

so that ∆X is for convenience viewed as a column vector (in fact, a column 4-vector).
Now by definition, since a light ray passes from event 1 to event 2

|∆~x|
|∆t|

= c

But this means
|∆~x| = c |∆t|

which we can write in any of the equivalent forms

|∆~x| = |∆x0|

|∆~x|2 = (∆x0)2

−(∆x0)2 + |∆~x|2 = 0

1I could of course use a different conversion constant with the dimensions of velocity, such as the speed
of sound in air or water at STP [standard temperature and pressure]. Mathematically there is nothing
exactly “wrong” with this, it’s just physically awkward, and unhelpful. It’s simpler and nicer all round
to use the speed of light as your conversion constant.

2There are also some rather foul things around called VSL theories [variable speed of light]. Most of
the VSL theories are internally inconsistent on purely mathematical grounds. Don’t go there...
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Finally we define the quadratic form

η(∆X,∆X) ≡ (∆X)T η ∆X = 0.

That is, we have proved:

Lemma 1
If we define ∆X ≡ X2 − X1 then the mathematical statement that η(∆X,∆X) = 0 is
equivalent to the physical statement that a light ray can pass from 1→ 2 (or 2→ 1).

This is why the quadratic form η is useful — it characterizes the possible paths of light
rays in Minkowski spacetime.

If we pick a specific fixed point X1 and look at the set

C(X1) =
{
X2

∣∣ η(∆X,∆X) = 0
}
,

then C(X1) is a double cone with apex at X1 called the light-cone.

Exercise: [Trivial] Verify that

η−1 = η,

in the sense of η−1 being the inverse matrix for η. ♦

Exercise: Verify that C(X1) as defined above really is (both geometrically and topo-
logically) a double cone with apex at X1. ♦

1.2 The Lorentz and Poincare groups

Now what happens if two different observers compare notes? Galileo and Newton already
taught us that two different observers do not have to agree on the specific labelsX = (ct; ~x)
they give to a particular event, but there should be some rule for taking one observer’s
measurements and converting them to the other observer’s conventions...

Ultimately this is nothing more mysterious than doing a coordinate transformation...

Because we have adopted Cartesian coordinates there is one nice simplification, linearity.
If I put two identical objects next to each other, then their combined width is twice their
individual widths. If I now ask a second distinct observer what he/she sees, one should
still see two identical objects next to each other with a combined width that is twice their
individual widths. Similarly for two ticks on a clock; two ticks is twice as long as one
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Figure 1.1: Light cone in special relativity. Time runs vertically up the page.
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tick, and even if another observer disagrees on how long each individual tick takes, he/she
should at least agree that two ticks takes twice as long as one tick.

That is: when comparing two different observers the transformation should be linear:3

X ′ = L X + a

Here the symbol a corresponds to a shift in the zero of coordinates (a translation) and L
is some 4× 4 matrix. But L cannot be an arbitrary 4× 4 matrix.

1.2.1 Full Lorentz group:

Suppose events 1 and 2 are connected by a light ray, so that η(∆X,∆X) = 0. Now from
the point of view of the second observer the two events are separated by

∆X ′ = L ∆X

Now use the (first) central observational fact of special relativity: the speed of light is
the same for all observers. This means that observer 2 has to agree that in terms of his
measurements η(∆X ′,∆X ′) = 0. But this means η(L ∆X,L ∆X) = 0. So we have
shown:

Lemma 2
If L is the matrix representing the coordinate change that arises in special relativity when
two different observers compare notes, then

∀∆X (∆X)T η ∆X = 0 ⇒ (∆X)T [LT η L] ∆X = 0.

Exercise: One obvious solution to the above is

LT η L ∝ η

Prove that this is the only solution. ♦

If we take this exercise as proven (and this is an easy mathematical exercise, you can
prove it with simple algebra and no additional physics input) then for some ∞ 6= Ω 6= 0:

LT η L = Ω2 η.

3This linearity would of course fail if I were to be so foolish as to use spherical polar coordinates.
In that situation I would first have to convert the spherical polar coordinates to cartesian coordinates,
apply the linear transformation in cartesian coordinates, and then convert back to spherical polar coordi-
nates. There are good mathematical reasons why no-one in their right mind ever shows you the Lorentz
transformations in spherical polar coordinates.
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In fact Ω = 1, but this needs a little more input than just the light cone structure (which
is the only thing we have used so far).

Experimental fact: [II]
All observers are equivalent, there is no distinguished observer who is more special than
any of the others.
(This is often called the “principle of relativity”.) ♦

Warning: This means that all observers are “equivalent” in the sense that they are
locked up in a lab and are not allowed to look outside; no fair looking at the fixed stars
or the cosmic microwave background.4 We are using the fact that localized observers
(closed-box observers) cannot distinguish constant velocity motion from “at rest”; indeed
in special relativity there is no universal meaning to the phrase “at rest” one always has
to say “at rest relative to some particular observer” — this is where the phrase “relativity
theory” comes from. ♦

• Galileo’s principle of relativity was the observation that you could not find any
distinguished observer using purely the techniques of mechanics (kinematics, col-
lisions, etc...). In a smoothly operating elevator you often cannot tell if you are
moving until the acceleration/ deceleration stage. On a smooth ocean you cannot
tell you are moving until the ship either deliberately changes velocity or hits some
waves.

• Einstein’s principle of relativity was the empirical observation that this inability
to detect absolute motion applied also to electromagnetic phenomena (light, radio,
gamma rays). Indeed it is an experimental fact that this relativity principle applies
to all of known physics.

Warning: The usefulness of the “Einstein relativity principle” ultimately depends on
going out and making experimental measurements. The “principle” is simply a convenient
way of summarizing a large number of experimental facts. ♦

Warning: The “Einstein relativity principle” does not imply that there’s no such thing
as “absolute rest”; it does however imply that the hypothetical state of “absolute rest” is
not experimentally detectible by any means. In other language, the “Einstein relativity
principle” does not imply that the “aether” does not exist, it implies that the “aether” is
undetectable. It is then a physics judgment, based on Ockham’s razor, to dispense with
the aether as being physically irrelevant.

4This is another place where people often get confused, and where some of the nutters lose contact
with empirical reality.
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(Failure to recognize this elementary point is the source of at least one big branch of the
crackpot literature.) ♦

Warning: There is currently [2016] some serious and significant work going on regard-
ing the possible breakdown of Lorentz invariance at ultra-high energies (near the Planck
scale where quantum gravity is expected to come into play). Please do not start playing
with these rather speculative ideas until you have a good grasp of the standard theory. ♦

Now, because of this observed equivalence of observers, the quantity Ω appearing in the
equation

LT η L = Ω2 η

can at most be a function of the relative velocities of the two observers, and in particular
it is immediately clear that for zero relative velocity Ω(0) = 1. More generally, if Ω(v) is
not a constant, its maxima and minima could be used to define privileged observers, as
could any other special condition such as Ω = 1 or, for instance, Ω =

√
2. The only way

to prevent privileged observers is if Ω ≡ 1 for all relative velocities.

• For more details on this sort of argument, see the book “Axiomatic Relativity”
by Hans Reichenbach. In this course, it would be overkill for us to present a full
axiomatic derivation of special relativity — but I will point you to where to find
such a discussion if you are interested.

• Remember — in the “axiomatic approach” to special relativity the axioms are simply
a convenient distillation of a vast number of experimental facts.5

Exercise: Convince yourselves that in general

L(−v) = [L(v)]−1

What assumptions do you need to justify this? ♦

Exercise: Using L(−v) = [L(v)]−1 convince yourselves that

Ω(v) Ω(−v) = 1

♦
Exercise: Using the second experimental fact, convince yourselves that

Ω(v) = Ω(−v)

5And failure to recognize this elementary point underlies yet another branch of crackpot rantings.
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♦
Exercise: Combining the above, convince yourselves that

Ω(v) ≡ 1

♦
The result Ω ≡ 1 now reduces the constraint condition on the transformation matrices to

LT η L = η.

In fact:

Theorem 1
The set {L} of matrices corresponding to the coordinate change between two observers,
constrained only by the relativity principle and the constancy of the speed of light, is
completely characterized by

LT η L = η.

This condition defines a group, in fact

{L} = O(3, 1).

Here O(3, 1) denotes the group of pseudo-orthogonal matrices of signature −+ ++.
This is the definition of the (full) Lorentz group; the matrices L are called Lorentz trans-
formations.

Exercise: Explicitly verify that the group axioms are satisfied. ♦

Exercise: Explicitly verify that for any Lorentz transformation as defined above

det[L] = ±1.

♦
Exercise: Explicitly verify that for any Lorentz transformation as defined above

L−1 = η LT η.

♦
Historical note: If Einstein discovered special relativity, why are these transformations
called Lorentz transformations? Because Lorentz did in fact first discover them, and wrote
them down explicitly a couple of years before Einstein, but he did not realise what they
meant — for Lorentz they were a peculiar mathematical symmetry he discovered buried
deep in the Maxwell equations of electromagnetism. He did not understand many of the
important physical implications.
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Still, if Einstein had not come up with special relativity in 1905, there is widespread
agreement in the physics community that Lorentz, Poincare, and/or possibly FitzGerald
would have developed something very similar within a few years.

General relativity in contrast is much trickier. There is widespread agreement in the
physics community that if Einstein had not incrementally developed general relativity
over the period 1910-1915, then it would probably have taken many decades for someone
else to develop a relativistic theory of gravitation. ♦

It is often useful to restrict the Lorentz group. Note that, as defined so far, it includes
both parity transformations (mirror reflections along any axis) and time reversal:

x→ −x; L =


+1 0 0 0

0 −1 0 0
0 0 +1 0
0 0 0 +1



y → −y; L =


+1 0 0 0

0 +1 0 0
0 0 −1 0
0 0 0 +1



z → −z; L =


+1 0 0 0

0 +1 0 0
0 0 +1 0
0 0 0 −1



t→ −t; L =


−1 0 0 0

0 +1 0 0
0 0 +1 0
0 0 0 +1


Exercise: Explicitly verify that for any 4-vector N = (0,n), where n is any 3-space
unit vector satisfying ||n|| = 1, the matrix

L = I4 − 2N ⊗N

is a Lorentz transformation in the general sense described above.
How would you physically interpret these transformations? ♦

Exercise: Explicitly verify that the three matrices
+1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 +1

 ;


+1 0 0 0

0 +1 0 0
0 0 −1 0
0 0 0 −1

 ;


+1 0 0 0

0 −1 0 0
0 0 +1 0
0 0 0 −1

 ;
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are all Lorentz transformations in the general sense described above.
How would you physically interpret these transformations? ♦

1.2.2 Restricted Lorentz group:

If we are interested in two observers who who differ only in their state of motion then
we want L to depend only on relative velocities, and possibly some rotation angles, and
it had better be continuous as a function of relative velocity. Furthermore when the
relative velocity is zero we want L→ I [or at worst L→ (rotation)]. So the “interesting”
transformation matrices are those which are continuously connected to the identity, and
in particular satisfy det(L) = +1.

Theorem 2 The set {L} of matrices corresponding to the coordinate change between two
observers who differ only in their state of motion is completely characterized by

LT η L = η; L→ I as v → 0.

This condition defines a group, in fact

{L} = connected component of [SO(3, 1)].

SO(3, 1) denotes the group of simple pseudo-orthogonal matrices of signature − + ++.
(The word “simple” means everything has determinant 1.) It is quite common to suppress
the phrase “connected component of” and just talk about SO(3, 1).

1.2.3 Poincare group:

The Poincare group, as opposed to the Lorentz group, also includes the spacetime trans-
lations a.

P (X → X ′) : X ′ = L X + a

Mathematically the Poincare group is the so-called “semi-direct product” of the transla-
tion group with the Lorentz group.

Notation: (Only used in the mathematics community; extremely rare or non-existent in
the physics community.) The semi-direct product of a “base” group (H, ·) with a second
“transformation” group (G, ∗) is defined only when G and H are both groups and G has
a natural action on H: There must be a distinguished mapping from G × H → H. In
that case the semidirect product is typically denoted

H >C G
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or less commonly by
H : G

The semidirect product is itself a group, with elements (g, h) ∈ G × H, and with the
semi-direct group multiplication defined by

(g, h) ◦ (g′, h′) = (g ∗ g′, [g′ h] · h′)

♦
That is, in our particular case:

(Poincare group) = (Translation group) >C (Lorentz group)

Exercise: Define the Poincare transformations as the collection of ordered pairs P =
(L, a) where L is a Lorentz transformation and a is a 4-vector. We are to think of the
Poincare transformations as acting on spacetime position according to the rule

X → P (X) = LX + a

Identify a physically natural way of defining a “multiplication/ composition” operation
on Poincare transformations and verify that the Poincare transformations form a group
under this operation. ♦

Exercise: Now verify that your physically natural definition of the “multiplication/
composition” operation on Poincare transformations not only makes the Poincare trans-
formations a group — it also makes the Poincare transformations a semi-group in the
sense defined above. ♦

1.2.4 Explicit Lorentz transformations

Let us now deduce the explicit form of the Lorentz transformations. First, there is one
obvious subgroup of the Lorentz group, the rotation group. Indeed let R be any 3 × 3
orthogonal matrix and consider

L(R) = 1⊕R =

[
1 0
0 R

]
This is a 4 × 4 matrix which explicitly satisfies the defining condition of the Lorentz
group, but does not do anything to the time coordinate; it simply rotates x, y, z, among
themselves.6 (The two observers are stationary with respect to each other; rotated but
not in relative motion.)

6Remember that for any orthogonal transformation (rotation) we have

RTR = I; that is RT = R−1.
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This lets us simplify the situation where the two observers are taken to be in relative
motion: for any pair of observers we can without loss of generality take motion to be
along the x axis since we can always rotate the coordinate systems to make it so.

Define (1 + 1)-dimensional matrices:

η2 ≡
[
−1 0

0 +1

]
; I2 ≡

[
+1 0

0 +1

]
; η = η2 ⊕ I2

Now for motion in the x direction we do not expect the y and z directions to be affected
by the Lorentz transformation. That is we expect

L = L2 ⊕ I2

Exercise: Verify, from the Einstein relativity principle, that this is in fact what happens.
The easy part is to check that matrices of the form L2 ⊕ I2 are Lorentz transforms in
the (3 + 1) dimensional sense. It is more subtle to show that when you look at the two
spatial directions perpendicular to the direction of motion, the (3+1) dimensional Lorentz
transformations block diagonalize, and that on that perpendicular sub-block the (3 + 1)
dimensional Lorentz transformations reduce to the identity.

Hint: Do this in stages. First try to convince yourself that the Lorentz transformations
block diagonalize. Then use the Einstein relativity principle to argue that the transfor-
mations in directions perpendicular to the direction of motion must be trivial. ♦

Assuming the results of this exercise, the defining condition for Lorentz transformations
along the x axis now simplifies to7

LT2 η2 L2 = η2.

This implies
L−1

2 = η2 L
T
2 η2.

Since this is a 2× 2 matrix equation it is relatively easy to solve explicitly. Write

L2 ≡
[

+a +b
+c +d

]
Then using the fact det(L2) = +1, the explicit formula for L−1

2 coming from Cramer’s
rule for the matrix inverse is

L−1
2 =

[
+d −b
−c +a

]
7These “pure” Lorentz transformations, that by construction do not involve any rotation, are referred

to as “boosts”.
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Explicitly multiplying out the matrices η2 L
T
2 η2, we have:

η2 L
T
2 η2 =

[
+a −c
−b +d

]
Therefore [

+d −b
−c +a

]
=

[
+a −c
−b +d

]
So the four components are subject to three independent constraints, a = d, b = c, and
and det(L2) = +1. The general solution is

L2 ≡
1√

1− β2

[
1 −β
−β 1

]
At this stage β is some arbitrary real number, physical interpretation not yet specified.

Exercise: Verify this is a solution. Verify that it is the only solution. ♦

Exercise: Verify that L2(−β) = L2(β)−1. ♦

It is algebraically convenient to now define γ = 1/
√

1− β2. (As yet, the physical inter-
pretation of the parameters β and γ is unspecified.)

Exercise: Verify that any arbitrary Lorentz transformation can always be put in the
form

L = BR

where B is a pure boost (in some direction) and R is a pure rotation. ♦

Exercise: Verify that any arbitrary Lorentz transformation can always be put in the
form

L = R1


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

R2

Here R1 and R2 are pure rotation matrices, and the matrix in the middle is a pure boost
in the x direction. ♦

Then we can write the Lorentz transformations as

ct′ = γ (ct− βx);

x′ = γ (x− βct);
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y′ = y;

z′ = z.

Now let’s physically interpret β. Consider an object that according to the first observer
is at rest at the origin. Then its path through spacetime, its world-line, is

X(t) = (ct; 0, 0, 0).

As seen by the second observer its path is

X ′(t) = (ct′(t); ~x′(t)) = (γct;−γβct, 0, 0)

So according to the second observer this object is moving with velocity

v12 =
∆x′

∆t′
=
−γβct
γt

= −βc

That is: an object at rest with respect to the first observer is moving with velocity
v12 = −βc with respect to the second observer. Equivalently, the second observer is
moving with velocity v21 = +βc with respect to the first observer. This gives us the
physical interpretation

β = v/c.

γ =
1√

1− v2/c2

And now:
t′ = γ

(
t− vx

c2

)
;

x′ = γ (x− vt);

y′ = y;

z′ = z.

These are the Lorentz transformations (for a relative velocity v in the x direction).

Suppose we take the (formal and unphysical) limit c→∞, keeping v fixed. Then γ → 1
and

t′ → t;

x′ → x− vt;

y′ = y;

z′ = z.

These are Galileo’s transformations of Galilean relativity, the foundations of Newtonian
mechanics. For almost all everyday life situations this is quite sufficient.
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Exercise: Take the full Lorentz transformation and assume v � c, that is β = v/c� 1
so that γ = 1/

√
1− β2 = 1. Then the Lorentz transformations reduce to

t′ ≈ t− vx

c2
;

x′ ≈ x− vt;

y′ = y;

z′ = z.

These are not quite Galileo’s transformations. What is that vx/c2 term doing there?
Carefully analyze the situations under which that term can safely be neglected. (It’s not
as simple as just saying v � c.) ♦

Comment: So far I have done everything in “index-free” notation, emphasizing that
Lorentz transformations are simply matrices that act on vectors consisting of 4 real num-
bers. One reason for doing this is that no-one seriously doubts the internal consistency of
matrix algebra and vector spaces 8 — and in the approach I’ve adopted so far questions
of the internal consistency of special relativity are simply seen to be questions regarding
the internal consistency of matrix algebra. ♦

Warning: The question of whether or not a physical theory is internally consistent is a
mathematical one that can be settled by pure thought without any appeal to experiment.
In contrast, the question of whether or not the theory is an adequate representation of em-
pirical reality is a logically separate question that can only be answered by experiment. ♦

Warning: Most of the salient features of Einstein’s special relativity can adequately be
treated by using mathematical techniques from elementary high-school algebra. Unfortu-
nately this means that anyone capable of getting elementary high-school algebra wrong
thinks they’ve made a new and exciting fundamental discovery. ♦

Exercise: Now suppose we perform a Lorentz transformation in some arbitrary direction
n̂ (instead of along the x axis). That is ~v = v n̂ = β c n̂. Show that in this case:

t→ t′ = γ

(
t− ~v · ~x

c2

)
;

~x→ ~x′ = [I − n̂⊗ n̂] ~x+ γ(~x · n̂− vt) n̂.
8Well, hardly anyone seriously doubts the internal consistency of matrix algebra and vector spaces.

However, for any whacked out piece of psychotic drivel you can imagine there will exist at least one
proponent on the internet — the proof is left as an exercise for your favourite search engine.
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These are the general Lorentz transformations.

Warning: There are many different ways of getting to these general Lorentz transfor-
mations, of which I have only presented one. If you do not like the particular way I have
done things, feel free to rearrange the discussion to your taste — but you had better get
to the same equations at the end of it all. ♦

Exercise: Consider the “quasi-Lorentz transformations”

t→ t′ = Ω(v) γ

(
t− ~v · ~x

c2

)
;

~x→ ~x′ = Ω(v) {[I − n̂⊗ n̂] ~x+ γ(~x · n̂− vt) n̂} .
where Ω(v) is some function of v. Explicitly show that these “quasi-Lorentz transforma-
tions” preserve the speed of light, but that they do not respect the Einstein relativity
principle. ♦

1.3 Quaternions (an aside)

[Ignore this subsection for study purposes — it’s here only if you are interested.]

Quaternions are a generalization of the complex numbers that were discovered by Sir
William Rowan Hamilton (as in Hamiltonian mechanix) in the mid 1800’s, and are par-
ticularly useful in dealing with 3-dimensional rotations.

Quaternions are so nice mathematically that they look as though they should be useful
for special relativity as well... (But no one has ever made them quite work in any clean
and compelling manner.)

Complex numbers can always be written as a linear combination of two real numbers:

c = r0 + ir1;

where the complex unit “i” is uniquely defined by the multiplication rule:

i2 = −1.

In a similar way the quaternions are defined as linear combinations of four real num-
bers:

q = r0 + i r1 + j r2 + k r3,

where there are now three complex units “i”, “j”, and “k”, which are uniquely defined by
the multiplication rules:

i2 = j2 = k2 = −1;
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and:

i j = −j i = k.

Note that this multiplication law is not commutative.

Exercise: Prove:

1. The symmetric relationships:

i j = k; j k = i; k i = j.

2. The triple law:

i j k = −1.

3. Calculate the commutators [a, b] = ab− ba:

[i, j] = ???; [j,k] = ???; [k, i] = ???.

Do they remind you of anything?

4. Calculate the anti-commutators {a, b} = ab+ ba:

{i, j} = ???; {j,k} = ???; {k, i} = ???.

Interpret your results. ♦

Exercise:

1. Now define the quaternion-valued vector vector ~e = (i, j,k) so that ~e is a “vector”
containing the three elements “i”, “j”, and, “k”.

2. Also define ordinary three-vectors vectors ~a = (a1, a2, a3) and ~b = (b1, b2, b3), these
are simply vectors containing three real numbers.

3. By doing this we can write arbitrary quaternions “a” and “b” in the form:

a = a0 + i a1 + j a2 + k a3 = a0 + ~e · ~a;

b = b0 + i b1 + j b2 + k b3 = b0 + ~e ·~b;

where ~e · ~a and ~e ·~b are ordinary vector inner products (“dot products”).
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4. Calculate:
a2 = ???;

b2 = ???;

ab = ???;

ba = ???;

[a, b] = ???;

{a, b} = ???.

5. Hint: Verify
a b = (a0 b0 − ~a ·~b) + ~e · (a0

~b+ b0~a+ ~a×~b).

Interpret your results. ♦

All of the classic theory of rotations in 3 dimensions can easily and cleanly be rephrased in
terms of quaternions; and it seems that you should be able to re-phrase special relativity
in terms of quaternions as well.

Exercise: Define the “real part” of a quaternion in the obvious manner

Re(q) = Re(q0 + i q1 + j q2 + k q3) = q0.

Calculate:
Re(ab) = ???.

Interpret your result. ♦

Exercise: Do a little digging into the literature (and on the internet) to see what else
can be done with quaternions. ♦

Exercise: Try to understand why quaternions have become so important in modern
computer graphics.

(It is important here to distinguish abstract mathematical isomorphism from practical
questions of data storage and manipulation.) ♦

Research problem: Find a clean and useful way of representing all special relativity,
including the Lorentz transformations, in terms of these real-coefficient quaternions.

[This is nowhere near as easy as it first looks; that’s why I specified the qualifying ad-
jectives clean and useful. This is not a homework exercise but any ideas you have will be
looked at carefully and greatly encouraged.] ♦
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1.4 Bi-quaternions (an aside)

[Ignore this subsection for study purposes — it’s here only if you are interested.]

Another very useful concept is that of the bi-quaternion (complexified quaternion)

Z = z0 + i z1 + j z2 + k z3,

where the za (a = 0 . . . 3) are now complex numbers. (And so we really do need to
distinguish the i occurring inside each za from the quaternionic basis element i.) You
then need to distinguish at least three types of complex conjugate:

Z̄ = z̄0 + i z̄1 + j z̄2 + k z̄3;

Z∗ = z0 − i z1 − j z2 − k z3;

Z† = z̄0 − i z̄1 − j z̄2 − k z̄3.

These ideas go back (at least) to Ludwik Silberstein in 1912.

• Ludwik Silberstein (1912), “Quaternionic form of relativity”, Philosophy Magazine,
Series 6 23: 790–809.

• Ludwik Silberstein (1914), The Theory of Relativity. (Macmillan)

Exercise: Can you use this formalism to make the previous exercises for real-coefficient
quaternions simpler? ♦

Exercise: Show that there is an isomorphism

(ii, ij, ik) ∼ (σx, σy, σz)

between the “imaginary quaternions” and the Pauli sigma matrices. ♦

Project: Find a clean and useful way of representing Maxwell’s electromagnetism in
terms of bi-quaternions. ♦

Research problem: Find a clean and useful way of representing all special relativity,
including the Lorentz transformations, in terms of bi-quaternions.

[This is nowhere near as easy as it first looks; that’s why I specified the qualifying
adjectives clean and useful. Start by looking up “biquaternions” on the web. This is
not a homework exercise but any ideas you have will be looked at carefully and greatly
encouraged.] ♦
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1.5 Causal structure

Given any two events 1 and 2, we define ∆X ≡ X2 −X1.

By construction the quantity η(∆X,∆X) is a Lorentz invariant.

Definition 2
— If η(∆X,∆X) < 0 we say the two events are timelike separated.
— If η(∆X,∆X) = 0 we say the two events are lightlike separated (null separated).
— If η(∆X,∆X) > 0 we say the two events are spacelike separated.

• By definition, if the two events are timelike separated then c|∆t| > |∆~x|, so to travel
from one event to the other you would need to travel at a speed |∆~x|/|∆t| < c. This
means that normal subluminal particles (and so implicitly observers and/or their
entire laboratories) can successfully travel from one event to the other.

• By definition, if the two events are lightlike separated then c|∆t| = |∆~x|, so to
travel from one event to the other you would need to travel at exactly the speed
|∆~x|/|∆t| = c.
(So a photon could get from one event to the other, but no normal laboratory-based
observer could possibly do so.)

• By definition, if the two events are spacelike separated then c|∆t| < |∆~x|, so to travel
from one event to the other you would need to travel at a speed |∆~x|/|∆t| > c. That
is, you would have to travel faster than light to get from one event to the other.

Faster than light travel is (in general) strongly discouraged: The basic issue is one of
causality. In Newtonian physics if ∆t > 0 for one observer, it is positive for all observers
[in fact it is the same for all observers]. So everyone agrees on which of two events happens
first. If they are simultaneous, ∆t = 0, everyone agrees on this. This is the key feature of
causality in Newtonian physics that does not carry over to special relativity.

Suppose we have two events that are spacelike separated, then under a Lorentz trans-
formation

∆t′ = γ ∆t

{
1− v

c2

∆x

∆t

}
.

Define

vcritical ≡ c2

(
∆x

∆t

)−1

.

For spacelike separated events |∆x/∆t| > c so |vcritical| < c.

If we now pick v > vcritical (both velocities positive) or v < vcritical (both velocities
negative) then we can make ∆t change sign by performing a Lorentz transformation.
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That means that different observers will disagree on which event happens first, and so
there is no generic way of defining a “total time ordering” for spacelike separated events
in special relativity.

The best you can do is to define a pair of Lorentz invariant partial orderings :

Definition 3
An event X1 chronologically precedes an event X2, denoted X1 < X2 if both

η(∆X,∆X) < 0

and
∆t > 0.

Definition 4
An event X1 causally precedes an event X2, denoted X1 � X2 if both

η(∆X,∆X) ≤ 0

and
∆t ≥ 0.

Exercise:

• Look up the technical definition of a partial ordering.

• Verify that the definitions above (chronologically precedes, causally precedes) satisfy
the axioms of a partial ordering.

(You will need to distinguish a “strict partial order” from a “non-strict partial
order”.)

(Note that we have discussed/will discuss partial orders in Math464 [differential
geometry] when dealing with elementary notions of topology.)

• Verify that these definitions are Lorentz invariant, so that any two observers will
agree on chronological precedence and causal precedence.

♦

This is also why FTL (faster than light) is bad: If you could travel faster than light then
two points on your world-line would be spacelike separated, and two different observers
could disagree on the time order — this means that for an object travelling faster than light
there is no sensible way to define which direction along the world-lime is “older” and which
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is “younger”. Worse, without additional structure that goes far beyond that of special
relativity, (and is violently in conflict with the underlying ideas of special relativity), it is
then possible to set up closed causal loops (closed timelike curves or closed null curves)
so that you can send a message to yourself five minutes ago. This is very bad. In special
relativity the standard way out of this is to baldly say “you cannot travel faster than
light”.

(A more precise statement is that if you could travel faster than light you would need
to severely modify special relativity to prevent closed causal curves.)

In the context of general relativity Stephen Hawking has promulgated a related idea: his
“chronology protection conjecture” (which might be better thought of as a “chronology
protection principle”). This is an example of modifying the rules of classical general
relativity to make the theory better behaved under extreme conditions.

We can define the chronological (and causal) past (and future) of a point by using the
partial orderings of chronological precedence and causal precedence.

Definition 5 (Chronological past and future)

J−(X) = {Y : Y < X}; J+(X) = {Y : X < Y }.

Definition 6 (Causal past and future)

I−(X) = {Y : Y � X}; I+(X) = {Y : X � Y }.

Note that the usual topology one places on Minkowski spacetime is just the standard one
on IR4. You can define an alternative topology by defining so-called “causal diamonds”9

B(X, Y ) = J+(X) ∩ J−(Y )

and taking these to be a sub-basis for the new topology. The resulting variant topology is
called the Alexandrov topology10 (or “causal topology”) is not standard, but has been
used for instance by Roger Penrose in his booklet “Techniques of differential topology in
Relativity” as a way of studying causal structure in curved spacetime.

1.6 Lorentzian metric

You can use the distinguished quadratic form to define a Lorentzian metric.

9Strictly speaking, causal diamonds are diamond-shaped only in 1+1 dimensions. The terminology is
unfortunately standard.

10Unfortunately, usage is not entirely consistent, and the phrase “Alexandrov topology” is sometimes
also used in other situations as well.
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Definition 7 (Version 1)
Let

d(X, Y ) =
√
η([X − Y ], [X − Y ]) =

√
(X − Y )T η (X − Y ).

By construction this is Lorentz invariant. It is either real positive (spacelike separation),
zero (lightlike separation), or pure imaginary (timelike separation). In particular this
version of the Lorentzian metric is not positive semi-definite, and not even real. It does
not in general satisfy the triangle inequality. Nevertheless, it has enough similarities to
a metric that it is conventional to call it a Lorentzian metric (or pseudo-Riemannian
metric).

Warning: Usage is not entirely consistent here; even within the physics community. ♦

Definition 8 (Version 2)
Let

d(X, Y ) =
√
|η([X − Y ], [X − Y ])| =

√
| (X − Y )T η (X − Y ) |.

By construction this is Lorentz invariant. This version of the Lorentzian metric is always
real and positive semi-definite, though it does not in general satisfy the triangle inequality.
Nevertheless, it has enough similarities to a metric that it is conventional to call it a
Lorentzian metric (or pseudo-Riemannian metric).

Warning: Physicists generally drop the qualifier “Lorentzian” or “pseudo-Riemannian”
and just call this a metric. This has the potential to seriously confuse the mathematicians.
Unfortunately the usage is now firmly established and it would be well nigh impossible
to change it. ♦

The definitions most commonly in use in the mathematics community are slightly dif-
ferent. First a reminder:

Definition 9 (Metric — mathematics standard definition)
A metric function satisfies

d(x, y) ≥ 0.

d(x, y) = 0 ⇐⇒ x = y.

d(x, y) = d(y, x).

d(x, z) ≤ d(x, y) + d(y, z).

More tricky is the mathematicians’ definition of pseudo-metric and quasi-metic:
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Definition 10 (Pseudo-metric — mathematics standard definition)
A pseudo-metric (sometimes called a semi-metric) satisfies

d(x, y) ≥ 0.

d(x, x) = 0.

d(x, y) = d(y, x).

d(x, z) ≤ d(x, y) + d(y, z).

So a pseudo-metric is allowed to have distinct points that are separated by zero distance.
But this particular definition of pseudo-metric still enforces the triangle inequality.

Definition 11 (Quasi-metric — mathematics standard definition)
A quasi-metric satisfies

d(x, y) ≥ 0.

d(x, x) = 0.

d(x, y) = 0 = d(y, x)⇒ x = y

d(x, z) ≤ d(x, y) + d(y, z).

So a quasi-metric is allowed to be non-symmetric.

Exercise: By looking at equivalence classes under the zero distance condition, show
that we can always turn a pseudo-metric (in the mathematician’s sense above) into a
metric on the equivalence classes. ♦

Exercise: Show that a Lorentzian metric is not a pseudo-metric in the mathematician’s
sense above, because a Lorentzian metric does not in general satisfy the triangle inequal-
ity. (A single counter-example is sufficient; and you could simplify life by only considering
the t–x plane.) ♦

Exercise: Show that if we start with a quasi-metric d(x, y) and define

d̃(x, y) =
d(x, y) + d(y, x)

2

then d̃(x, y) is a metric. ♦

Now consider what happens if you pick some fixed observer, and restrict attention to
his/her constant time slice — then the Lorentzian metric really is a metric on that time
slice. To formalize this, consider:
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Definition 12 (Spacelike hyperplane)
A 3-dimensional plane in Minkowski space is said to be a spacelike hyperplane iff for any
two points X and Y on the plane the difference X − Y is spacelike.

Exercise: Show that on any spacelike hyperplane a Lorentzian metric in the full
Minkowski space induces a true metric on the spacelike hyperplane. ♦

Definition 13 (Timelike hyperplane)
A 3-dimensional plane in Minkowski space is said to be a timelike hyperplane iff there
exist at least two points X and Y on the plane such that the difference X −Y is timelike.

Exercise: Show that on any timelike hypersurface there will also be pairs of points that
are spacelike and lightlike separated. ♦

Definition 14 (Lightlike [null] hyperplane)
A 3-dimensional plane in Minkowski space is said to be a lightlike [null] hyperplane iff
there exist at least two points X and Y on the plane such that the difference X − Y is
lightlike, and if no two points on the plane are timelike separated.

Exercise: Show that on any lightlike hypersurface there will also be pairs of points that
are spacelike separated. ♦

Again recall that the usual topology on Minkowski spacetime is just the standard one
on IR4. You can define yet another topology by defining

B(X, δ) = {Y : |d(X, Y )| < δ}

and taking these to be the basis for a non-standard topology. The resulting variant of
the Alexandrov topology is again not standard, and physicists (almost) never use it.11

Exercise: Explore the relationship between this Alexandrov topology (defined in terms
of the Lorentzian metric) and the previously discussed Alexandrov topology (defined in
terms of the causal structure). ♦

Exercise: Suppose the three events X, Y , and Z are all pairwise spacelike separated
from each other. Prove that the triangle inequality is sometimes not satisfied. ♦

11Usage is not entirely consistent, and the phrase “Alexandrov topology” is sometimes also used in
other situations.
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Exercise: Suppose three events X, Y , and Z uniquely specify a two-dimensional space-
like plane. Show that these three events are all pairwise spacelike separated from each
other. Prove that the triangle inequality is satisfied. ♦

Exercise: Suppose three events X, Y , and Z uniquely specify a two-dimensional time-
like plane. What can you say about the triangle inequality? ♦

Exercise: Suppose three events X, Y , and Z uniquely specify a two-dimensional light-
like plane. What can you say about the triangle inequality? ♦

Exercise: Suppose the three events X, Y , and Z are all pairwise timelike separated
from each other. Prove that

|d(X, Y )| ≥ |d(X,Z)|+ |d(Z, Y )|.

That is, in this situation the triangle inequality is maximally violated. (Indeed we have
an anti-triangle inequality).

Physically interpret this result in terms of the “twin pseudo-paradox”. ♦

Exercise: Suppose X and Z are any two points in Minkowski space. Show that ∀ε > 0
it is possible to pick a point Y in such a way that

d(X, Y ) + d(Y, Z) < ε.

This implies that any two points X and Z in Minkowski space can be connected by an
arbitrarily short curve.

Note that this typically will not be a straight line. ♦

Now suppose we consider the “complex” version of the distance function,

d(X, Y ) =
√
η([X − Y ], [X − Y ]).

Now square both sides

d(X, Y )2 = η([X − Y ], [X − Y ]) = −c2∆t2 + ∆x2 + ∆y2 + ∆x2

This combination is by construction a Lorentz invariant and is called the “invariant in-
terval”. It is often written as

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆x2
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If we are considering “infinitesimal” displacements this is very commonly written as

ds2 = −c2dt2 + dx2 + dy2 + dz2

This “infinitesimal” form has the great advantage that it can naturally be adapted to the
curved spacetimes of the general relativity.

Definition 15 (Invariant interval)

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆x2

“Infinitesimal” version:
ds2 = −c2dt2 + dx2 + dy2 + dz2

1.7 Inner product

Now suppose you have somehow constructed two quantities A and B that transform the
same way as spacetime position. We call these quantities 4-vectors.

Definition 16 For any two 4-vectors A and B the inner product

η(A,B)

is a Lorentz invariant.

Exercise: Check this. ♦

Exercise: Find explicit coordinate formulae for

η(A,B) =???

in terms of the components of A and B. ♦

Definition 17 Two 4-vectors A and B are said to be orthogonal [4-orthogonal] if the
inner product

η(A,B) = 0.

Exercise: For a spacelike hypersurface, define the notion of a normal vector in terms of
a 4-vector that is 4-orthogonal to every displacement in the hypersurface. Show that this
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normal vector is timelike. ♦

Exercise: For a timelike hypersurface, define an appropriate notion of normal vector
and demonstrate that this normal vector is spacelike. ♦

Exercise: Show that every lightlike vector is orthogonal to itself. ♦

Exercise: Show that for a lightlike hypersurface the normal to the hypersurface lies in
the plane of the hypersurface. ♦

1.8 Index-based methods for SR

It is now useful to start introducing some index-notation.

Comment: You may at this stage find it useful to scan over parts of the Math
464/Math465 notes. Maybe the section on coordinate charts and atlases. ♦

Put covariant indices on the matrix η so that

ηab =


−1 0 0 0

0 +1 0 0
0 0 +1 0
0 0 0 +1


and put a contravariant index on the 4-position so that

Xa = (ct; ~x).

Then for consistency the Lorentz transformation should be written with one covariant
index and one contravariant index so that

Xa → X̄a = Lab X
b

and in particular

Lab =
∂X̄a

∂Xb
.

That is, the Lorentz transformation is simply a special case of the rules for changing
tensor components. The thing that is different is that the coordinates systems in question
are global, covering the entire manifold [Minkowski space], and that the matrices Lab are
carefully constructed to be constant position-independent matrices.
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The theorem LTηL = η is now rephrased as

Lab L
c
d ηac = ηbd

That is: special relativity can simply be viewed as the study of those coordinate trans-
formations that leave the special distinguished tensor ηab invariant.

The inner product of two 4-vectors η(A,B) is now rephrased as

η(A,B) = ηab A
a Bb = −A0 B0 +

3∑
i=1

Ai Bi.

The distance between 4-positions X and Y is now

d(X, Y ) =
√
|ηab [X − Y ]a [X − Y ]b| =

√
|−c2∆t2 + ∆x2|.

1.9 Relativistic combination of velocities

Exercise: [Relative speed] Suppose we have two different observers, of 4-velocities

V a
1 = γ1(1, vi1) and V a

2 = γ2(1; vi2).

Show that their relative speed (the speed of one observer as seen by the other) is

v =

√
(~v1 − ~v2)2 − (~v1 × ~v2)2/c2

1− ~v1 · ~v2/c2

Hint: Calculate the invariant quantity η(V1, V2) = ηabV
a

1 V
b

2 in two different suitably
chosen reference frames. ♦

Exercise: [Thomas precession/Wigner rotation]

Read and understand appendix A on the relativistic combination of velocities, Thomas
precession, and Wigner rotation. This is an example of non-trivial “advanced” special
relativity. ♦

1.10 Relativistic kinematics

For any timelike world-line, not necessarily a straight line, we can define “proper time”
along the world-line as

cτ =

∫ √
−η(dX, dX) =

∫ √
−η
(

dX

dλ
,
dX

dλ

)
dλ
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For an object at rest this conveniently becomes τ → t, but the above is completely general.

Exercise: Check that in index based language this is equivalent to

cτ =

∫ √
−ηab

dXa

dλ

dXb

dλ
dλ

Try to interpret this result in terms of differential geometry. ♦

Now parameterize the world line X(τ) by this invariant proper time τ , and define the
4-velocity by

V (τ) =
dX

dτ

By construction this is a 4-vector that transforms the same way as X(τ) itself. Note that
by definition

η(V, V ) = −c2

Note that at some stage I will get tired of explicitly writing c and will adopt units of
measure so that c = 1; for the time being I will try to keep c, but don’t be suprised if it
suddenly vanishes...

Now suppose there is some quantity, denoted m0 which we will call the mass (also
called invariant mass, proper mass, rest mass) and for massive objects (m0 6= 0) define
the 4-momentum

P = m0 V = m0
dX

dτ
Then by the chain rule

P = m0
dt

dτ

(
c;

d~x

dt

)
Now let’s define d~x/dt = β c n̂, in which case we can calculate

dt

dτ
= γ =

1√
1− β2

and so
P = m0 c γ (1; β n̂) .

Define

P =

(
E

c
; ~p

)
then as β → 0

~p = m0c γβ n̂→ m0~v,

and, [using the binomial expansion γ = (1− β2)−1/2 = 1 + 1
2
β2 +O(β4)],

E = m0c
2γ → m0c

2 +
1

2
m0v

2 + . . .
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So ~p has the right limiting behaviour to be thought of as 3-momentum, while E (apart
from a constant offset m0c

2) has the right limiting behaviour to be thought of as kinetic
energy. Since this constant offset is there even if the object is at rest it is often referred
to as the “rest energy”. We now take these definitions as primary and define the special
relativistic energy-momentum by

P =

(
E

c
; ~p

)
; E = m0c

2 γ; ~p = m0cγβ n̂.

Note that
η(P, P ) = −m2

0c
2,

which is often written as
E2 − p2c2 = m2

0c
4.

Exercise: Verify that to fourth order in v

E = m0c
2γ → m0c

2 +
1

2
m0v

2 +
3

8

m0v
4

c2
+O(v6).

♦

Exercise: Perform a full Taylor series expansion

E(v) =
∞∑
n=0

an v
n

Evaluate all of the coefficients an. What is the radius of convergence of this Taylor series?
Interpret this result physically — where is the closest singularity in the complex plane? ♦

Exercise: Verify that

lim
β→1

{
c p(β)

E(β)

}
= 1.

♦

Exercise: Verify that

v(E) = c

√
1− m2

0 c
4

E2
.

♦

Exercise: Verify that

v(p) = c
p√

m2
0 c

2 + p2
.
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♦

Exercise: Relativistic Kinematics:

• If P = (E/c, p) is a lightlike vector, what can we say about the speed of the particle?

• If P = (E/c, p) is a timelike vector, what can we say about the speed of the particle?

• If P = (E/c, p) is a spacelike vector, what can we say about the speed of the particle?

• Suppose we have two particles with four-momentum P1 and P2:

P1 = (E1/c, p1); P2 = (E2/c, p2).

Calculate:

η(P1, P2) = P T
1 η P2 = ???

Physically interpret this Lorentz invariant in two separate ways, first by going to
the rest frame of particle 1; and second by going to the rest frame of particle 2.

• Prove that if P1 is timelike and P2 is timelike, then P1 + P2 is timelike.

(This is the situation corresponding to adding the four-momenta of two slower-than-
light particles.)

• Prove that if P1 is timelike or lightlike (null), and P2 is timelike or lightlike (null),
then P1 + P2 is timelike or lightlike (null).

(This is the situation corresponding to the four-momenta of two physical particles,
either slower than light or travelling at exactly the speed of light, being added.)

• If P1 + P2 is lightlike, and P1 and P2 are both individually physical (timelike or
lightlike) then this can only happen if there is a very special relationship between
P1 and P2.

What is this relationship? Prove it. Interpret the result.

• Prove that the photon cannot decay into two slower-than-light particles.

(That is, use conservation of 4-momentum, plus the fact that the invariant mass m0

of the photon is zero, to place limits on the outgoing 4-momenta of any hypothetical
decay process.)

♦
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1.11 Relativistic dynamics

We now define the notion of 4-force, and relate it to the rate of change of the 4-momentum
by:

F =
dP

dτ
= m0

dV

dτ
+

dm0

dτ
V

Then

η(F, V ) = m0 η

(
dV

dτ
, V

)
+

dm0

dτ
η(V, V ).

Therefore

η(F, V ) =
1

2
m0

d

dτ
η(V, V ) +

dm0

dτ
η(V, V ),

so that

η(F, V ) = −1

2
m0

d

dτ
c2 − dm0

dτ
c2.

But c is a constant! Therefore, finally,

η(F, V ) = −dm0

dτ
c2 = −d(m0c

2)

dτ
.

So the inner product between 4-force and 4-velocity governs the rate of change of the
invariant mass:

dm0

dτ
= − 1

c2
η(F, V ) = − 1

c2
F a Va.

Note that the invariant mass of a composite object is allowed to change as energy flows
into and out of the system.

Examples: Absorbing heat will make a body heavier. Conversely, when nuclei emit
gamma rays they lose a little bit of mass. At a much more prosaic level, the invariant
mass of a rocket definitely changes as it burns fuel and exhaust gasses are forced out the
nozzle.

Example: In contrast, the invariant mass of individual elementary particles [such as
electrons protons or neutrons] does not change under any applied forces.

We can now rearrange the force equation to yield

m0
dV

dτ
= F − dm0

dτ
V = F +

η(F, V )V

c2

That is

m0
dV

dτ
= F +

η(F, V )V

c2
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Exercise: Show that in component language this can be written as

m0
dV a

dτ
=

[
δab +

V a Vb
c2

]
F b

So that (mass)×(4-acceleration) = (the projection of the 4-force onto the three-plane per-
pendicular to the 4-velocity). ♦

Exercise: Show that

P a
b =

[
δab +

V a Vb
c2

]
is a projection operator. That is, verify that

P a
b P

b
c = P a

c.

♦
Now pick a particular reference frame of fixed 4-velocity V0. This is the 4-velocity of some
specific “observer”, not the 4-velocity of the particle. Then:

−η(P, V0) = “Energy of the particle in the rest frame of V0” = E(P, V0)

So
dE(P, V0)

dτ
= −η

(
dP

dτ
, V0

)
= −η(F, V0).

That is η(F, V0) is the power dumped into the particle (rate of change of energy per unit
of particle proper time) as seen by the observer with 4-velocity V0 .

1.12 Electromagnetic fields and forces

One of the most ubiquitous of forces is the electromagnetic force on a charged particle.
In ordinary Newtonian mechanics we have the Lorentz force law

d~p

dt
= ~F = q

[
~E + ~v × ~B/c

]
so that the force depends on the electric field, the magnetic field, and the 3-velocity. Since
the whole point of SR was to account for the peculiar properties of electromagnetism, and
in particular the observed fact that the speed of light is a universal observer-independent
constant, we had better be able to take this Newtonian result and develop a clean SR
generalization.

[Note that with this convention electric and magnetic fields have the same physical
dimension and are measured in the same units — in SI one typically uses Volts/metre.]
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Table of selected elementary particle invariant rest masses.

Particle Mass

Photon < 1× 10−24 MeV
W± 80.399± 0.023 GeV
Z0 91.1876± 0.0021 GeV

Electron 0.510998910± 0.000000013 MeV
Muon 105.658367± 0.000004 MeV
Tau 1776.82± 0.16 MeV

Proton 938.272013± 0.000023 MeV
Neutron 939.565346± 0.000023 MeV

Table 1.1: Some key particle masses. (Source: pdg.lbl.gov as of 5 July 2011.)

Note that neutrino masses are somewhat ambiguous due to neutrino mixing, and that
quark and gluon masses are somewhat ambiguous due to quantum-chromodyamic

(QCD) confinement. I have only listed those elementary particles for which the invariant
rest mass is well-defined in the sense of the existence of suitable asymptotic states.

Now we have already seen that in SR we can use the “proper time” to parameterize
the world-line of a particle and so define 4-velocity and 4-acceleration [flat space at this
stage]

V a =
dXa(τ)

dτ
; Aa =

dV a(τ)

dτ

Experimental fact: All known elementary particles have well defined rest masses. ♦

In particular when we fire an electron down a cathode ray tube, and measure its energy
and momentum, we find that

E2 − p2c2 = m2
0c

4

always give the same value of m0 for all electrons regardless of what sort of electric or
magnetic fields we have used to accelerate the electron (or proton, or whatever elementary
particle we choose to play with). This tells us that when subject to electromagnetic forces

η(Fem, V ) = 0.

That is, the electromagnetic force is always 4-orthogonal to the 4-velocity. If this were
not the case then all those lovely tables of “rest mass” for various elementary particles
simply would not exist.

The 4-orthogonality of the 4-force and 4-velocity is not enough to specify the force law
completely, but does suggest that it might be worth looking at what we could do by using
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a 2-form F ab. Consider a force law of the form:

F a
anzatz = q F ab Vb

then automatically F a
anzatz Va = η(Fansatz, V ) = 0, so that such a force law leaves the rest

mass unchanging.

Warning: You will need to distinguish F a the 4-force, from F ab the field strength, by
context. The notation is unfortunately standard. ♦

Furthermore this ansatz above would imply

dP a

dτ
= q F ab dXa

dτ

so that in terms of laboratory time derivatives (rather than proper-time derivatives)

dP a

dt
= q F ab dXa

dt
.

Thus
dP 0

dt
= q F 0i dX i

dt

and
dP i

dt
= q

[
−F i0 c+ F ij dXj

dt

]
Now suppose we identify

F i0 ↔ −Ei/c; F ij ↔ +εijkBk/c

Then the second of these equations is simply the Lorentz force law,

dP i

dt
= q

[
Ei + (~v × ~B)i

]
,

while the first is the statement that

(power) =
d(energy)

dt
= q ~E · ~v

Therefore we have identified a useful ansatz for the electromagnetic force:

F a
em = q F ab Vb; F ab =

1

c

 0 + ~E

− ~E ∗B


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Here ∗B is the 3-dimensional Hodge dual in exactly the sense some of you may have seen
in Math 464. This force law gives you three things: an unchanging rest mass, the Lorentz
force law, and the energy equation. It also gives you a natural way of looking at electric
and magnetic fields as different parts of a 2-form; the electric field is the (space)-(time)
portion while the magnetic field is simply the (space)-(space) portion.

Exercise: [Trivial] Interpret the (time)-(time) part of the 2-form F ab. What is F 00? ♦

1.12.1 Lorentz transformations for electromagnetic fields

Another side-effect of this discussion is that we can now see how electric and magnetic
fields transform under Lorentz transformations. Since Xa → X̄a = Lab X

b it is clear that
for a T 2

0 Cartesian tensor such as F ab we must have

F ab → F̄ ab = Lac L
b
d F

cd

In matrix notation

X → X̄ = L X; F → F̄ = L F LT .

Transformation along the x direction

Let’s be explicit about this. For a Lorentz transformation in the x direction we can write

Lab =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


We can also write

F cd =
1

c


0 Ex Ey Ez
−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0


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Now block multiply12
0 Ēx Ēy Ēz
−Ēx 0 B̄z −B̄y

−Ēy −B̄z 0 B̄x

−Ēz B̄y −B̄x 0



=


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




0 Ex Ey Ez
−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


Looking at the four 2× 2 blocks this implies:[

0 Ēx
−Ēx 0

]
=

[
γ −γβ
−γβ γ

] [
0 Ex
−Ex 0

] [
γ −γβ
−γβ γ

]
and [

Ēy Ēz
B̄z −B̄y

]
=

[
γ −γβ
−γβ γ

] [
Ey Ez
Bz −By

]
and [

0 B̄x

−B̄x 0

]
=

[
0 Bx

−Bx 0

]
It is easy to verify that[

0 +1
−1 0

]
=

[
γ −γβ
−γβ γ

] [
0 +1
−1 0

] [
γ −γβ
−γβ γ

]
To check this you could try brute force matrix multiplication, or some tricks with sym-
metries.

Therefore:

• By the first of these 2× 2 matrix equations we have

Ēx = Ex

12Suppose we take a big (rectangular) matrix and break it apart into smaller (rectangular) blocks;
these are called “partitioned matrices”. Then you should easily be able to convince yourself that matrix
multiplication satisfies the “block multiplication” rule:[

A B
C D

] [
E F
G H

]
=
[
AE +BC AF +BH
CE +DG CF +DH

]
If necessary, look up a few reference books. This is simply a standard trick of linear algebra. Note that
the order in which the matrix multiplications is carried out is important.
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• Furthermore, by the third of these 2× 2 matrix equations we have

B̄x = Bx

• That is, the values of the electric and magnetic fields in the direction of motion are
unaffected by the Lorentz transformations.

• In the directions perpendicular to the direction of motion we have (by the second
of these 2× 2 matrix equations)[

Ēy Ēz
B̄z −B̄y

]
= γ

[
Ey − βBz Ez + βBy

Bz − βEy −By − βEz

]
That is: (

Ēy, Ēz
)

= γ
(
Ey − βBz, Ez + βBy

)
;(

B̄z, B̄y

)
= γ

(
Bz − βEy, By + βEz

)
.

This (in principle) completely specifies the Lorentz transformation properties of the elec-
tromagnetic field.

Summary:

For Lorentz transformations in the x direction

Ēx = Ex

B̄x = Bx(
Ēy, Ēz

)
= γ

(
Ey − βBz, Ez + βBy

)
;(

B̄z, B̄y

)
= γ

(
Bz − βEy, By + βEz

)
.

To get a deeper grasp on things it’s advisable to look at what happens as you Lorentz
transform along a general direction.

Exercise: Show that[
γ −γβ
−γβ γ

] [
0 +1
−1 0

] [
γ −γβ
−γβ γ

]
∝
[

0 +1
−1 0

]
From this deduce[

γ −γβ
−γβ γ

] [
0 +1
−1 0

] [
γ −γβ
−γβ γ

]
=

{
det

[
γ −γβ
−γβ γ

]}2 [
0 +1
−1 0

]
Finally, from this deduce[

γ −γβ
−γβ γ

] [
0 +1
−1 0

] [
γ −γβ
−γβ γ

]
=

[
0 +1
−1 0

]
without resorting to brute force matrix multiplication. ♦



49

Transformation along a general direction

This is somewhat tedious and slightly painful, but is something you should see at least
once in your lives, just to be sure it really works.

Now let’s consider a general direction. Recall that for a Lorentz transformation in the
x direction we can write

Lab =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


So in a general direction β̂ we have

Lab =

 γ −γβ β̂j

− γβ β̂i δij + (γ − 1)β̂iβ̂j

 =

 γ −γβi

− γβj Lij


Therefore:

Ei → Ēi = cF̄ 0i = c L0
c L

i
d F

cd

= c
{
L0

0 L
i
0 F

00 + L0
0 L

i
j F

0j + L0
j L

i
0 F

j0 + L0
j L

i
k F

jk
}

= 0 + γ Lij E
j − γ2βi(~β ~E) + γ Lik (∗B)jk βj

This is enough to tell you that electric and magnetic fields get mixed together under a
Lorentz transformation. To proceed we first use the fact that

γ Lij − γ2β2 β̂iβ̂j = γδij + (γ2 − γ − γ2β2) β̂iβ̂j = γ
(
δij − β̂iβ̂j

)
+ β̂iβ̂j

and secondly use the fact that

(∗B)jk =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

 ;

to then write

βj (∗B)jk = −(Byβz −Bzβy, Bzβx −Bxβz, Bxβy −Byβx) = (~β × ~B)k.

We then obtain

Ei → Ēi = γ Lij E
j − γ2βi(~β ~E) + γ Lik (~β × ~B)k

which further simplifies to

Ei → Ēi = γ (δij − β̂iβ̂j) Ej + β̂iβ̂j E
j + γ (~β × ~B)i



50

or (finally)

Ei → Ēi = β̂iβ̂j E
j + γ

{
(δij − β̂iβ̂j) Ej + (~β × ~B)i

}
.

This is the general formula for the transformation of an electric field from one observer
to another in SR. Note that the component of the electric field in the direction of the
transformation is unaffected.

You can find the same result, deduced in various different ways, in Jackson “Electrody-
namics”, or indeed in any serious textbook on electromagnetism.

• John David Jackson, Classical Electrodynamics, (Wiley, New York, 1975).

We can find the transformation law for a magnetic field in a completely analogous
manner. (It’s just that now we will have a lot of Hodge star operations and Levi-Civita
tensors floating around in the middle of the computation — and no this is not the way
that Jackson does it.) Start with

Bi → B̄i =
c

2
εijk F̄ jk =

c

2
εijk Ljc L

l
d F

cd

=
c

2
εijk
{
Lj0 L

k
l F

0l + Lj l L
k

0 F
l0 + Lj l L

k
m F lm

}
=

c

2
εijk
{

[Lj0 L
k
l − Lj l Lk0] El/c+ Lj l L

k
m F lm

}
= εijk

{
Lj0 L

k
l E

l
}

+
c

2
εijk Lj l L

k
m F lm

= εijk
{
−γβj Lkl El

}
+
c

2
εijk Lj l L

k
m F lm

= −γ(~β × [L•• ~E])i +
c

2
εijk Lj l L

k
m F lm

= −γ(~β × ~E)i +
c

2
εijk Lj l L

k
m F lm

Now let’s concentrate on that last term:

c

2
εijk Lj l L

k
l F

lm =
1

2
εijk Lj l L

k
m εlmnBn

=

[
1

2
εijk (δj l − [γ − 1]β̂jβ̂l) (δkm − [γ − 1]β̂kβ̂m)εlmn

]
Bn

=

[
1

2
εijk

(
δj l δ

k
m − [γ − 1]

(
β̂jβ̂l δ

k
m + β̂kβ̂m δj l

))
εlmn

]
Bn

=

[
1

2
εijk εjkn + [γ − 1]

(
εijk β̂jβ̂l ε

lkn
)]

Bn

=
[
δin + [γ − 1][δin − β̂iβ̂n]

]
Bn

=
[
γ[δin − β̂iβ̂n] + β̂iβ̂n

]
Bn
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So finally

Bi → B̄i = β̂iβ̂jB
j + γ

{
[δij − β̂iβ̂j]Bj − (~β × ~E)i

}
Note that this is very similar to what happens for the electric field, up to a strategically
placed minus sign. In particular, the component of the magnetic field in the direction of
motion is not affected by a Lorentz transformation.

Comment: This is actually a rather general effect, it is extremely common for a SR
formula for magnetic fields to be almost identical to that for electric fields up to strategic
minus signs. (You can think of this as a generalization of Lenz’ law.) ♦

Collecting the two results we have for a Lorentz transformation along a general direction:

Ei → Ēi = β̂iβ̂j E
j + γ

{
(δij − β̂iβ̂j) Ej + (~β × ~B)i

}
Bi → B̄i = β̂iβ̂j B

j + γ
{

(δij − β̂iβ̂j)Bj − (~β × ~E)i
}

The final result is not too bad — though the derivation was tedious.

1.12.2 Some exercises:

Exercise: For once I’ve gone to the trouble of showing you what happens if we Lorentz
transform in a general (arbitrary) direction. Now let’s simplify life. Show that if we
Lorentz transform in the x direction, so that βi = (β, 0, 0), that we regain the much
simpler looking results

Ēx = Ex; Ēy = γ(Ey − βBz); Ēz = γ(Ez + βBy);

B̄x = Bx; B̄y = γ(By + βEz); B̄z = γ(Bz − βEy).

Verify that this indeed reproduces the results of our computation based on block mul-
tiplication (where we reduced a 4×4 matrix equation to several 2×2 matrix equations). ♦

Exercise: Find the Lorentz transformation properties for the two specific quantities
| ~E|2 − | ~B|2 and ~E · ~B. That is evaluate

| ~E|2 − | ~B|2 → | ~̄E|2 − | ~̄B|2 = ???

and
~E · ~B → ~̄E · ~̄B = ???

You should be able to do this easily enough for a Lorentz transformation in an arbitrary
direction, but there is no real loss of generality in assuming the Lorentz transformation
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acts along the x axis. Why? ♦

Exercise: Evaluate the two quantities F ab Fab and εabcd F
ab F cd in terms of ~E and ~B.

This should make the reason for the results of the previous exercise obvious. Why? ♦

Exercise: The general electromagnetic field is

F ab =
1

c

 0 + ~E

− ~E ∗B

 =
1

c



0 +Ex +Ey +Ez

− Ex 0 +Bz −By

− Ey −Bz 0 +Bx

− Ez +By −Bx 0


Show that by performing a general Lorentz transformation (boost [change of velocity]
plus rotation) you can at any specified point always bring it into the standard form

F ab =
1

c



0 +E 0 0

− E 0 0 0

0 0 0 +B

0 0 −B 0


and explicitly evaluate the quantities E and B in terms of the quantities F ab Fab and
εabcd F

ab F cd. ♦

Exercise: Consider a situation where there is no electric field ~E = 0 but there is a
magnetic field ~B 6= 0. A moving electron then experiences a force

~F = q ~v × ~B/c

and so does not travel in a straight line, its path is deflected. Now do a Lorentz transfor-
mation into the rest frame of the electron. In its rest frame, the 3-velocity of the particle
is by definition zero. So in this frame the magnetic force seems to have vanished? What
is going on here? Please explain? ♦

Notice that the discussion here has to do with how particles react to an imposed elec-
tromagnetic field. I have not yet said anything about how to generate an electromagnetic
field.
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1.12.3 Lorentz force law

Now let’s think about how to get the force law from a variational principle — remember
the calculus of variations we talked about in the Mechanix module of Math 321. Pick an
action of the form

S[X(λ)] = −

∫
m0

√
−η
(

dX

dλ
,
dX

dλ

)
dλ

and apply the Euler–Lagrange equations. Here λ is an arbitrary parameterization of
the curve, and because we are in flat space everything is so much simpler than last
semester. Also the curve is assumed timelike, so that with our signature conventions
−η (dX/dλ, dX/dλ) is positive and the square root is guaranteed to be real.

Exercise: Check that the value of S[X(λ)] is independent of the choice of parameter. ♦

The Euler–Lagrange equations arising from extremizing this action are

d

dλ

m0
1√

−η
(

dX
dλ
, dX

dλ

) dX

dλ

 = 0.

If we choose the parameter λ to be the proper time τ we have the simpler result

d

dτ
(m0 V

a) = 0.

That is
d

dτ
P a = 0,

corresponding to a free particle.

Exercise: What happens if we are dealing with photon, or indeed any particle travelling
at the speed of light?
Then there is no elapse of proper time — the invariant interval is always identically zero.
Can you construct any sensible version of S[X(λ)]? ♦

Now let’s try something a little more complicated. Consider this action

S[X(λ)] =

∫ {
−m0

√
−η
(

dX

dλ
,
dX

dλ

)
+ q η

(
A,

dX

dλ

)}
dλ

where A is an arbitrary 4-vector, and q is some parameter.

Warning: The Aa(x) occurring here is called the “vector potential”. It is not the 4-
acceleration of a particle, it is instead a vector field defined on spacetime that we will use
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to generate the electromagnetic field F ab. The notation is unfortunately completely stan-
dard, and you will have to learn to tell by context whether or not A means 4-acceleration
or vector potential.
[And there would be little point to using a for 4-accelerations since then it would be easy
to confuse 4-acceleration with 3-acceleration.] ♦

Then the Euler-Lagrange equations are

d

dλ

 m0√
−η
(

dX
dλ
, dX

dλ

) dX

dλ
+ q A

− q ∇A• dX•

dλ
= 0

It is easier to see what is going on if we make the indices explicit:

S[X(λ)] =

∫ {
−m0

√
−ηab

dXa

dλ

dXb

dλ
+ q Aa(x)

dXa

dλ

}
dλ,

so that the EOM are:

d

dλ

m0
1√

−ηcd dXc

dλ
dXd

dλ

dXa

dλ
+ q Aa

− q ∇aAc
dXc

dλ
= 0

Parameterize using proper time τ , this reduces to

m0
d2Xa

dτ 2
+ q[∇cA

a −∇aAc]
dXc

dτ
= 0

That is

m0
dV a

dτ
= q[∇aAb −∇bAa] Vb

So that the action considered above is capable of reproducing the Lorentz force law but
only for those electromagnetic fields that can be written in the form

F ab = ∇aAb −∇bAa

Experimental fact: It is an observational fact that all electromagnetic fields we have
ever seen in the laboratory are of this type.

F ab = ∇aAb −∇bAa

This is equivalent to the statement that we have never yet found a magnetic monopole
no matter how hard we have looked. ♦
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Exercise: (You may wish to scan through selected portions of the Math 464/Math 465
notes for additional background material. Specifically, look up the chapter on exterior
differential forms.)

In the language of differential forms Fab is a two-form which is exact, because it is the
exterior derivative of the one-form Aa:

F = dA

But because of the Poincare lemma d2A = 0, so we know that the electromagnetic fields
we observe in the laboratory satisfy

dF = 0

This is a 3-form which is Hodge dual to a 1-form, so we know

∗(dF ) = 0

which is a 4-vector equation. If we now decompose the 4-tensor F into ~E and ~B, you will
obtain a number of partial differential equations constraining ~E and ~B. Find these PDEs
and interpret them. ♦

Exercise: Show that the statement dF = 0, or equivalently F = dA, is equivalent to
the nonexistence of magnetic monopoles.
[This exercise will require you to do a little reading of the physics literature. One suit-
able way of proceeding is to show that by looking at the space–space components of the
4-tensor equation F = dA one has ~B = ~∇× ~A.] ♦

Exercise: Suppose now that magnetic monopoles do exist so that

F ab 6= ∇aAb −∇bAa

Show that in this case we can always find a pair of 4-vectors Aa and Ba such that

F ab = ∇aAb −∇bAa + εabcd[∇cBd −∇dBc]

This exercise is pure mathematics, and amounts to understanding de Rham’s theorem,
(which you have not seen before), and applying it in a context where the topology is
trivial. In 2-form notation

F = dA+ ∗(dB)

You can also view this as a 2-form (3+1)-dimensional generalization of the Helmholtz
theorem for a 3-vector field:

~b = ~∇Ψ + ~∇× ~a.
That is

b = dΨ + ∗(da).
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♦

Exercise: Show that a 1-form (3+1) generalization of the Helmholtz theorem is

B = dΨ + ∗(dΩ)

where B is a 1-form and Ω is a 2-form. Generalize to arbitrary dimensionality and to
arbitrary s-forms. This exercise is pure mathematics, with no physics input. ♦

Exercise: For the good of your souls, I will now point out a radically different vector
decomposition that is sometimes useful. The Clebsch decomposition writes any arbitrary
3-vector field as

~b = ∇φ+ α ∇β

This can also be written as
~b = ∇φ+ Im(ψ∗ ∇ψ)

Prove these results. ♦

Exercise: For a 4-vector the Clebsch decomposition generalizes to

B = Im(φ∗ ∇φ) + Im(ψ∗ ∇ψ).

Prove this. ♦

Research problem: Suppose now that magnetic monopoles exist so that

F ab 6= ∇aAb −∇bAa

Find a clean, elegant, and useful variational principle that leads to Euler–Lagrange equa-
tions coupling arbitrary particles, ones that can have both electric and magnetic charges,
to the general electromagnetic field.

[This is not as easy a problem as it at first seems. There are quite a few awkward
solutions to this problem in the literature.] ♦

Exercise: Let ρ be the density of electric charge, and ~j the 3-current density. Define a
4-current density

J = (ρ,~j)

which we can view as a 1-form. Now consider the two equations

dF = 0; δF = J.
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Show that the single equation dF = 0 is equivalent to the two homogeneous Maxwell
equations. Furthermore show that the single equation δF = J is equivalent to the two
inhomogeneous Maxwell equations.

That is, the Maxwell equations can be written very compactly as

dF = 0; δF = J.

Note that this now makes sense in any arbitrary possibly curved spacetime manifold, not
just Minkowski space. ♦

Exercise: Consider the action

S =

∫ {
1

4
F ab Fab + Aa J

a

}
d4x

where Fab = ∂aAb − ∂bAa. Show that the Euler–Lagrange equation is

∂

∂xa
F ab = J b

Then re-write the definition of F as F = dA, and deduce dF = 0. Similarly re-write the
Euler–Lagrange equation as δF = J and so deduce

dF = 0; δF = J.

This is now the complete set of Maxwell equations. ♦

Exercise: In terms of the vector potential 1-form A, re-write the complete set of Maxwell
equations as

δ dA = J

or equivalently
∗ d ∗ dA = J.

♦

Exercise: Show that the Lorenz gauge condition Ȧ0 +∇ · ~A = 0, can be written as

δA = 0

and so that in the Lorenz gauge the complete set of Maxwell equations reduce to

∆A = J

where ∆ is the Laplace–Beltrami operator

∆ = (d + δ)2 = dδ + δd.
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♦

Historical note: The Lorenz gauge was apparently first used by the Danish physicist
Ludwig Lorenz (1829-1891), though it is commonly misattributed to the Dutch physicist
Hendrik Antoon Lorentz (1853-1928). Many textbooks get the name wrong.
L. Lorenz, “On the Identity of the Vibrations of Light with Electrical Currents”, Philos.
Mag. 34 (1867) 287-301.
J. van Bladel, “Lorenz or Lorentz?”, IEEE Antennas Prop. Mag. 33 (1991) 69. ♦

1.13 Relativistic scalar potential

A standard tool in non-relativistic mechanics is motion in a potential, where the force is
given by

~F = −∇Φ(x).

As a basic building block for more general theories, it is useful to develop a relativistic
generalization of this situation.

Now for a relativistic scalar potential I could do the most obvious thing and assume the
simple force law

F a = −∇aΦ(x)

so that
dP a

dτ
= −∇aΦ(x)

But if I choose to do so then the rest mass of the particle is changed by the applied force.
Indeed:

dm0

dt
c2 = −η(F, V ) = ∇aΦ

dXa

dτ
=

dΦ

dτ

so that

m0 c
2 − Φ(x) = constant

Now mathematically, no-one can stop me from postulating such a force law, it’s just
physically useless. It is simply an observed fact that under all known situations the
invariant mass of elementary particles is unchanged by applied forces.13

So if I want to introduce a scalar field that respects this observation regarding elementary
particles, I will have to force η(F, V ) = 0. One obvious way of doing this is to postulate

F a
scalar = −

[
ηab + V a V b

]
∇bΦ.

13Though this same criticism cannot be leveled at composite systems.
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This now explicitly depends on the 4-velocity of the particle, and the presence of the
projection operator

[
ηab + V a V b

]
forces the 4-force to be 4-orthogonal to the 4-velocity.

Exercise: Define
hab = ηab + V a V b

or equivalently
hab = δab + V a Vb

Prove that hab really is a projection operator in the sense that

hab h
b
c = hac

You will already have seen something extremely similar a few pages back. ♦

Exercise: Consider the action

S[X(λ)] =

∫ {
−m0

√
−ηab

dXa

dλ

dXb

dλ
− Φ(x)

}
dλ

and find its Euler–Lagrange equations. Parameterize using proper time, and show that
this is produces (what we have argued are) the physically inappropriate equations of
motion

d(m0V )

dτ
= −∇Φ(x)

♦
Exercise: Now consider the different action

S[X(λ)] =

∫ {
−m0 exp[Φ(x)/m0]

√
−ηab

dXa

dλ

dXb

dλ

}
dλ

and find its Euler–Lagrange equations. Parameterize using proper time, and show that
the Euler–Lagrange equations reduce to

d

dτ
[exp[Φ(x)/m0] V a] = −∇a exp[Φ(x)/m0]

Then reduce this to (what we have argued are) the physically appropriate equations of
motion

m0
dV a

dτ
= −

[
ηab + V a V b

]
∇bΦ(x).

♦
Exercise: Hence or otherwise deduce that a scalar field with the physically appropriate
equations of motion can always be re-interpreted in terms of a conformal distortion of the
geometry by defining

gab = exp[+2Φ(x)/m0] ηab
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and considering the geodesics of the conformally flat metric gab.

The “low brow” way of proceeding is to simply plug gab = exp[+2Φ(x)/m0] ηab into the
formulas for the Christoffel symbols and look at the geodesic equations for gab. This is
however not an efficient way of proceeding, and if you stop and think a little, there is a
much simpler argument. ♦

Exercise: Find a non-relativistic approximation to

S[X(λ)] =

∫ {
−m0 exp[+Φ(x)/m0]

√
−ηab

dXa

dλ

dXb

dλ

}
dλ

Write:
dXa

dλ
=

(
dt

dλ
;
dxi

dλ

)
and assume that both dxi/dλ and Φ/m0 are small. To be precise, we take∣∣∣∣dxidλ

∣∣∣∣� ∣∣∣∣ dt

dλ

∣∣∣∣ ; |Φ|
m0

� 1.

Expand S[X(λ)] using the binomial expansion, and show that

S[X(λ)] =

∫ {
1

2
m0

(
dxi

dt

)2

− Φ

}
dt+ · · · .

Physically interpret this result. ♦

1.14 Relativistic hydrodynamics

In ordinary non-relativistic hydrodynamics one is dealing with two basic equations:

• The equation of continuity
∂ρ

∂t
= ∇ · (ρ ~v)

relates the density and velocity of the fluid. It is equivalent to the conservation of
mass.

• The Euler equation is the fluid mechanics equivalent to Newton’s second law, it
relates the acceleration of a particle following the flow

~a =
dv

dt
=
∂~v

∂t
+ (~v · ~∇)~v
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to the force density ~f and mass density ρ. Specifically

~a =
∂~v

∂t
+ (~v · ~∇)~v =

~f

ρ

Relativistic generalizations of these two laws are:

∇a(ρ V
a) = 0

Aa = V b ∇bV
a

where Aa is now a 4-vector field of 4-accelerations.

The relativistic continuity equation yields

∂(ρ γ)

∂t
= ∇ · (ργ~v)

This can be understood by interpreting ρ as proportional to the number density of particles
as measured by an observer moving with the fluid. That is, ρ is a comoving number density
— and it transforms as a scalar. The γ factor then corresponds to the fact that Lorentz
contraction “squashes” the fluid in the direction of motion, so that as seen by an observer
moving with respect to the fluid the number density of particles is increased to ρ γ.

For the 4-acceleration we have

Ai = (γ∂t + γ[~v · ~∇])[γvi],

and
A0 = (γ∂t + γ[~v · ~∇])[γ].

That is, in terms of the advective derivative:

Ai = γ
{
∂t + [~v · ~∇]

}
[γvi] = γ

d

dt
[γvi],

and

A0 = γ
{
∂t + [~v · ~∇]

}
γ = γ

d

dt
γ =

1

2

d

dt
γ2.

So at low velocities where γ → 1 these clearly reproduce the standard Newtonian results:

~A→ a =
∂v

∂t
+ (v · ∇)v;

A0 → 0.

These quantities are also clearly relativistically well defined. For now that’s good enough
for us. (And if you want more precise justifications, you can always search through [for
instance] Landau & Lifshitz, or any other advanced text on fluid mechanics.)
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Exercise: Verify that with this definition of the acceleration field Aa = V b ∇bV
a the

4-acceleration is everywhere 4-orthogonal to the 4-velocity. ♦

This statement (and note we are now talking about a fluid, not an isolated particle) holds
true independent of the form of the 4-force density and implies that for any relativistic
fluid we must as a matter of principle enforce

η(f, V ) = 0

In particular, for a force arising from a pressure gradient we cannot assert

~f = −∇p

but must adopt the relativistic generalization

~fa = −[ηab + V a V b]∇bp

A slightly bizarre feature of relativistic hydrodynamics (not justified at this stage) is
that Newton’s second law is slightly modified

~a =
~f

ρ
→ Aa =

fa

ρ+ p

Effectively the pressure contributes to the inertia. This is enough for now — I’ll have
considerably more to say about fluids later.

1.15 Summary

As we have seen, the special relativity can be cast into an abstract geometrical form based
on the use of a flat 4-manifold called Minkowski space. A lot of the technical machinery of
last semester’s course on differential geometry can then be used to write special relativity
in relatively sophisticated form.

Although much of special relativity can be understood in terms of high school algebra,
this is not necessarily the most useful way of doing things — especially when you want
to then generalize to the curved spacetime of the general relativity.
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Appendix A

Elementary analysis of the special
relativistic combination of velocities,
Wigner rotation, and Thomas
precession

Kane O’Donnell and Matt Visser

Published as:
European Journal of Physics 32 (2011) 1033–1047
doi: 10.1088/0143-0807/32/4/016
arXiv: 1102.2001 [gr-qc]

The purpose of this paper is to provide an elementary introduction to the
qualitative and quantitative results of velocity combination in special relativ-
ity, including the Wigner rotation and Thomas precession. We utilize only
the most familiar tools of special relativity, in arguments presented at three
differing levels: (1) utterly elementary, which will suit a first course in relativ-
ity; (2) intermediate, to suit a second course; and (3) advanced, to suit higher
level students. We then give a summary of useful results, and suggest further
reading in this often obscure field.

Keywords: relativistic combination of velocities, Wigner rotation, Thomas
precession, special relativity.
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A.1 Introduction

The problem of how to consider velocities in a special relativistic setting is fundamental to
many areas of both theoretical and applied physics [1, 2, 3, 4, 5, 6, 7]. However, students
are rarely introduced to anything beyond the most basic of results (such as the relativistic
composition of parallel velocities), on account of the perceived complexity and confusion
surrounding the combination of velocities in special relativity. The aim of this paper is
to remove some of this confusion, and clarify the qualitative concepts associated with
the relativistic combination of velocities, which we do in Section A.2. This includes a
description of what such velocities actually “mean”, what the Wigner rotation represents,
and how this leads to the Thomas precession.

In Section A.3 we provide derivations of certain key quantitative results, using only el-
ementary concepts of special relativity. We begin with the simple cases of relativistically
combining parallel and perpendicular velocities in Section A.3.2. This section is partic-
ularly relevant for those new to such concepts. The formulae are simple and elementary
to derive, yet still illustrate the fundamental issues of combining relativistic velocities, in-
cluding the Wigner rotation and Thomas precession. In Section A.3.3 we use the results
already obtained to consider the general combination of velocities — that is, where the
velocities are neither necessarily parallel nor perpendicular. We envisage this section to
be suitable for students undertaking a first course in relativity, though proving the results
of parts of Section A.3.3 involves extensive vector manipulation.

In Section A.4 we consider the relativistic combination of velocities using the boost ma-
trix formulation of special relativity. Whilst in principle this is no more complex than our
elementary derivations of Section A.3, a familiarity with the boost matrix representation
is assumed, and hence this section will likely be suitable for students undertaking a second
course in relativity.

In Section A.5 we briefly outline how the spinor formulation of special relativity can
reproduce the results we have already obtained. This section is only suitable for those
already familiar with the spinorial representation of Lorentz transformations, and hence
is likely to be accessible mainly for more advanced students.

Lastly, in Section A.6 we give a summary of important (and often equivalent) formulae
in this field, and in Section A.7 we provide references for further reading.
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A.2 Qualitative introduction

A.2.1 Relativistic combination of velocities

To begin with, consider Alice and Bob, each traveling in a spaceship somewhere in the
vicinity of Earth, as illustrated in Figure A.1. Unfortunately, due to equipment malfunc-
tion, mission control cannot directly observe the velocity of Bob. Nonetheless, Alice is
able to measure the velocity of Bob to be ~v2, and mission control can measure the velocity
of Alice to be ~v1. The key question surrounding the relativistic combination of velocities
is how we deduce the velocity ~v21 of Bob, as seen by mission control, using the velocities
~v1 and ~v2. (Note that from the beginning, we must be clear that ~v2 is measured in Alice’s
rest frame whilst ~v1 and ~v21 are measured in mission control’s rest frame.) As shown
in Section A.3.3 we may indeed derive a simple formula for this velocity ~v21, and it is
this quantitative result that embodies what we mean by the relativistic combination of
velocities ~v1 and ~v2.

Figure A.1: The common (and misleading) depiction of the combination of velocities.
Mission control sees Alice moving with velocity ~v1, and Alice sees Bob moving with velocity
~v2 (shown as a double line to indicate this is in Alice’s frame). Mission control observes
Bob as the spacecraft labeled B21, and to be moving at velocity ~v21, but pointing in a
direction rotated by the Wigner rotation angle Ω. From mission control’s perspective, Bob
appears to be “sliding” sideways in the direction ~v21.

Note that Figure A.1 is somewhat misleading in that it treats the velocity vectors
like Euclidean displacement vectors — in reality, they need not be linked “head-to-tail”.
Nonetheless this presentation makes it clear which velocities are being combined, and
hence remains qualitatively useful.
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Wigner rotation

The relativistically combined velocity ~v21 cannot be interpreted as directly as we are used
to. Whilst mission control observes Bob to be traveling with velocity ~v21, they will observe
him to be pointing at an angle Ω to ~v21, as illustrated in Figure A.1. That is, Bob’s frame
of reference appears to mission control to be rotated by an angle Ω, which is known as
the Wigner rotation angle.

Figure A.2: A more correct interpretation of the relativistic combination of velocities. The
solid lines indicate the case where Alice has velocity ~v1 as measured by mission control, and
Bob has velocity ~v2 as measured by Alice, resulting in mission control seeing Bob moving
with velocity ~v21 (that is, in the spacecraft B21). The dashed lines indicate the naively
“symmetrical” case, where Alice has velocity ~v2 as measured by mission control, and Bob
has velocity ~v1 as measured by Alice, resulting in mission control seeing Bob moving with
velocity ~v12 (that is, in the spacecraft B12). In addition, the Wigner rotation angle, ±Ω
in each case, is also the angle between ~v12 and ~v21. The angle θ is that between −~v1 and
~v2, as measured by Alice.

One may also consider the apparently “symmetrical” case of the combined velocity ~v12,
where we imagine instead that Bob has a velocity ~v1 as seen by Alice, and Alice has a
velocity ~v2 as seen by mission control, as illustrated in Figure A.2. In standard Galilean
relativity, we would predict quite rightly that ~v12 = ~v21. However this is not the case
when considering the relativistic combination of velocities, as although ||~v12|| = ||~v21||,
they do not point in the same direction — there is some angle Ω between them. As we will
show, this is also the aforementioned Wigner rotation angle. Indeed, the observation that
the Wigner rotation angle corresponds to the angle between ~v12 and ~v21 can be further
extended: In the case of mission control seeing Alice moving with velocity ~v1, and Alice
seeing Bob moving with velocity ~v2, then mission control will see Bob traveling at velocity
~v21, but pointing in the direction of ~v12, as is illustrated in Figure A.2. A similar argument
applies for ~v12.
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Thomas precession

The Thomas precession is a consequence of the Wigner rotation, and arises when one
considers the case of Bob experiencing some form of centripetal acceleration. To set up a
suitable scenario, let us assume that Alice and Bob are traveling off together to explore
the moon, and hence, at some time t, are both traveling at velocity ~v1 as seen by mission
control. Hence Alice observes Bob at rest in her frame. This is illustrated in Figure A.3a).

However Bob’s boosters suddenly fail, and hence he falls into a circular orbit around
Earth, while Alice continues to travel in a straight line toward the moon.1 Hence Alice
now measures Bob to have some velocity d~v2 at a later time dt. This is analogous to the
situation depicted in Figure A.1, except now ~v2 becomes the infinitesimal d~v2. At the
time t + dt, we think of Bob’s velocity relative to mission control as ~v21 = d~v2 ⊕ ~v1, and
his frame to be rotated by the infinitesimal Wigner rotation angle dΩ, as illustrated in
Figure A.3b). The associated rate of change of the Wigner rotation angle dΩ/dt (that
is, how fast Bob’s frame is rotating relative to mission control’s) is called the Thomas
precession rate. The actual Thomas precession ΩT is the total Wigner rotation turned
through if Bob carries out a complete orbit. That is,

ΩT =

∮
C

dΩ

dt
dt (A.1)

for any closed curve C in velocity-space.

A.3 Elementary level discussion

A.3.1 Parallel velocities

To begin the discussion, we consider the relativistic combination of velocities for the
special cases of parallel and perpendicular velocities ~v1 and ~v2, as illustrated in Fig A.4a)
and Fig A.4b) respectively. However, as the relativistic combination of parallel velocities
formula is usually given in textbooks (see for example [1] or [2]), we merely state the
well-known result:

~v21 = ~v12 =
~v1 + ~v2

1 + ~v1 · ~v2

, (A.2)

where we have set c = 1. It is important to note that in this case the direction and

1Alice is using her boosters so as not to fall into orbit, and hence is not accelerating with respect to
mission control. We should also be clear that we are considering the case of Newtonian gravity, and only
for the pedagogical purpose of providing a centripetal acceleration in this example. In fact any force
applied through the centre of mass would do the job, such as (for example) a string attached to a gimbal
at the centre of mass. For an electron one might like to consider an electromagnetic force.
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Figure A.3: At time t mission control sees both Alice and Bob traveling at velocity ~v1, as
shown in subfigure a). However Bob’s boosters fail, and he falls into Earth’s orbit, so at
a time dt later, Alice measures Bob to have a velocity d~v2. Mission control now sees Bob
(labeled as spacecraft B21) to be moving with velocity ~v21 = d~v2 ⊕ ~v1, and his direction
rotated by the infinitesimal Wigner rotation angle dΩ, as shown in subfigure b).

magnitude of the two combined velocities ~v21 and ~v12 are the same, and hence there will
be no resulting Wigner rotation or Thomas precession. It also illustrates that Thomas
precession can indeed only occur for centripetal motion, where ~v1 and d~v2 are not collinear.

Figure A.4: Parallel and perpendicular relativistic combination of velocities is illustrated
in subfigures a) and b) respectively.
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A.3.2 Perpendicular velocities

The formula for the relativistic combination of perpendicular velocities can be derived in
a similar manner as for the parallel case. Here we will use the elementary concepts of
time dilation and length contraction. A more explicit Lorentz transformation calculation
can easily verify the following results.

Consider the case illustrated in Figure A.4b), where ~v1 and ~v2 are perpendicular.2 As
there is no length contraction for perpendicular distances, but time dilation still occurs in
moving from Alice’s frame to mission control’s, then the velocity ~v2 in mission control’s
reference frame is just ~v2/γ1. Therefore the velocity ~v21 of Bob as seen by mission control
is just

~v21 = ~v1 +
~v2

γ1

= ~v1 + ~v2

√
1− v2

1 . (A.3)

Similarly we find that

~v12 = ~v2 +
~v1

γ2

= ~v2 + ~v1

√
1− v2

2 . (A.4)

These formulae are extremely useful to introduce the concept of relativistically combining
velocities. They are simple and almost trivial to derive, while still illustrating the fun-
damental concepts of relativistic velocity combination — the non-intuitive addition laws,
the Wigner rotation, and the Thomas precession — as we shall now see.

Wigner rotation

Let us continue with the case of ~v1 and ~v2 being perpendicular, and hence with the
relativistic combined velocities ~v21 and ~v12 as defined by (A.3) and (A.4) respectively. We
note that

~v21 6= ~v12, but ||~v12|| = ||~v21|| =
√
v2

1 + v2
2 − v2

1v
2
2 . (A.5)

As ~v12 and ~v21 have the same magnitude, but a different direction, we expect some form of
Wigner rotation, as previously discussed. One may naively guess that the Wigner rotation
angle Ω may have something to do with the angle between ~v21 and ~v12, and in fact, as we
will show in Section A.4.2, it turns out that the angle between ~v21 and ~v12 is exactly the
Wigner rotation angle. We can easily calculate this angle by using the definition of the
cross product and equations (A.3), (A.4) and (A.5):

sin Ω =
||~v12 × ~v21||
||~v12|| ||~v21||

=
v1v2

(
1− 1

γ1γ2

)
v2

1 + v2
2 − v2

1v
2
2

=
v1v2γ1γ2

1 + γ1γ2

. (A.6)

2Note that we must be clear what we mean by “perpendicular,” as recall that ~v1 is measured in mission
control’s rest frame, whilst ~v2 is measured in Alice’s rest frame. It only makes sense to say two velocities
are perpendicular if they are measured in the same reference frame. Hence when we say that ~v1 and ~v2
are perpendicular, we actually mean that, in Alice’s frame of reference, the velocity of mission control is
−~v1 and the velocity of Bob is ~v2 and these two velocities are perpendicular.
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Again, this is an extremely simple formula for the Wigner rotation angle Ω, which is easily
verifiable, using only the fundamental concepts of relativity. While (A.6) only applies in
the case of perpendicular velocities, it nonetheless introduces Wigner rotation, and is
sufficient for considering the Thomas precession.

Thomas precession

Recall that the Thomas precession rate gives how fast Bob’s frame is rotating with respect
to mission control’s. In our case, Alice sees mission control traveling at −~v1 and Bob
traveling at some infinitesimal velocity d~v2, as shown in Figure A.3b). If we assume that
Bob is traveling in a circular orbit around Earth, then d~v2 is perpendicular to ~v1, and
hence our formula for the Wigner rotation angle (A.6) applies. As we let d~v2 → 0, then
γ2 → 1 and we find the infinitesimal Wigner rotation angle to first order in dv2 is (using
the small angle approximation)

dΩ = v1

(
γ1

1 + γ1

)
dv2 . (A.7)

Hence the Thomas precession rate of Bob’s frame as measured by mission control is

dΩ

dt
= av1

(
γ1

1 + γ1

)
, (A.8)

where a = dv2/dt is the centripetal acceleration experienced by Bob. Hence we see that, at
least for the specific case of circular motion, the formula describing the Thomas precession
is simple, with a physically intuitive and elementary derivation.

A.3.3 General velocities

In general, the relativistic combination of velocities in arbitrary directions is nowhere
near as simple as in the parallel and perpendicular cases previously discussed. However,
we shall now present a derivation of a general formula for ~v21 which relies only on the
elementary results of (A.2) and (A.3), and a simple time dilation argument. Let us
consider the general situation of Figure A.1, however we now decompose Bob’s velocity as
seen by Alice into its component ~v2‖1 parallel to ~v1 and its component ~v2⊥1 perpendicular
to ~v1, as illustrated in Figure A.5a). Let S o denote the rest frame of some contrived
intermediate observer, whom Alice measures to have velocity ~v2‖1, as in Figure A.5a).

As ~v2‖1 and ~v1 are collinear, by (A.2), the velocity of S o as measured by mission control
is

~v o1 =
~v2‖1 + ~v1

1 + ~v2‖1 · ~v1

=
~v2‖1 + ~v1

1 + ~v1 · ~v2

, (A.9)
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Figure A.5: In subfigure a) we decompose the velocity ~v2 of Bob as measured by Alice
into the components ~v2‖1 and ~v2⊥1, parallel and perpendicular to ~v1 respectively. The
relativistically combined velocity ~v21 is the velocity of Bob as seen by mission control. In
subfigure b), we see the S o frame, which is observed to have velocity ~v o1 by mission control,
which represents the relativistic combination of velocities ~v2‖1 and ~v1. In the S o frame
Bob is measured to have velocity ~v o2 , perpendicular to ~v o1 .

and there is no Wigner rotation of the S o frame relative to mission control. Therefore, we
can think of a new situation, as illustrated in Figure A.5b), where we have S o moving at
velocity ~v o1 relative to mission control, and Bob moving at some velocity ~v o2 as measured
in the S o frame. Using arguments similar to those in Section A.3, since ~v o1 and ~v o2 are
perpendicular, then, due to time dilation

~v o2 = γ2‖1 ~v2⊥1 where γ2‖1 =
1√

1− v2
2‖1

. (A.10)

Thus, as mission control sees S o moving at velocity ~v o1 , and the observer S o sees Bob to
be moving at the perpendicular velocity ~v o2 = γ2‖1 ~v2⊥1, we may apply formula (A.3) for
the relativistic combination of perpendicular velocities. Replacing ~v1 with ~v o1 and ~v2 with
~v o2 = γ2‖1 ~v2⊥1 we see that the velocity of Bob with respect to mission control is given by

~v21 = ~v o1 +
γ2‖1

γ o1
~v2⊥1 . (A.11)

Furthermore, from (A.9) we see that

γ o1 ≡
1√

1− (v o1 )2
= γ2‖1γ1(1 + ~v1 · ~v2) , (A.12)
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and hence (A.11) becomes

~v21 =
~v1 + ~v2‖1 +

√
1− v2

1 ~v2⊥1

1 + ~v1 · ~v2

=
~v2 + γ1~v1 + (γ1 − 1)(~v1 · ~v2)~v1/v

2
1

γ1(1 + ~v1 · ~v2)
. (A.13)

Similarly, we find

~v12 =
~v2 + ~v1‖2 +

√
1− v2

2 ~v1⊥2

1 + ~v1 · ~v2

=
~v1 + γ2~v2 + (γ2 − 1)(~v1 · ~v2)~v2/v

2
2

γ2(1 + ~v1 · ~v2)
. (A.14)

These are the most elementary formulae for the composition of general velocities that we
have been able to uncover. Their derivation is simple and fundamental, with an easily
attributable physical motivation.

Wigner rotation

Whilst this subsection introduces no new concepts, the vector algebra becomes more
tedious and may somewhat confuse the issue, so we consider this subsection to be more
suitable for advanced students in a first course on relativity. We use a similar procedure
as in Section A.3.2 to consider the Wigner rotation; to do so we must have ||~v21|| = ||~v12||.
We leave it to the reader to verify that indeed

||~v21|| = ||~v12|| =
√
||~v1 + ~v2||2 − ||~v1 × ~v2||2

1 + ~v1 · ~v2

, (A.15)

and that this agrees with the parallel and perpendicular cases already discussed. Thus
~v21 and ~v12 have the same magnitude — but by (A.13) and (A.14) they are not equal, and
hence must point in different directions. As previously described for the perpendicular
case in Section A.3.2, the Wigner rotation angle Ω is exactly the angle between ~v21 and
~v12 as measured by mission control. (We shall explicitly prove this in Section A.4.2). To
calculate Ω, firstly rewrite (A.13) and (A.14) as

~v21 =
~v1 + (1− γ−1

1 )~v2‖1 + γ−1
1 ~v2

1 + ~v1 · ~v2

and ~v12 =
~v2 + (1− γ−1

2 )~v1‖2 + γ−1
2 ~v1

1 + ~v1 · ~v2

. (A.16)

The Wigner rotation angle Ω then follows from the cross–product of the vectors ~v21 and
~v12. Using (A.15) and (A.16), this results in

sin(Ω) =
||
(
~v2 + (1− γ−1

2 )~v1‖2 + γ−1
2 ~v1

)
×
(
~v1 + (1− γ−1

1 )~v2‖1 + γ−1
1 ~v2

)
||

||~v1 + ~v2||2 − ||~v1 × ~v2||2
, (A.17)

which can be simplified to

sin(Ω) = v1v2 sin θ

[
1− γ−1

1 γ−1
2 + (~v1 · ~v2)

(
1

1+γ−1
1

+ 1
1+γ−1

2

)
+ (~v1·~v2)2

(1+γ−1
1 )(1+γ−1

2 )

]
||~v1 + ~v2||2 − ||~v1 × ~v2||2

, (A.18)
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where θ is the angle between ~v1 and ~v2 as measured by Alice.3 However

γ12 ≡
1√

1− v2
12

= γ1γ2(1 + ~v1 · ~v2) (A.19)

may be rearranged to give

cos θ =
γ12 − γ1γ2

v1v2γ1γ2

. (A.20)

Hence, after a little massaging, (A.18) may then be simplified to

sin Ω =
v1v2γ1γ2(1 + γ1 + γ2 + γ12)

(γ1 + 1)(γ2 + 1)(γ12 + 1)
sin θ , (A.21)

which some may recognize as Stapp’s elegant formula [3]. Similarly, using the definition
of the dot–product to find the Wigner rotation angle Ω, one finds

cos Ω =

||~v1 + ~v2||2 − ||~v1 × ~v2||2
[

1
1+γ−1

1

+ 1
1+γ−1

2

− ~v1·~v2
(1+γ−1

1 )(1+γ−1
2 )

]
||~v1 + ~v2||2 − ||~v1 × ~v2||2

, (A.22)

and eventually

cos Ω + 1 =
(γ12 + γ1 + γ2 + 1)2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
. (A.23)

Indeed there are many explicit formulae for the Wigner rotation angle Ω, a few of which
are given in Section A.6. Stapp’s formula arguably remains the simplest and most useful.
Note that while the derivation has been somewhat tedious in terms of algebra, the under-
lying physics is utterly elementary — boiling down to the use of time dilation arguments
combined with the usual composition of parallel velocities.

Thomas precession

We consider the same argument as given in Section A.3.2, however we now do not make
the simplifying assumption that ~v1 is perpendicular to d~v2 — that is, Bob need not be
in a circular orbit. It still remains true that the infinitesimal Wigner rotation in mission
control’s frame of reference is given by letting d~v2 → 0, however we now use our general
formula (A.21). Doing so, then γ2 → 1, and from (A.19), we see that γ12 → γ1. Hence
the infinitesimal Wigner rotation angle dΩ is, to first degree in d~v2,

dΩ ≈ sin(dΩ) = v1dv2 sin θ
γ1

1 + γ1

= ||~v1 × d~v2||
γ1

1 + γ1

. (A.24)

3Note that ~v1 and ~v2 are in different frames, so it makes no sense to compare the angle between these
velocities. What we really mean is that θ is the angle between ~v2 and the velocity, −~v1, of mission control,
as seen by Alice.
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Therefore the Thomas precession rate in mission control’s frame of reference is4

d~Ω

dt
= ~v1 × ~a

(
γ1

1 + γ1

)
, (A.26)

where ~a = d~v2/dt is the centripetal acceleration experienced by Bob. At this stage, it is
clear that (A.26) simplifies to the formula (A.8) we obtained in the perpendicular case.

A.4 Intermediate level — boost matrix formulation

We now consider the relativistic combination of velocities using the boost matrix formula-
tion of special relativity. The results derived confirm those already found in Section A.3,
however the use of boost matrices gives further conceptual insight — notably that the
Wigner rotation angle is the angle between ~v21 and ~v12.

A.4.1 Composition of boosts

Firstly, consider an arbitrary boost from a frame S to another frame S o that is moving at a
velocity ~v relative to S. Setting c = 1, the boost matrix B representing the transformation
from the S frame to the S o frame, such that ~x o = B~x, is

B =

 γ −γ~vT

− γ~v I + (γ − 1)
vivj

v2

 =

 γ −γ~vT

− γ~v Pv + γQv

 , (A.27)

where we have used the notation Pv to represent the projection onto the plane perpendic-
ular to ~v (explicitly, [Pv]ij = δij − vivj/v2). Similarly Qv = I− Pv gives the part parallel
to ~v. Now, any Lorentz transformation L may be decomposed into a boost followed by a
rotation:5

L = RB (A.28)

for some rotation R and some boost B. Furthermore, rotations take the form

R =

[
1 0
0 R3

]
, (A.29)

4There is a degree of confusion surrounding the precise definition of the Thomas precession. Our result
agrees with that of [6] and [7], and not with the more well known one of [1], which gives the Thomas
precession in mission control’s frame as

d~Ω
dt

= ~v1 × ~a
(

γ2
1

1 + γ1

)
= ~v1 × ~a

(
γ1 − 1
v2
1

)
. (A.25)

This however, as explained in [6] and [7], is actually the Thomas precession rate as viewed from Alice’s
reference frame. The additional γ1 factor is due to the time dilation between frames.

5Or a rotation followed by a boost — we will use the form of (A.28) consistently throughout the paper.



77

where R3 is some three-dimensional rotation matrix. Hence by (A.27), (A.28), and (A.29),
any Lorentz transformation can be written in the form

L =

 γ −γ~vT

− γR3~v R3{Pv + γ Qv}

 . (A.30)

Thus we can calculate what the net Lorentz transformation L21 is for the situation depicted
in Figure A.1 by simply composing the two associated boosts — that is, boosting first by
B1 and then B2 — so as to move from the S frame to the S o frame. Hence

L21 = B2B1 . (A.31)

Writing this out explicitly using (A.27), we see that

L21 =

 γ2 −γ2~v
T
2

− γ2~v2 P2 + γ2Q2

  γ1 −γ1~v
T
1

− γ1~v1 P1 + γ1Q1

 (A.32)

=

 γ2γ1(1 + ~v2 · ~v1) −γ2γ1~v
T
1 − γ2~v

T
2 [P1 + γ1Q1]

− γ2γ1~v2 − γ1[P2 + γ2Q2]~v1 [P2 + γ2Q2][P1 + γ1Q1] + γ1γ2~v2~v
T
1

 . (A.33)

Thus if we wish to decompose this Lorentz transformation into the form L21 = RB21, and
we let ~v21 denote the velocity corresponding to the boost B21, we can equate (A.30) and
(A.33), which gives γ21 −γ21~v

T
21

− γ21R3~v21 R3[P21 + γ Q21]



=

 γ2γ1(1 + ~v2 · ~v1) −γ2γ1~v
T
1 − γ2~v

T
2 [P1 + γ1Q1]

− γ2γ1~v2 − γ1[P2 + γ2Q2]~v1 [P2 + γ2Q2][P1 + γ1Q1] + γ1γ2~v2~v
T
1

 . (A.34)

Comparing the 00 terms, we see that

γ21 = γ2γ1(1 + ~v2 · ~v1) , (A.35)

as we found previously in (A.19) (note that γ21 = γ12). Using this result in comparing
the 0j terms of (A.34), we see that

~v21 =
~v1 + γ−1

1 P1~v2 +Q1~v2

1 + ~v2 · ~v1

. (A.36)

This can be written alternatively as

~v21 =
~v1 + ~v2‖1 +

√
1− v2

1 ~v2⊥1

1 + ~v2 · ~v1

, (A.37)
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which is what was derived in Section A.3.3. Furthermore, as follows from (A.28) and
(A.31), we can define a pure rotation matrix R and a pure boost matrix B21 such that

B2B1 = RB21 . (A.38)

However for the same rotation matrix R, we have

B1B2 = (B2B1)T = (RB21)T = BT
21R

T = B21R
−1 = R−1(RB21R

−1) . (A.39)

Since (RB21R
−1)T = RB21R

−1, we see that RB21R
−1 is a pure boost — so we define

B12 ≡ RB21R
−1, such that

B1B2 = R−1B12 . (A.40)

The results (A.38) and (A.40) verify the interpretation given in Figure A.2, that whilst
mission control may measure Bob to be moving with velocity ~v21, his frame of reference will
be rotated by Ω, and similarly for ~v12 (except the rotation will be by −Ω). Furthermore,
from (A.40) it follows that

R = B12B
−1
2 B−1

1 , (A.41)

and hence we have explicitly calculated the rotation matrix R. We can “simplify” this
further however, by using (A.40) and noting that

B2B1B1B2 = B2
12 . (A.42)

Thus by (A.41)

R =
√
B2B1B1B2B

−1
2 B−1

1 . (A.43)

We can now use the property that the angle Ω rotated by in the rotation R is related to
the trace of the rotation matrix via tr(R) = 2(1 + cos(Ω)), and hence the Wigner rotation
angle Ω is

cos Ω + 1 =
1

2
tr
(√

B2B1B1B2B
−1
2 B−1

1

)
. (A.44)

A.4.2 Connecting the angles

In deriving the formulae in Section A.3.2 and Section A.3.3 for the Wigner rotation angle,
we assumed that it was the angle between ~v21 and ~v12. We can now prove this using our
boost matrix formulation.

By (A.28) and (A.29), the Wigner rotation angle Ω is just the angle involved in the
rotation R, or equivalently, the three-dimensional rotation R3. However, consider again
(A.14) and (A.35), which show that

γ21~v12 = γ2γ1~v2 + γ1[P2 + γ2Q2]~v1 . (A.45)
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By equating the i0 entries of (A.34), we see that γ21R3~v21 is also equal to the right-hand-
side of (A.45), and hence

R3~v21 = ~v12 . (A.46)

Therefore, as previously claimed and now proved, we can find the Wigner rotation angle
Ω by simply calculating the angle between ~v12 and ~v21.

A.4.3 Inverting the transformations

As a final consideration, what is the velocity of mission control as seen by Bob? If mission
control sees Bob moving with velocity ~v21, does Bob see mission control moving with
velocity −~v21 as would be expected in Galilean relativity? If Bob’s frame is considered
as the observer frame, then he will see Alice moving with velocity −~v2 and Alice will
see mission control moving with velocity −~v1. Hence the velocity of mission control as
observed by Bob is given by the composition of the two velocities −~v2 and then −~v1, or
in boost matrix form

B−1B−2 = B−1
1 B−1

2 = (B2B1)−1 = (RB21)−1 = B−1
21 R

−1 , (A.47)

where we have used that B−v = B−1
v , i.e. the inverse of a boost in a direction ~v is just a

boost in the direction −~v. However from our definition of B12 ≡ RB21R
−1, we see that

B21 = R−1B12R and hence B−1
21 = R−1B−1

12 R, so (A.47) implies that

B−1B−2 = R−1B−1
12 . (A.48)

Thus the transformation from Bob’s frame to mission control’s frame is given by

B−1B−2 = B−21R
−1 = R−1B−12 , (A.49)

where B−12 and B−21 correspond to boosts in the −~v12 and −~v21 directions respectively.
However which one, B−21R

−1 or R−1B−12, should we consider to determine the velocity of
mission control as observed by Bob? The transformation B−21R

−1 implies first rotating
Bob’s frame, and then boosting along −~v21 to end up in mission control’s frame. Hence
in Bob’s rotated frame he will see mission control traveling at velocity −~v21. However
the transformation R−1B−12 implies first boosting from Bob’s frame by −~v12, and then
rotating. Therefore in Bob’s original frame, he will see mission control traveling with
velocity −~v12 (but pointing in a direction rotated by −Ω, due to Wigner rotation). Thus
while mission control sees Bob moving with velocity ~v21 in their frame of reference, Bob
sees mission control moving with velocity −~v12 in his.

A.5 Advanced level — spinor formulation

In this section we use the spinor formulation of special relativity to consider the relativistic
combination of velocities and the Wigner rotation angle. There are in fact two methods of
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finding the results we require. The first is straightforward but tedious, so we only present
the initial formulation, and the final results. The second version is less apparent, but
much quicker, and we give the full derivation.

A.5.1 Explicit approach

Let σ = (σx, σy, σz) be a 3-vector of Pauli sigma matrices, and let

X = ctI + x · σ (A.50)

be a representation of a 4-vector X = (ct,x) in terms of a Hermitian 2× 2 matrix. Then
boosts are represented by

X→ BXB; B = cosh(ξ/2) + sinh(ξ/2) n · σ ; (A.51)

and rotations by

X→ RXR−1; R = cos(θ/2) + i sinh(θ/2) n · σ . (A.52)

Where ξ is the rapidity parameter defined by v = tanh ξ. The Wigner rotation is now
encoded in the fact that

B2B1 = R21B21 . (A.53)

One can write this out explicitly. Defining ~Ω = Ω ~nΩ, upon equating coefficients, we find
the following four simultaneous, independent equations:

nΩ · n12 = 0 , (A.54)

cos
Ω

2
cosh

ξ12

2
= cosh

ξ2

2
cosh

ξ1

2
+ sinh

ξ2

2
sinh

ξ1

2
n2 · n1 , (A.55)

cos
Ω

2
sinh

ξ12

2
n12 − sin

Θ

2
sinh

ξ12

2
nΩ × n12

= cosh
ξ2

2
sinh

ξ1

2
n1 + cosh

ξ1

2
sinh

ξ2

2
n2 , (A.56)

cosh
ξ12

2
sin

Ω

2
nΩ = sinh

ξ1

2
sinh

ξ2

2
n1 × n2 . (A.57)

One can then test one’s algebraic skill and fortitude, to eventually arrive at the already
proven results for the Wigner rotation:

cos Ω + 1 =
(γ12 + γ1 + γ2 + 1)2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
, (A.58)

and the familiar formula of Stapp [3]

sin Ω =
v1γ1v2γ2(1 + γ1 + γ2 + γ12)

(γ1 + 1)(γ2 + 1)(γ12 + 1)
sin θ . (A.59)

We congratulate those who verify this procedure! All the physics is already encoded in
the equations above — the only difficulty lies in the tedious nature of the algebra.
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A.5.2 A more efficient approach

Whilst this derivation is significantly shorter step-wise, it involves some not entirely ob-
vious leaps of understanding that we leave for the reader to verify. To begin with

B2
12 = B1B2B2B1 , (A.60)

and hence

γ12 =
1

2
tr(B2

12) =
1

2
tr(B1B2B2B1) =

1

2
tr(B2

1B
2
2) = γ1γ2(1 + v1 · v2) . (A.61)

This then leads to

cos θ =
γ12 − γ1γ2√

(γ2
1 − 1)(γ2

2 − 1)
. (A.62)

Using these results, and the fact that tr(R12B12) = tr(B1B2), we find

√
1 + cos Ω

√
γ12 + 1 =

√
(γ1 + 1)(γ2 + 1) +

√
(γ1 − 1)(γ2 − 1) cos θ . (A.63)

Thus

cos Ω + 1 =
(1 + γ1 + γ2 + γ12)2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
(A.64)

as required.

A.6 Summary of useful formulae

General: The relativistic combination of general velocities ~v1 and ~v2:

~v21 =
~v1 + ~v2‖1 +

√
1− v2

1 ~v2⊥1

1 + ~v1 · ~v2

=
~v2 + γ1~v1 + (γ1 − 1)(~v1 · ~v2)~v1/v

2
1

γ1(1 + ~v1 · ~v2)
, (A.65)

~v12 =
~v2 + ~v1‖2 +

√
1− v2

2 ~v1⊥2

1 + ~v1 · ~v2

=
~v1 + γ2~v2 + (γ2 − 1)(~v1 · ~v2)~v2/v

2
2

γ2(1 + ~v1 · ~v2)
, (A.66)

||~v21|| = ||~v12|| =
√
||~v1 + ~v2||2 − ||~v1 × ~v2||2

1 + ~v1 · ~v2

, (A.67)

γ12 = γ1γ2(1 + ~v1 · ~v2) . (A.68)

The Wigner rotation angle Ω:

sin Ω =
v1γ1v2γ2(1 + γ1 + γ2 + γ12)

(γ1 + 1)(γ2 + 1)(γ12 + 1)
sin θ , (A.69)
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cos Ω + 1 =
(γ12 + γ1 + γ2 + 1)2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
. (A.70)

The Thomas precession as seen in mission control’s reference frame:

d~Ω

dt
= ~v1 × ~a

(
γ1

1 + γ1

)
. (A.71)

The Thomas precession as seen in Alice’s reference frame:

d~Ω

dt
= ~v1 × ~a

(
γ2

1

1 + γ1

)
. (A.72)

Perpendicular: The relativistic combination of perpendicular velocities ~v1 and ~v2 is
particularly elegant:

~v21 = ~v1 +
√

1− v2
1 ~v2 , (A.73)

~v12 = ~v2 +
√

1− v2
2 ~v1 , (A.74)

||~v21|| = ||~v12|| =
√
v2

1 + v2
2 − v2

1v
2
2 , (A.75)

γ12 = γ1γ2 . (A.76)

The Wigner rotation angle Ω:

sin Ω =
v1γ1v2γ2

γ1γ2 + 1
, (A.77)

cos Ω + 1 =
(γ1 + 1)(γ2 + 1)

γ1γ2 + 1
. (A.78)

A.7 Further reading

For those students interested in more details regarding the relativistic combination of ve-
locities from a reasonably elementary viewpoint, the explicit boost composition approach
taken in reference [5] may prove useful. There are then many other standard textbook ap-
proaches, such as can be found in [1] or [2]. Some of the finer details about the relativistic
combination of velocities, especially the relationships between the different frames, can
be found in references [4] and [7].

However the issue that receives the most attention in the literature is the Thomas
precession, (and to a lesser extent the associated Wigner rotation) — partly due to the
confusion surrounding it. We feel that readers further interested in the Thomas precession
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(and relativistic velocity combination in general), will benefit greatly from reference [6],
which gives both a review of the literature (where the reader can find many higher-level
approaches outlined), a select few of the possible derivations of the Thomas precession
formula and some physical interpretations, and it also clarifies some of the misconceptions
surrounding the Thomas precession. One such of these is what actually is the correct
formulation, as alluded to in Section A.3.3. Reference [7] provides further discussion on
this point.
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Abstract: Ever since the work of von Ignatowsky circa 1910 it has been known (if not always
widely appreciated) that the relativity principle, combined with the mild physical assumption
of linearity and the less mild assumption of isotropy, leads almost uniquely to either the Lorentz
transformations of special relativity or to Galileo’s transformations of classical Newtonian me-
chanics. Consequently, if one wishes (for whatever reason) to entertain the possibility of Lorentz
symmetry breaking, then it seems likely that one will have to abandon or at the very least grossly
modify the relativity principle. We reassess the notion of spacetime transformations between in-
ertial frames in the absence of the relativity principle, arguing that significant nontrivial physics
can still be extracted as long as the transformations are at least linear. An interesting tech-
nical aspect of the analysis is that the transformations now form a groupoid/pseudo-group —
it is this technical point that permits one to evade the von Ignatowsky argument. Even in
the absence of a relativity principle we can nevertheless deduce clear and compelling rules for
the transformation of space and time, rules for the composition of 3-velocities, and rules for
the transformation of energy and momentum. The energy-momentum transformations are in
general affine, but may be chosen to be linear, with the 4-component vector P = (E,−pT )
transforming as a row vector, while the 4-component vector of space-time position X = (t,xT )T

transforms as a column vector. As part of the analysis we identify two particularly elegant
and compelling models implementing “minimalist” violations of Lorentz invariance — in one
of these minimalist models all Lorentz violations are confined to the neutrino sector, while the
second minimalist Lorentz-violating model depends on one free function of absolute velocity, but
otherwise preserves as much as possible of standard Lorentz invariant physics. Consequently in
many ways these models serve as a “gold standard” when studying possible violations of Lorentz
invariance.
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Keywords: Inertial frames, relativity principle, kinematics without relativity, Lorentz symme-
try breaking.

B.1 Introduction

In 1910 von Ignatowsky established a very tight connection between the group structure
implied by the relativity principle and the rules for the transformation of space-time
coordinates [1, 2, 3, 4]. Under suitable hypotheses, the relativity principle almost uniquely
leads to either the Lorentz transformations or Galileo’s transformations, and this result
makes no a priori appeal to the constancy of the speed of light. Over the last century
this same result has been repeatedly rediscovered, expanded upon, and re-analyzed, with
significant pedagogical efforts being expended; see for instance [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. The relevance of von Ignatowsky’s analysis
for our current purposes comes from reversing the logic: If for whatever reason one wishes
to speculate about a possible breakdown of Lorentz invariance at ultra-high energies, then
one is almost certain to be forced to abandon (or at the very least grossly modify) the
relativity principle — and in particular one will in general be forced to abandon the group
structure for the set of transformations that connect space and time in one inertial frame
to space and time in a different inertial frame.

This is the basic theme of this article: What happens to inertial frames, and the trans-
formations between inertial frames, if you do not have the relativity principle? We shall
see that quite a lot can still be said. Under very mild hypotheses, it is possible to
argue that the transformation rules between inertial frames should at least be linear.
A rather general formula for the transformation of 3-velocities, and in particular the
composition of 3-velocities can then be derived. We shall see that in theories with a
preferred frame (an “aether”) the set of transformations between inertial frames forms
a groupoid/pseudogroup. (In this particular sub-branch of mathematics the mathemati-
cal terminology is not 100% settled.) This groupoid/pseudogroup structure is not just a
mathematical curiosity, the distinction between a groupoid/pseudogroup and a group is
essential to evading von Ignatowsky’s argument.

In reference [25] one of the current authors had, with collaborators, explored the possi-
bility of, in certain circumstances, permitting “faster than light” signals while still retain-
ing the relativity principle. In the current article we shall more radically explore what
happens if the relativity principle is sacrificed.

Now, “merely” knowing how space and time transform is not sufficient to do anything
beyond the most basic of kinematics. A key ingredient to understanding dynamics in
Lorentz violating theories is to understand how energy and momentum transform. This
is more subtle than one might naively expect. The generic situation is that energy and
momentum transform in an affine manner (that is, linear plus an inhomogeneous offset
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term). We show that it is possible, but not always desirable, to choose conventions and
parameters in such a way as to force the offset to be zero — in which case energy and
momentum transform in a homogeneous linear manner. In fact, if this is done, then with
our conventions the 4-component vector P = (E,−pT ), the 4-momentum, is a row vector.
P is an element of the vector space dual to the 4-component vector X = (t,xT )T , the
4-position, which is a column vector. (We shall see that the offset term in the affine
transformation is needed if one wishes to recover the usual naive form of Newtonian
mechanics in a suitable limit, but that there is a somewhat non-standard formulation of
Newtonian mechanics in which energy-momentum can be made to transform linearly.)

Finally, as a side effect of the general analysis, we focus specific attention on two partic-
ularly elegant and compelling models implementing a “minimalist” violation of Lorentz
invariance. The first minimalist Lorentz-violating model confines all Lorentz violating
physics to the neutrino sector. The second minimalist Lorentz-violating model preserves
as much as possible of standard Lorentz invariant physics, but the transformations ad-
ditionally depend on one extra function, an arbitrary free function of absolute velocity.
Consequently, when studying possible violations of Lorentz invariance, these two models
in many ways serve as a “gold standard” for least-damaged versions of Lorentz invariance.

The considerations of this article will be essential to almost any form of violation of
Lorentz invariance that encodes “preferred frame” (aether frame) effects. Certain variants
of DSR (doubly special relativity, distorted special relativity) fall outside this framework,
others do not [26, 27, 28, 29, 30].

B.2 Why violate Lorentz invariance?

Why is there currently such significant interest in the possibility of broken Lorentz in-
variance? There are several reasons, based on a variety of considerations. There are
purely theoretical speculations, there is the practical need for a phenomenological frame-
work within which to formulate empirical tests of Lorentz invariance, and there are even
tentative experimental hints of the observation of violations of Lorentz invariance.

Theoretical considerations: There have been numerous and long-standing theoretical
suggestions to the effect that quantum gravity might eventually violate Lorentz invari-
ance at ultra-high energies. For instance, there is the string-inspired theoretical framework
for characterizing possible violations of Lorentz invariance developed by Kostelecky and
collaborators [31, 32, 33, 34, 35, 36, 37, 38, 39]. More recently, the Horava gravity frame-
work [40] naturally includes Lorentz violation [41, 42, 43, 44, 45, 46]. The “analogue space-
time” programme also very naturally leads to models where Lorentz invariance is violated
at one level or another [47, 48, 49, 50]. There is also the flat-space non-gravity framework
developed by Anselmi [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], where Lorentz
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invariance breaking is used to partially regulate QFT ultraviolet divergences. Further
afield, Nielsen and collaborators have studied the renormalization group flow of Lorentz
symmetry violating operators in generic QFTs, demonstrating that Lorentz invariance is
often an infrared fixed point of a generic Lorentz violating QFT [64, 65, 66, 67, 68]. That
is, there is an already vast literature regarding possible violations of Lorentz symmetry,
and we have necessarily had to be rather selective in choosing citations.

Phenomenological considerations: If one wishes to observationally test Lorentz in-
variance one needs some coherent framework to work in that at least allows one to formu-
late appropriate questions. Over the last decade significant progress along these lines has
been made. See for instance work by Coleman and Glashow [69, 70], Jacobson, Liberati,
and Mattingly [71, 72, 73, 74, 75, 76, 77, 78, 79, 80], and especially the Living Review by
Mattingly [81]. The net result is that we now have a considerable quantity of observational
bounds, some of them very stringent observational bounds, constraining the possibility of
Lorentz symmetry breaking — although it should perhaps be noted that these analyses
are performed in the preferred (aether) frame.

Experimental considerations: The OPERA experiment has recently announced ten-
tative but statistically significant evidence for Lorentz symmetry violation in the form
of “faster than light” neutrinos [82]. (See also earlier even more tentative results from
the MINOS collaboration [83].) In the resulting firestorm, over 160 theoretical articles
have been generated in some 11 weeks. Notable contributions include [84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103]. We particularly wish
to emphasise the importance of the experimental/observational bounds presented in the
Cohen–Glashow [86] and Maccione–Liberati–Mattingly articles [100].

Given this level of interest in the topic, we have feel that it is interesting, useful, and
timely to perform a careful analysis of the general and very basic notion of inertial frames
in the absence of Lorentz invariance. We shall focus particularly on “preferred frame”
(aether) versions of Lorentz symmetry breaking — that is, we shall study inertial frames
in the absence of the relativity principle.

B.3 General transformations between inertial frames

B.3.1 Definition of an inertial frame

Essentially everyone would agree on this characterization of inertial frames:



91

• All inertial frames are in a state of constant, rectilinear motion with respect to one
another; they are not accelerating (in the sense of proper acceleration that would
be detected by an accelerometer).

• In an inertial reference frame, the laws of mechanics take their simplest form.

• In an inertial frame, Newton’s first law (the law of inertia) is satisfied: Any free
motion has a constant magnitude and direction.

If in addition you accept the relativity principle, then:

• Physical laws take the same form in all inertial frames.

But, as we have argued above, for some purposes the relativity principle is overkill. And
that is the topic we will now explore.

B.3.2 Argument for linearity

We still want the transformations to be linear. By definition an inertial particle, in an
inertial frame, is not accelerating

d2x

dt2
= 0; x(t) = x0 + v0t. (B.1)

In any other inertial frame, the particle is again by definition not accelerating

d2x̄

dt̄2
= 0; x̄(t̄) = x̄0 + v̄0t̄. (B.2)

Whatever the transformation is between the two sets of time and space coordinates {t,x}
and {t̄, x̄}, the transformation has to map straight lines into straight lines — which forces
the transformation to be, at the very worst, projective [23, 24]. By additionally requiring
that events in a bounded region map into a bounded region this is actually enough to
force the transformations to be linear [23, 24]. That is, writing the 4-position as

X =

(
t
x

)
, (B.3)

we want
X → X̄ = M X. (B.4)

Note that we adopt conventions where both 3-vectors x and 4-vectors X are column
vectors. This minimizes the number of special case fiddles we have to adopt later in the
discussion.
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Note that the primary physics input is the observation that inertial frames exist, and
from extremely basic notions of kinematics this is enough to argue for linearity. If one
additionally (as we shall see later in the article) wants to develop some notion of La-
grangian/Hamiltonian dynamics, then the observation that free inertial particles exist,
coupled with Noether’s theorem, can be used to argue for the homogeneity of space and
time. Some authors prefer to start from homogeneity, and thereby deduce linearity. There
are minor technical issues, but for all practical purposes spacetime homogeneity implies
and is implied by linearity of the transformations between inertial frames.

B.3.3 General representation of inertial transformations

Taking linearity as given:

• In the special case of Newtonian physics (Galilean relativity) we have

M =

 1 0T

− v I

 . (B.5)

• In the case of Einstein physics (special relativity) we have

M =

 γ −γvT/c2

− γv γnnT + [I − nnT ]

 , (B.6)

with v = vn and γ = (1− v2/c2)−1/2. One can also write this as

M =

 γ −γvT/c2

− γv γn⊗ n+ [I − n⊗ n]

 . (B.7)

• Carroll kinematics (“Alice in wonderland kinematics”) is a rarely encountered and
somewhat unphysical limit of the Lorentz group where one takes c→ 0 and v → 0
while keeping the “slowness” u = v/c2 fixed. The resulting transformations

M =

 1 −uT

0 I

 (B.8)

correspond to [104, 105, 106, 107, 108]:

t→ t̄ = t− u · x; x→ x̄ = x. (B.9)

We will have very little to say concerning this particular option.
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In the general case, we only know that M is some matrix which we can, without loss of
generality, write in the form

M =

 γ −uT

−w Σ

 ; M−1 =

 (γ − uTΣ−1w)−1 (uT/γ)(Σ−wuT/γ)−1

(γ − uTΣ−1w)−1Σ−1w (Σ−wuT/γ)−1

 .
(B.10)

Specifically, we are not assuming any notion of isotropy. Note that wuT = w ⊗ u is a
3× 3 matrix, while uTw = u ·w is a scalar. By replacing u→ γu, we could also choose
to write this in the completely equivalent form

M =

 γ −γuT

−w Σ

 ; M−1 =

 γ−1(1− uTΣ−1w)−1 uT (Σ−wuT )−1

γ−1(1− uTΣ−1w)−1Σ−1w (Σ−wuT )−1

 .
(B.11)

Alternatively, by now replacing w → Σw,

M =

 γ −γuT

− Σw Σ

 ; M−1 =

 γ−1(1− uTw)−1 uT (I −wuT )−1Σ−1

γ−1(1− uTw)−1w (I −wuT )−1Σ−1

 .
(B.12)

Any one of these ways of parameterizing the 4× 4 matrix M is completely equivalent and
mathematically acceptable, and which one we adopt is simply a matter of taste. (It is
easy to explicitly carry out the matrix multiplications to verify that MM−1 = I.)

B.3.4 Aether frame and moving frame

Let us now distinguish two frames, the aether frame (the preferred rest frame) F with
coordinates X, and the moving frame F̄ with coordinates X̄. Then for definiteness we
will choose M to map from the aether frame to the moving frame, and M−1 to map from
the moving frame to the aether frame, so that

X̄ = M X; X = M−1 X̄. (B.13)

(Choosing which of the frames is the aether, and which is moving, is merely a matter
of convention.) We now rename things slightly and adopt the specific convention and
nomenclature

M =

 γ −γuT

− Σv Σ

 ; M−1 =

 γ−1(1− uTv)−1 uT (I − vuT )−1Σ−1

γ−1(1− uTv)−1v (I − vuT )−1Σ−1

 .
(B.14)

Note that with these conventions both γ and Σ are dimensionless, while v has the dimen-
sions of velocity, and u has dimensions of “slowness” = 1/(velocity). It is again easy to
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verify that MM−1 = I. It is also useful to note (see appendix B.9)

uT (I − vuT )−1 = (1− uTv)−1uT = (1− u · v)−1uT , (B.15)

and so write

M =

 γ −γuT

− Σv Σ

 ; M−1 =

 γ−1(1− u · v)−1 (1− u · v)−1 uTΣ−1

γ−1(1− u · v)−1v (I − v ⊗ u)−1Σ−1

 .
(B.16)

Note that there is a kinematic singularity if u · v = 1; in the particular case of special
relativity this would correspond to an infinite boost to a frame traveling at lightspeed.
But the possible occurrence of these kinematic singularities is a much more general phe-
nomenon, and is not limited to special relativity. Indeed, since with our conventions

M =

 γ 0T

0 Σ

  1 −uT

− v I

 , (B.17)

we see that

det(M) = γ det(Σ) det

 1 −uT

− v I

 = γ det(Σ) [1− u · v]. (B.18)

So the existence of the kinematic singularity is equivalent to the non-invertibility of the
transformation matrix, a possibility that shoud be excluded on physical grounds.

An object that is at rest in the moving frame follows the worldline

X̄ =

(
t̄

0

)
, (B.19)

which in the aether frame coordinates maps into

X = M−1 X̄ = t̄ γ−1(1− u · v)−1

(
1

v

)
. (B.20)

That is, with these conventions the moving frame has 3-velocity vmoving = v as viewed
by the aether, and this is our physical interpretation of the parameter v appearing in the
matrix M . But what about the aether frame as seen by the moving frame? An object at
rest in the aether frame follows the worldline

X =

(
t

0

)
, (B.21)

which in the moving frame coordinates maps into

X̄ = M X = t

(
γ
−Σv

)
. (B.22)
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That is, as viewed in the moving frame, the aether is moving with 3-velocity

vaether = −Σv

γ
. (B.23)

Note that vmoving and vaether are generally not equal-but-opposite velocities. In fact,
without additional assumptions, in the general case they need not even be collinear.

B.3.5 Transformation of 3-velocity

From X̄ = M X we have dX̄ = M dX, whence with the conventions adopted above we
see

dt̄ = γ(dt− u · dx); dx̄ = Σ(dx− vdt), (B.24)

so that

˙̄x ≡ dx̄

dt̄
=

Σ(ẋ− v)

γ(1− u · ẋ)
. (B.25)

This is the general combination of velocities rule. (One can easily see that it is a natu-
ral generalization of the usual special relativistic combination of velocities, with current
conventions being chosen to make this transformation as simple as possible). Note in
particular that an object at rest in the aether frame, with ẋ = 0, moves at 3-velocity
−Σv/γ in the moving frame, while an object at rest in the moving frame, with ˙̄x = 0,
moves at 3-velocity v in the aether frame.

Similarly, from dX = M−1 dX̄ we have

dt = γ−1(1− u · v)−1dt̄+ (1− u · v)−1uTΣ−1dx̄, (B.26)

and
dx = (I − v ⊗ u)−1Σ−1dx̄+ γ−1(1− u · v)−1vdt̄, (B.27)

so that

ẋ ≡ dx

dt
=

(I − v ⊗ u)−1Σ−1 ˙̄x+ γ−1(1− u · v)−1v

γ−1(1− u · v)−1 + (1− u · v)−1uTΣ−1 ˙̄x
. (B.28)

We can simplify this to obtain

ẋ =
γ(1− u · v)(I − v ⊗ u)−1Σ−1 ˙̄x+ v

1 + γuTΣ−1 ˙̄x
. (B.29)

But (see appendix B.9)

(1− u · v)(I − v ⊗ u)−1 = (1− u · v)I + v ⊗ u, (B.30)

and so

ẋ =
γ[(1− u · v)I + v ⊗ u] Σ−1 ˙̄x+ v

1 + γuTΣ−1 ˙̄x.
. (B.31)
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Finally

ẋ =
γ(1− u · v) Σ−1 ˙̄x

1 + γuTΣ−1 ˙̄x
+ v. (B.32)

This last formula seems to be the best one can do. Attempting to change conventions
to simplify this particular formula leads to problems elsewhere. Note in particular that
something at rest in the moving frame, so that ˙̄x = 0, moves at velocity v in the aether
frame.

B.3.6 Groupoid/pseudogroup structure

Physically the matrix M need not be a function of v only — it can also depend on the
orientation of the moving inertial frame with respect to the preferred frame, and worse
the quantities γ, u, and Σ, are (potentially) free parameters in their own right. It is useful
to write M(F̄ ), to emphasise that the matrix M(F̄ ) is potentially a function of all the
parameters characterizing the moving inertial frame F̄ . (We could furthermore write the
various pieces of M(F̄ ) as γ(F̄ ), v(F̄ ), u(F̄ ), and Σ(F̄ ); while technically more correct,
this is so clumsy as to be impracticable, and the frame dependence of these quantities will
always be implicitly understood.) In addition, one should keep in mind that in general
the transformation matrices M(F ) could also depend on the particular type of rulers
and clocks one is using; it is only for situations of very high symmetry — essentially
amounting to adoption of the relativity principle — that the notion of time and distance
can be abstracted to have a meaning that is independent of the internal structure of one’s
choice of clocks and rulers.

Note that in general the set {M(F̄ )}, (where M(F̄ ) is the transformation matrix from
the aether inertial frame to the moving inertial frame F̄ ), need not form a group, similarly
the set {M−1(F̄ )} need not form a group. There is no need for these sets to be closed
under matrix multiplication. Nor are these sets generally closed under matrix inversion.
There does not seem to be any specialized mathematical terminology for such objects —
they are not semigroups, they are not groupoids, they are not pseudogroups, they are not
monoids, they are not cosets, they are not magmas, they are just sets of matrices.

To transform from an arbitrary inertial frame F1 to another arbitrary inertial frame F2,
the appropriate transformation is

M(F2, F1) = M(F2)M(F1)−1. (B.33)

The set {M(F2, F1)} = {M(F2)M(F1)−1} certainly forms a groupoid/pseudogroup, in the
sense that the set is closed under the restricted set of compositions (so-called partial-
products) of the form

M(F3, F2)M(F2, F1) = M(F3, F1). (B.34)

(The relevant mathematical terminology is not 100% standardized, and different sources
prefer to call this either a groupoid or a pseudogroup.) Note that M(F, F ) = I, so an
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identity certainly exists, and thatM(F2, F1)−1 = M(F1, F2) so that inverses also exist. As-
sociativity is automatic because matrix multiplication is associative. In general this is the
most you can say. The technical difference between a group and a groupoid/pseudogroup
is in this context extremely important. It is this technical mathematical distinction that
ultimately allows us to side-step the usual von Ignatowsky theorems (and their variants)
that under normal circumstances lead almost uniquely to the Lorentz group or the Galileo
group — the physics reason for this extra generality is because while we have assumed
linearity of the transformations we have not assumed either isotropy or the relativity
principle.

B.4 Transformations of energy and momentum

B.4.1 Defining energy and momentum

Defining energy and momentum, as opposed to purely kinematical notions of velocity and
position, requires at least some notion of dynamics. Pick some arbitrary but fixed inertial
frame. Ignoring interactions for now, in view of the homogeneity of spacetime we shall
assume that each particle has associated with it some Lagrangian L(ẋ) which leads to a
momentum p(ẋ) = ∂L/∂ẋ, and hence to a Hamiltonian H(p), which we shall typically
just write as E(p). Because of space-time homogeneity and the Hamiltonian/Lagrangian
framework, Noether’s theorem implies energy and momentum conservation:∑

in

Ei =
∑
out

Ei;
∑

in

pi =
∑
out

pi. (B.35)

Now the inertial equations ẍ = 0 will be satisfied for any arbitrary L(ẋ). (Note the
absence of any explicit t or x dependence.) To operationally determine a specific L(ẋ)
that can usefully characterize a specific particle, you will have to perform a large number
of collisions at various 3-velocities, compare input and output states, and data-fit to
extract suitable Ei(ẋ) and pi(ẋ) corresponding to the various particles in your universe
of discourse. Once this is done you can build a model for the Li(ẋ) using

Li(ẋ) = Li(0) +

∫ ẋ

0

p( ˙̃x) · d ˙̃x. (B.36)

Note that, in modelling the pi(ẋ), one would have to take into account the consistency
condition ∇ẋ × pi(ẋ) required for this construction to be path independent in velocity
space.

But even after one has done this, the construction cannot be unique — for any set of
constants εi and πi such that

∑
in εi =

∑
out εi and

∑
in πi =

∑
out πi we see that the

assignments
Ei ↔ Ei + εi; pi ↔ pi + πi (B.37)
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are physically indistinguishable. But that means the Lagrangians

Li(ẋ)↔ Li(ẋ)− εi + πi · ẋ (B.38)

are physically indistinguishable. In terms of the action this means

Si =

∫
Li(ẋ)dt↔ Si =

∫
Li(ẋ)dt− εi(tF − tI) + πi · (xF − xI) (B.39)

are physically indistinguishable — which is physically and mathematically obvious in view
of the fact that the two actions differ only by boundary terms. This intrinsic ambiguity
in the definition of energy and momentum will (perhaps unfortunately) turn out to be
important. One could try to resolve these ambiguities in a number of different ways:

• For instance, the ambiguity in momentum could be fixed by setting the momentum
at zero velocity to be zero: p(ẋ = 0) = 0. Sometimes this works well, sometimes it
does not.

• The ambiguity in energy is equivalent to an ambiguity in rest energy E(ẋ = 0);
attempting to set the rest energy to zero is often severely problematic.

In general it is best to keep this freedom available in the calculation as long as possible.

B.4.2 Affine versus linear transformations

What can we now say about energy and momentum, and their transformation properties,
using only linearity of the transformations between inertial frames? (Recall that we very
specifically do not assume isotropy or any form of the relativity principle.)

Consider a single particle, but multiple inertial frames. To even begin to talk about
energy and momentum, in each frame one must be able to set up a suitable Lagrangian
and Hamiltonian, and there should be some as yet unspecified relationship between the
Lagrangians and Hamiltonians in these distinct inertial frames. Furthermore extrema of
the action as calculated in one inertial frame must coincide with extrema of the action
calculated in any other inertial frame.

That is, in complete generality we should demand that for any two inertial frames the
action calculated in these frames should be equal up to boundary terms, and in each
frame we know the action is ambiguous up to boundary terms. In view of the groupoid
structure of the transformations between inertial frames there is no loss of generality in
considering one moving frame F̄ plus the aether frame F for which we can write∫

L̄ dt̄+ (boundary terms) =

∫
Ldt+ (boundary terms). (B.40)
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In view of our previous discussion this implies∫ {
L̄− ε̄+ π̄ · (dx̄/dt̄)

}
dt̄ =

∫
{L− ε+ π · (dx/dt)} dt. (B.41)

But since L = −(E − p · ẋ) this implies∫ {
(Ē + ε̄)− (p̄+ π̄) · (dx̄/dt̄)

}
dt̄ =

∫
{(E + ε)− (p+ π) · (dx/dt)} dt. (B.42)

Therefore
(Ē + ε̄) dt̄− (p̄+ π̄) · dx̄ = (E + ε) dt− (p+ π) · dx. (B.43)

So now in complete generality we have

(Ē + ε̄,−p̄T − π̄T )

(
dt̄

dx̄

)
= (E + ε,−pT − πT )

(
dt

dx

)
. (B.44)

But (
dt̄

dx̄

)
= M

(
dt

dx

)
, (B.45)

therefore implying both

(E + ε,−pT − πT ) = (Ē + ε̄,−p̄T − π̄T )M, (B.46)

and
(Ē + ε̄,−p̄T − π̄T ) = (E + ε,−pT − πT )M−1. (B.47)

These are affine transformation laws for energy and momentum, (that is, linear plus an
inhomogeneous offset), with the affine piece only depending on the intrinsic ambiguities(
ε,−πT

)
and

(
ε̄,−π̄T

)
in the energy and momentum. Note that P = (E,−pT ) transforms

in the dual space [that is, dual to 4-position X = (t,xT )T ]. To be explicit about this

E → Ē =
E − pTv
γ(1− uTv)

+
ε− πTv

γ(1− uTv)
− ε̄, (B.48)

and

p→ p̄ = (Σ−1)T (I − uvT )−1(p− Eu) + (Σ−1)T (I − uvT )−1(π − εu)− π̄. (B.49)

In terms of dot and tensor products we can rewrite this as

E → Ē =
E − p · v
γ(1− u · v)

+
ε− π · v

γ(1− u · v)
− ε̄, (B.50)

and

p→ p̄ = (Σ−1)T (I − u⊗ v)−1(p− Eu) + (Σ−1)T (I − u⊗ v)−1(π − εu)− π̄. (B.51)
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(One can now begin to see how the Lorentz and Galilean transformations might emerge
as special cases of this very general result.) The inverse transformations are somewhat
simpler

Ē → E = γĒ + p̄TΣv + γε̄+ π̄TΣv − ε, (B.52)

and
p̄→ p = γĒu+ ΣT p̄+ γε̄u+ ΣT π̄ − π. (B.53)

Suppose we now consider the same particle at two different 3-velocities, but working
with the same two inertial frmaes F and F̄ ; then in terms of energy and momentum
differences, we can write a homogeneous linear transformation law of the form(

[Ē1 − Ē2],−[p̄1 − p̄2]T
)

=
(
[E1 − E2],−[p1 − p2]T

)
M−1. (B.54)

That is:

∆E → ∆Ē =
∆E −∆p · v
γ(1− u · v)

, (B.55)

and
∆p→ ∆p̄ = (Σ−1)T (I − u⊗ v)−1(∆p−∆Eu). (B.56)

We need to compare the same particle at two different velocities, since otherwise there is
no particular reason for the

(
ε,−πT

)
and

(
ε̄,−π̄T

)
to be the same for the two situations.

Note that for two otherwise identical particles one could in principle choose differing
values for the parameters

(
ε,−πT

)
and

(
ε̄,−π̄T

)
, thereby making them distinguishable.

This does not appear to be what happens in our universe, so we shall assume that the
quantities

(
ε,−πT

)
and

(
ε̄,−π̄T

)
, while they might depend on the inertial frame one is

working in, are at least universal for particular particle species.

Note that in terms of energy-momentum differences the inverse transformations are

∆Ē → ∆E = γ∆Ē + ∆p̄TΣv, (B.57)

and
∆p̄→ ∆p = γ∆Ēu+ ΣT ∆p̄. (B.58)

As a consistency check on the general formalism we can readily verify that these energy-
momentum transformation laws are compatible with, and permit us to recover, the purely
kinematical velocity combination rules. See appendix B.10 for details.

B.4.3 Summary

For each individual particle species we have

E → Ē =
E − p · v
γ(1− u · v)

+
ε− π · v

γ(1− u · v)
− ε̄, (B.59)
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and

p→ p̄ = (Σ−1)T (I − u⊗ v)−1(p− Eu) + (Σ−1)T (I − u⊗ v)−1(π − εu)− π̄, (B.60)

while the inverse transformations are

Ē → E = −ε+ γĒ + p̄ · (Σv) + γε̄+ π̄ · (Σv), (B.61)

and

p̄→ p = −π + γĒu+ ΣT p̄+ γε̄u+ ΣT π̄. (B.62)

We have a certain amount of freedom to choose ε and π, and ε̄ and π̄. One obvious choice
would be to always make the transformation laws linear; however as we shall soon see this
is not always the best thing to do.

B.5 Examples

Let us now consider the very standard cases of Galilean invariance and Lorentz invariance,
comparing affine and linear transformation laws for energy-momentum.

B.5.1 Galileo group (affine version)

For Galilean kinematics we have

M =

 1 0T

− v I

 , (B.63)

so

t̄ = t; x̄ = x− vt; ˙̄x = ẋ− v. (B.64)

Now one natural choice is to choose the particularly simple Lagrangians

L =
1

2
m||ẋ||2; L̄ =

1

2
m|| ˙̄x||2. (B.65)

(We shall soon see that there are also other choices one can make.) Then

L̄ =
1

2
m|| ˙̄x||2 =

1

2
m||ẋ− v||2 =

1

2
m||ẋ||2 −mv · ẋ+

1

2
m||v||2. (B.66)

That is

L̄ = L+
1

2
m||v||2 −mv · ẋ. (B.67)
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Now note

p̄ = mẋ−mv = m ˙̄x; H̄ = p̄ · ˙̄x− L̄ =
||p̄||2

2m
. (B.68)

So working explicitly, with these particular conventions, we have affine transformations
for energy-momentum:

Ē = E − p · v +
1

2
m||v||2; p̄ = p−mv. (B.69)

In contrast, working directly from the general transformation laws derived above, and
taking γ = 1, u = 0, and Σ = I, we have

E → Ē = −ε̄+ E − p · v + [ε− π · v] = E − p · v +
1

2
m||v||2, (B.70)

and
p→ p̄ = −π̄ + p+ π = p−mv, (B.71)

from which we deduce that this particular way of implementing Galilean mechanics cor-
responds to the choices

ε̄ = −1

2
m||v||2; π̄ = mv; ε = 0; π = 0. (B.72)

(Remember that by convention F̄ is the moving frame while F is the “aether” frame.
Note that it is the quantities {ε̄, π̄} associated with the moving frame that are non-zero,
and that these quantities depend on the velocity v of the moving frame.) The inverse
transformations are

Ē → E = −ε+ Ē + p̄ · v + ε̄+ π̄ · v = Ē + p̄ · v +
1

2
m||v||2, (B.73)

and
p̄→ p = −π + p̄+ π̄ = p̄+mv. (B.74)

This is the “usual” way of doing Galilean dynamics, which unavoidably leads to affine
transformations for energy and momentum.

A somewhat subtle message to be taken from the discussion is this: Since affine transfor-
mations arise so naturally in this extremely straightforward setting, it seems unlikely that
the affine features of the energy-momentum transformations could always be completely
eliminated in more general settings.

B.5.2 Lorentz group (linear version)

In this case the Lorentz transformations are

M =

 γ −γvT/c2

− γv γn⊗ n+ [I − n⊗ n]

 (B.75)
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with v = vn and γ = (1− v2/c2)−1/2. The usual form of the Lagrangian is

L = −mc2
√

1− ||ẋ||2/c2, (B.76)

so

p =
mẋ√

1− ||ẋ||2/c2
; H = p · ẋ− L =

mc2√
1− ||ẋ||2/c2

. (B.77)

Furthermore

L̄ = −mc2
√

1− || ˙̄x||2/c2, (B.78)

so

p̄ =
m ˙̄x√

1− || ˙̄x||2/c2
; H̄ = p̄ · ˙̄x− L̄ =

mc2√
1− || ˙̄x||2/c2

, (B.79)

and in fact
L̄ dt̄ = L dt, (B.80)

implying both ε = 0 and π = 0, and ε̄ = 0 and π̄ = 0. Then the energy-momentum
transformations are just the usual linear Lorentz transformations

(E,−pT ) = (Ē,−p̄T )M, (B.81)

and
(Ē,−p̄T ) = (E,−pT )M−1. (B.82)

This is the standard way of implementing Lagrangian and Hamiltonian mechanics in the
presence of Lorentz symmetry.

B.5.3 Lorentz group (affine version)

We could have chosen a slightly different normalization for L and H. If we take

L = mc2
{

1−
√

1− ||ẋ||2/c2
}
, (B.83)

then

p =
mẋ√

1− ||ẋ||2/c2
; H = p · ẋ− L =

mc2√
1− ||ẋ||2/c2

−mc2. (B.84)

Furthermore

L̄ = mc2

{
1−

√
1− || ˙̄x||2/c2

}
, (B.85)

so

p̄ =
m ˙̄x√

1− || ˙̄x||2/c2
; H̄ = p̄ · ˙̄x− L̄ =

mc2√
1− || ˙̄x||2/c2

−mc2. (B.86)
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In fact with this normalization

[L̄−mc2] dt̄ = [L−mc2] dt, (B.87)

whence
ε̄ = mc2; π̄ = 0; and ε = mc2; π = 0. (B.88)

We can rephrase this in terms of the 4-velocities of the “aether” and moving frames as( ε̄
π̄

)
= mc2 V̄ ;

( ε
π

)
= mc2 V ; (B.89)

With these choices the energy-momentum transformations look slightly unusual. Taking
v ‖ p for simplicity (the non-collinear case does not teach us anything new) we now have

E → Ē = γ([mc2 + E]− p · v)−mc2, (B.90)

and
p→ p̄ = γ(p− [mc2 + E]v/c2). (B.91)

The inverse transformations are

Ē → E = γ([mc2 + Ē] + p̄ · v)−mc2, (B.92)

and
p̄→ p = γ([mc2 + Ē]v/c2 + p̄). (B.93)

These affine transformations make perfectly good physical sense once you realize that,
with the conventions of this subsection, the E’s in question are just the relativistic kinetic
energies — what is normally denoted by K:

Ehere = Etotal −mc2 = K. (B.94)

Then
K → K̄ = γ([mc2 +K]− p · v)−mc2, (B.95)

and
p→ p̄ = γ(p− [mc2 +K]v/c2), (B.96)

while
K̄ → K = γ([mc2 + K̄] + p̄ · v)−mc2, (B.97)

and
p̄→ p = γ([mc2 + K̄]v/c2 + p̄). (B.98)

These are manifestly just a disguised form of the usual Lorentz transformations. Note
that the formal c→∞ limit of these (slightly nonstandard) affine equations is

K → K̄ = K − p · v +
1

2
m||v||2; p→ p̄ = p−mv; (B.99)
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and

K̄ → K = K̄ + p̄ · v +
1

2
m||v||2; p̄→ p = p̄+mv. (B.100)

These are the transformation laws for (the usual form of) the Galileo group.

Again, the somewhat subtle message to take from this is that since the affine parameters
ε and π, and ε̄ and π̄, are already so important in situations of extremely high symmetry
(the Lorentz group, the Galileo group), then they are also likely to be important in any
situations where these symmetries are broken.

B.5.4 Galileo group (linear version)

The previous discussion suggests that there might be some (perhaps nonstandard) set of
conventions that would make the energy and momentum transform linearly for the Galileo
group. That is, there might be some way of arranging things so that for the Galileo group

E → Ē = E − p · v; p→ p̄ = p. (B.101)

How would we do that? It will have to be something rather unusual. Choose the following
Lagrangians:

L =
1

2
m||ẋ||2; L̄ =

1

2
m|| ˙̄x+ v||2. (B.102)

Then the momenta are

p = mẋ; p̄ = m( ˙̄x+ v) = mẋ = p. (B.103)

The energy in the aether frame is (as usual)

E = p · ẋ− L =
1

2
m||ẋ||2. (B.104)

However with these conventions the energy in the moving frame is

Ē = p̄ · ˙̄x− L̄ = m( ˙̄x+ v) · ˙̄x− 1

2
m|| ˙̄x+ v||2 (B.105)

= mẋ · (ẋ− v)− 1

2
m||ẋ||2 (B.106)

=
1

2
m||ẋ||2 −mẋ · v = E − p · v. (B.107)

Now L̄ = 1
2
m|| ˙̄x + v||2, is certainly an “odd” and “unusual” Lagrangian to choose for a

free non-relativistic particle in the moving frame, but it does the job. One certainly has
the correct equations of motion ¨̄x = 0, and for this definition of energy and momentum,
albeit “odd” and “unusual”, the energy-momentum transformation laws are explicitly
linear :

p̄ = p; Ē = E − p · v. (B.108)
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Note that we have made the quantities {ε,π} and {ε̄, π̄} simple, in fact zero, at the price
of making the moving-frame Lagrangian complicated. (For some comments in a similar
vein, see section II.A of reference [109].)

B.5.5 Summary

When looking at how this general framework and formalism applies to the Lorentz group
we saw that there were good choices for ε and π, and ε̄ and π̄, and also “bad” (or rather,
sub-optimal) choices. There seems to be considerable freedom in how one picks ε and π,
and ε̄ and π̄, and so considerable freedom in choosing affine versus linear transformations
for the 4-momentum. Can this freedom be used to improve things? If one is working in a
region of parameter space that is “close” to special relativity (a “perturbative” deviation
from special relativity) then linear transformations for the 4-momentum would seem to
be the most appropriate choice. If one is working in a region of parameter space that
is “close” to Galillean relativity (a “perturbative” deviation from Newtonian mechanics)
then affine transformations for the 4-momentum would seem to be the most appropriate
choice. The general situation is considerably murkier.

B.6 On-shell energy-momentum relations

In any particular inertial frame if one measures the energy E and momentum p of an
on-shell particle then there will be some relation between them; an on-shell energy-
momentum relation E = E(p). One normally expects a very tight connection between
the functional form of these energy-momentum relations and the functional form of the
transformations between inertial frames — unfortunately this very tight connection is
intimately related with adopting the relativity principle, and will in general fail once the
relativity principle is abandoned. That is, in Lorentz violating theories the functional
form of the energy-momentum relations and the functional form of the transformations
between inertial frames can be (and often are) independent of each other.

B.6.1 Rest energy without the relativity principle

To see how this comes about, consider the preferred (aether) frame F , and in that frame
suppose you measure the energy E and momentum p of the same particle in a number
of different kinematic states to map out the energy-momentum relation E = E(p) in the
aether frame. To each momentum p we associate a 3-velocity v = ∂E/∂p. Now go to
the rest frame F̄ of the particle (of course the rest frame of the particle is moving with
respect to the aether). In the rest frame the particle will by definition have 3-velocity zero
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v̄ = 0, and will have some energy, call it the rest-energy Ē = E0 and some momentum,
call it the rest-momentum p̄ = p0.

If the relativity principle holds then the rest-energy and rest-momentum must be intrin-
sic properties of the particle that cannot depend on its velocity with respect to the aether
— and in particular the rest-momentum is most typically chosen to be zero. But once
one has preferred frame effects the rest-energy and rest-momentum can very definitely
depend on the state of motion with respect to the aether. That is, generally we will have
Ē = E0(F̄ ) and p̄ = p0(F̄ ).

Transforming back to the aether frame we now see

E = γE0(F̄ ) + p0(F̄ )T Σv + γε̄+ π̄T Σv − ε, (B.109)

and

p = γE0(F̄ )u+ ΣT p0(F̄ ) + γε̄u+ ΣT π̄ − π. (B.110)

In general, unless further assumptions are made, this is the best one can do.

We now use the freedom to choose the quantities {ε,π} and {ε̄, π̄} to make life as simple
as possible. Without any real loss of generality we can choose π̄ = −p0(F̄ ) in which case

E = γE0(F̄ ) + γε̄− ε, (B.111)

and

p = γE0(F̄ )u+ γε̄u− π. (B.112)

(This is equivalent to choosing conventions so that in the rest frame the total “effective”
rest momentum p0 + π̄ = 0.) Let us now for definiteness choose ε = 0 and π = 0, then

E = γ[E0(F̄ ) + ε̄], (B.113)

and

p = γ[E0(F̄ ) + ε̄]u = Eu. (B.114)

(We have done things in this manner so that it becomes clear just how general the relation
p = Eu really is.) Finally choose ε̄ = 0, then with these choices we can write

E = γE0(F̄ ), (B.115)

and

p = γE0(F̄ )u = Eu. (B.116)

Introduce an arbitrary but fixed constant c with the dimensions of velocity (not necessarily
the speed of light), and some arbitrary function $(F̄ ). Then in the aether frame we can
write

E2 −$||p||2c2 = γ2(1−$c2||u||2)E2
0(F̄ ). (B.117)
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In the case of exact Lorentz invariance we have $ → 1, with the constant c being in-
terpreted as the speed of light, and γ → 1/

√
1− v2/c2, while u = v/c2. Furthermore

E0 is then independent of v, so in this case one recovers the usual kinematic relation
E2 − ||p||2c2 = E2

0 , while (as expected) E = γE0 and p = γE0v/c
2 = Ev/c2. In the

absence of Lorentz invariance one generically has to live with the more complicated kine-
matics presented above. The notion of rest energy E0 still makes perfectly good sense,
but the rest energy can depend on the particle’s state of motion through the aether,
E0(F̄ ), and the relation to 4-momentum is considerably more subtle than one might have
expected.

The key point here is that the energy-momentum relation E(p) and the transformation
matrix M are in general independent of each other; knowing one does not necessarily give
you the other (except when Lorentz invariance is assumed, or some similar restriction is
imposed). There are two additional special cases of considerable interest, which we now
discuss.

B.6.2 Invariant rest energy without the relativity principle

One can speculate or hypothesize that for unknown reasons the internal structure of
elementary and composite particles self-regulates so that rest energies are independent of
one’s state of motion through the aether. One still has rather unusual behaviour in that

E = γE0; p = γE0u = Eu; (B.118)

while

E2 −$||p||2c2 = γ2(1−$c2||u||2)E2
0 . (B.119)

(Remember u is not necessarily parallel to v, neither does ||u|| equal ||v||, they do not
even have the same dimensions. In addition, all three of the functions $(F̄ ), γ(F̄ ), and
u(F̄ ) can depend on the particle’s state of motion with respect to the aether. In fact $ is
entirely arbitrary and can be adjusted to taste — we will have cause to use this freedom
below.) So even with an invariant rest mass (and this is a rather strong assumption) the
4-momentum of a moving particle is rather definitely non-trivial.

B.6.3 First minimalist Lorentz-violating model

Another important special case to consider is to assume that the transformations between
inertial frames are the usual Lorentz transformations but the energy-momentum relation
for at least some of the particles is not Lorentz invariant. This is less bizarre than one
might at first glance suspect, and is in fact the option that is in many ways most relevant
to the OPERA–MINOS observations. The point is that the physical clocks and rulers we
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use in our laboratories have internal structures that are for all practical purposes indepen-
dent of neutrino physics — and we have good phenomenological/observational evidence
that (apart possibly from the neutrino sector) Lorentz invariance is an extremely good
approximation to empirical reality. So it makes good sense to work in an approximation
where all physical clocks and rulers are exactly Lorentz invariant, and the only Lorentz
violations are hiding in the neutrino sector.1 In this situation the rest energy of the neu-
trino can still depend on its state of motion with respect to the aether. In the aether
frame we then have

E = γ E0(F̄ ); p = γ E0(F̄ )v/c2 = Ev/c2; (B.120)

while
E2 − ||p||2c2 = E2

0(F̄ ). (B.121)

Again, even in this simplified situation, the 4-momentum and the kinematic relation are
rather definitely non-trivial. If we now transform to a third inertial frame ¯̄F , then certainly

¯̄E2 − ||¯̄p||2c2 = E2 − ||p||2c2 = E2
0(F̄ ) (B.122)

is a Lorentz invariant, but the specific value of this Lorentz invariant quantity depends on
the absolute state of motion of the neutrino as viewed from the aether frame. The way
we have currently set things up, this rest energy could even be direction dependent — no
isotropy assumption (at least in the neutrino sector) has yet been made. If we now add
the additional assumption that neutrino physics is isotropic in the aether frame then

E = γE0(v); p = γE0(v)v/c2 = Ev/c2; (B.123)

while
E2 − ||p||2c2 = E2

0(v). (B.124)

So we rather explicitly see the manner in which absolute speed with respect to the aether
would formally affect on-shell particle energy-momentum relations. We emphasise that
in this model, even though neutrinos do not have a Lorentz invariant energy-momentum
relation, their energies and 3-momenta nevertheless transform in the usual manner under
Lorentz transformations. To make this look more relativistic, one could introduce a 4-
velocity Vaether for the aether, and another 4-velocity Vν for the neutrino. The speed
v of the neutrino with respect to the aether is then the usual explicit function of the
4-inner-product η(Vaether, Vν) and the kinematic relation takes the form

E2 − ||p||2c2 = E2
0(η(Vaether, Vν)). (B.125)

This model is the first of the “minimalist” models of Lorentz violation we refer to in the
abstract and introduction. It is particularly useful in that it gives one a very clean specific
“target” to begin thinking about when analyzing the OPERA–MINOS observations.

1In contrast, if there are significant Lorentz violations in the physics underpinning one’s clocks and
rulers, then using the Lorentz transformations to inter-relate the space and time coordinates determined
by those clocks and rulers would be a very bad and physically unjustified approximation.
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B.6.4 Summary

We emphasise that we have gone to all this trouble in setting up a very general formalism
in order to have a coherent and consistent framework to operate in once we begin to
entertain possible departures from Lorentz invariance. Many of the results derived so far
are quite unexpected when one has been trained to always think in a Lorentz invariant
and relativity principle respecting manner.

B.7 Adding more constraints

B.7.1 Linearity plus isotropy

Now let us add the assumption of isotropy — specifically that physics is isotropic in the
preferred frame, the aether frame. In particular this means that in the inertial transfor-
mation matrices

M =

 γ −γuT

− Σv Σ

 ; M−1 =

 γ−1(1− u · v)−1 uT (I − v ⊗ u)−1Σ−1

γ−1(1− u · v)−1v (I − v ⊗ u)−1Σ−1

 ;

(B.126)
all vectors and matrices should be constructible only using the vector v and its magnitude
— there are now assumed to be no preferred principal axes for the universe. We are also
assuming that the frames F and F̄ are “aligned” (not rotated with respect to each other).
Then isotropy amounts to

u||v; Σ = aI + bv ⊗ v. (B.127)

In fact it is now useful to introduce an arbitrary but fixed unspecified constant c with the
dimensions of velocity, and a dimensionless parameter ζ, to write

u = ζv/c2. (B.128)

Similarly, let us introduce dimensionless variables χ and ξ to write

Σ = γχn⊗ n+ ξ[I − n⊗ n]. (B.129)

Recall v = vn. By appealing to isotropy, the four quantities γ, χ, ζ, and ξ are arbi-
trary dimensionless functions of the dimensionless variable v2/c2. By combining linearity
with isotropy in this manner we have obtained a variant of the Robertson–Mansouri–Sexl
framework; see [110, 111], and section 3.2 of [81]. (The RMS formalism invokes several
other technical assumptions not relevant to the current discussion, and is not quite iden-
tical to our own framework.) Note that the quantities γ, χ, ζ, and ξ can still depend on
the internal structure of one’s clocks and rulers.
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We now have

M =

 γ −γζvT/c2

− γχv γχn⊗ n+ ξ[I − n⊗ n]

 . (B.130)

An intermediate step in calculating the inverse transformation is

M−1 =

 γ−1(1− ζv2/c2)−1 ζvT (I − ζvvT/c2)−1Σ−1/c2

γ−1(1− ζv2/c2)−1v (I − ζvvT/c2)−1Σ−1

 . (B.131)

But

Σ(I − ζvvT/c2) = (γχn⊗ n+ ξ[I − n⊗ n])(I − [ζv2/c2]n⊗ n)

= γχ[1− ζv2/c2]n⊗ n+ ξ[I − n⊗ n], (B.132)

whence

(I − ζvvT/c2)−1Σ−1 = γ−1χ−1[1− ζv2/c2]−1n⊗ n+ ξ−1[I − n⊗ n]. (B.133)

So the inverse transformation matrix simplifies to

M−1 =

 γ−1(1− ζv2/c2)−1 γ−1(1− ζv2/c2)−1ζχ−1vT/c2

γ−1(1− ζv2/c2)−1v γ−1χ−1[1− ζv2/c2]−1n⊗ n+ ξ−1[I − n⊗ n]

 .
(B.134)

By a specialization of our previous discussion:

• The velocity of the moving frame with respect to the aether is v.

• The velocity of the aether with respect to the moving frame is −χv.
(These are now at least collinear, and in fact anti-parallel, but can still differ in
magnitude; they are still not equal-but-opposite.)

If we rotate to align v along the x̂ axis this looks a little simpler:

M =


γ −γζv/c2 0T

− γχv γχ 0T

0 0 ξI

 , (B.135)

and

M−1 =


γ−1(1− ζv2/c2)−1 γ−1(1− ζv2/c2)−1ζχ−1v/c2 0T

γ−1(1− ζv2/c2)−1v γ−1χ−1[1− ζv2/c2]−1 0T

0 0 ξ−1I

 . (B.136)
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This is as far as you can get with linearity plus isotropy — you still have four arbitrary
functions γ(v2/c2), χ(v2/c2), ζ(v2/c2), and ξ(v2/c2) to deal with, but at least it is no
longer an arbitrary 4× 4 matrix with 16 free components. The set of transformations is
still not a group, just a groupoid/pseudogroup.

In view of the isotropy assumption particle rest masses E0 should depend only on the
speed with respect to the aether, hence be of the form E0(v). Specializing our earlier
discussion, with $, γ and ζ being velocity dependent, in the aether frame we would have

E = γE0(v); p = γζE0(v)v/c2; (B.137)

with
E2 −$||p||2c2 = γ2

[
1−$ζ2v2/c2

]
E0(v)2. (B.138)

Note that Lorentz invariance corresponds to χ = ζ = ξ = 1 with γ = 1/
√

1− v2/c2.

The Galilean limit is somewhat delicate: Physically we want to be looking at some
sort of low velocity limit. Since when moving at zero velocity through the aether we
expect M → I (corresponding to the trivial transformation) we must have χ(0) = γ(0) =
ξ(0) = 1. In contrast ζ(0) should be finite but is otherwise unconstrained. However c is
at this stage just some constant with the dimensions of velocity, it does not yet have any
deeper physical interpretation, so one can simply absorb ζ(0) into a redefinition of c and
so effectively set ζ(0)→ 1.

• In the transformation matrices M and M−1, this low-velocity limit corresponds to
ζ = χ = γ = ξ = 1, with ||v|| � c.

• Because of isotropy, in the low-velocity limit we must have both

γ(v) ≈ 1 +
1

2
γ2v

2/c2 + . . . , and ζ(v) ≈ 1 +
1

2
ζ2v

2/c2 + . . . . (B.139)

Furthermore

E0(v) = E0(0)

{
1 +

1

2
κ2v

2/c2 + . . .

}
, (B.140)

so that:

E ≈ E0(0) +
1

2
[E0(0)/c2]{γ2 + κ2}v2 + . . . ; p ≈ [E0(0)/c2]v + . . . (B.141)

• If we define the low-velocity effective mass by meff = E0(0)/c2 then

E ≈ meffc
2 + {γ2 + κ2}

||p||2

2meff

+ . . . ; p ≈ meff v + . . . (B.142)

So there is a sensible low-velocity limit, though it is perhaps more subtle than one might
have thought.
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B.7.2 Linearity plus isotropy plus reciprocity

It is sometimes useful to restrict attention to situations where M−1(v) = M(−v). Note
that this is an additional axiom beyond homogeneity and isotropy.

• This is (one version of) the so-called reciprocity principle. It is still weaker than the
relativity principle.

• This version of the reciprocity principle, because it also makes assumptions about
the transverse directions, is very slightly stronger than asserting that the velocity
of any inertial frame as seen from the aether is minus the velocity of the aether as
seen from that inertial frame [13].

• The way we have formulated it, reciprocity implies both χ = 1 and ξ = 1, and in
addition imposes the constraint

γ =
1√

1− ζv2/c2
. (B.143)

To see this, compare M with M−1 above, and note that M−1(v) = M(−v) implies the
three relations:

γ = γ−1(1− ζv2/c2)−1; (B.144)

γχ = γ−1χ−1(1− ζv2/c2)−1; (B.145)

ξ = ξ−1. (B.146)

Solving, we see
ξ = 1; χ = 1; γ2(1− ζv2/c2) = 1. (B.147)

Then

M =


γ −γζv/c2 0T

− γv γ 0T

0 0 I

 ; M−1 =


γ γζv/c2 0T

γv γ 0T

0 0 I

 ; (B.148)

subject to the constraint

γ =
1√

1− ζv2/c2
. (B.149)

Note that you now only have one free function ζ(v2/c2), everything else is determined.

• Working along a somewhat different route, it has been shown [13] that combining
relativity+homogeneity+isotropy implies (at least one version of) the reciprocity
principle.
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• Note that adopting the principle of reciprocity implies the set {M(v)} is now closed
under matrix inversion, though it is still not a group.

• This is not quite special relativity [or even Galilean relativity], but it is getting
awfully close.

B.7.3 Second minimalist Lorentz-violating model

Since the model above (linearity plus isotropy plus reciprocity) is a simple one-function
violation of special relativity, it holds a special place in the set of all Lorentz violating
(relativity principle violating) theories — this is arguably the simplest violation of special
relativity one can have at the level of the transformations between inertial frames. At the
level of the coordinate transformations

t→ t̄ =
t− ζvx/c2√
1− ζv2/c2

; (B.150)

x→ x̄ =
x− vt√

1− ζv2/c2
; (B.151)

y → ȳ = y; z → z̄ = z. (B.152)

The closest one can get to a notion of “interval” is to observe

ζ−1c2(∆t)2 − ||∆x||2 = ζ−1c2(∆t̄ )2 − ||∆x̄||2. (B.153)

Recall that ζ(v) depends on the absolute speed of the moving frame through the aether,
so this is only a 2-frame invariant, it is not a general invariant for arbitrary combinations
of inertial frames. To be explicit about this, let F1 and F2 be two moving frames, then

ζ−1
1 c2(∆t)2 − ||∆x||2 = ζ−1

1 c2(∆t1 )2 − ||∆x1||2, (B.154)

and
ζ−1

2 c2(∆t)2 − ||∆x||2 = ζ−1
2 c2(∆t2 )2 − ||∆x2||2. (B.155)

But (ultimately due to the lack of the relativity principle, and the consequent lack of
group structure for the transformations) there is, under the current assumptions, no
simple relationship of this type connecting the measurements in inertial frame F1 with
those in inertial frame F2.

When we turn to on-shell particle energy-momentum relations we still have invariant
masses E0(v) that can depend on absolute velocity with respect to the aether. Therefore,
in view of our previous discussion, in the aether frame we would have

E =
E0(v)√

1− ζv2/c2
; p =

ζE0(v)v/c2√
1− ζv2/c2

= Ev/c2; (B.156)
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with

E2 −$||p||2c2 =

[
1−$ζ2v2/c2

1− ζv2/c2

]
E0(v)2. (B.157)

But $ is a completely arbitrary function that is entirely at our disposal, so it makes sense
to choose $ = 1/ζ in which case

E2 − ζ−1||p||2c2 = E0(v)2. (B.158)

Even if we make the additional and rather stringent assumption that rest masses are
invariant, independent of absolute velocity through the aether, (and this is very definitely
an extra assumption beyond reciprocity), one still picks up non-trivial physics via the
v-dependent function ζ:

E =
E0√

1− ζv2/c2
; p =

ζE0v/c
2√

1− ζv2/c2
= Ev/c2; (B.159)

with
E2 − ζ−1||p||2c2 = E2

0 . (B.160)

This model is the second of the “minimalist” models of Lorentz violation we refer to in
the abstract and introduction. It is particularly useful in that it gives one a very clean
specific “target” to take aim at.

B.7.4 Linearity plus isotropy plus reciprocity plus relativity

If we now (finally) adopt the relativity principle, then for arbitrary v1 and v2 the object
M(v2,v1) must equal M(w) for some w(v1,v2) (with w being interpreted as the relative
velocity of the two inertial frames). But this then implies that the set {M(v)} forms
a group, not merely a groupoid/pseudogroup. We shall see that this group condition
implies ζ = 1, whence finally γ = 1/

√
1− v2/c2. But c was some arbitrary quantity with

the dimensions of velocity, it was not pre-judged to be the physical speed of light. Finite
c gives you the Lorentz group, infinite c gives the Galileo group. (And the exceptional
case c2 < 0 actually means one is in Euclidean signature, and one obtains the SO(4)
rotation group. This exceptional case is normally excluded by appeal to a “pre-causality”
principle [25].)

As an explicit check, assuming linearity+isotropy+reciprocity we have

M1 =


γ1 −γ1ζ1v1/c

2 0T

− γ1v1 γ1 0T

0 0 I

 ; M2 =


γ2 −γ2ζ2v2/c

2 0T

− γ2v2 γ2 0T

0 0 I

 ; (B.161)

subject to the constraint

γi =
1√

1− ζiv2
i /c

2
. (B.162)
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Then the group property requires the existence of some v12 such that

M1M2 = M12. (B.163)

Explicitly:
γ1γ2(1 + ζ1v1v2/c

2) −γ1γ2(ζ1v1 + ζ2v2)/c2 0T

− γ1γ2(v1 + v2) γ1γ2(1 + ζ2v1v2/c
2) 0T

0 0 I

 =


γ12 −γ12ζ12v12/c

2 0T

− γ12v12 γ12 0T

0 0 I

 .
(B.164)

But by comparing the diagonal elements this can be true only if ζ1 = ζ2 for all values of
v1 and v2. That is, there exists some velocity independent constant ζ0 such that

ζ1 = ζ2 = ζ0. (B.165)

This now implies

M1 =


γ1 −γ1ζ0v1/c

2 0T

− γ1v1 γ1 0T

0 0 I

 ; M2 =


γ2 −γ2ζ0v2/c

2 0T

− γ2v2 γ2 0T

0 0 I

 . (B.166)

The statement M1M2 = M12 becomes
γ1γ2(1 + ζ0v1v2/c

2) −γ1γ2ζ0(v1 + v2)/c2 0T

− γ1γ2(v1 + v2) γ1γ2(1 + ζ0v1v2/c
2) 0T

0 0 I

 =


γ12 −γ12ζ0v12/c

2 0T

− γ12v12 γ12 0T

0 0 I

 .
(B.167)

But now we can simply absorb ζ0 into a redefinition of c. After all, c is at this stage just
an arbitrary but fixed constant with the dimensions of velocity. Taking c2 → c2/ζ0 we
have

M1 =


γ1 −γ1v1/c

2 0T

− γ1v1 γ1 0T

0 0 I

 ; M2 =


γ2 −γ2v2/c

2 0T

− γ2v2 γ2 0T

0 0 I

 ; (B.168)

M1M2 =


γ1γ2(1 + v1v2/c

2) −γ1γ2(v1 + v2)/c2 0T

− γ1γ2(v1 + v2) γ1γ2(1 + v1v2/c
2) 0T

0 0 I

 =


γ12 −γ12v12/c

2 0T

− γ12v12 γ12 0T

0 0 I

 .
(B.169)

If c2 is finite and positive, we have the Lorentz transformations. If c2 is infinite we
have Galileo’s transformations. This is (essentially) von Ignatowsky’s result. (Note that
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c2 = 0 is hopelessly diseased,2 while c2 < 0 actually corresponds to Euclidean signature
spacetime, with the set {M} being the group SO(4) of Euclidean rotations.)

B.8 Conclusions

We have seen that once one for any reason moves away from Lorentz invariance, and
specifically once one discards the relativity principle, many of the intuitions one has been
trained to develop in a special relativistic setting need to be significantly and carefully
revised. In a companion article we had considered threshold phenomena [103], which can
be studied by picking and working in a particular arbitrary but fixed inertial frame. In the
current article we have carefully analyzed what happens to the transformation properties
between inertial frames once the relativity principle is abandoned. A key message to
take from the above is that the situation is not hopeless — even in the absence of a
relativity principle quite a lot can still be said regarding the transformation properties
between inertial frames, the combination of 3-velocities, the transformation of 4-momenta,
and the interplay between the energy-momentum relations for on-shell particles and the
transformation properties between inertial frames.

Key features of the analysis are the groupoid/pseudo-group structure of the set of trans-
formations, the fact that 4-momentum transforms affinely as a dual vector, the fact that
there are a number of distinct stages by which Lorentz invariance can be recovered —
by successively imposing linearity, then isotropy, then reciprocity, and finally the rela-
tivity principle. The net result is a coherent framework within which Lorentz symmetry
breaking can be explored in a controlled and consistent manner. Overall, this article and
the companion paper [103], provide general techniques of interest when analyzing the
OPERA–MINOS observations.
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107, 108] by enforcing the particular limit c2 → 0, while v → 0, but holding the slowness u = v/c2 fixed.
The relevance to “real world” physics seems somewhat tenuous.
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B.9 Some matrix identities

Herein we collect some useful matrix identities of a purely technical nature. First note
that

(I − v ⊗ u)−1 = I +
∞∑
n=1

(v ⊗ u)n = I + (v ⊗ u)
∞∑
n=1

(u · v)n−1 = I +
v ⊗ u

1− u · v
, (B.170)

with this particular derivation holding for |u · v| < 1, though the result itself

(I − v ⊗ u)−1 = I +
v ⊗ u

1− u · v
, (B.171)

holds for u · v 6= 1, as can easily be verified by multiplying both sides of the equation
above by (I − v ⊗ u) and noting that det(I − v ⊗ u) = 1− v · u. (The case u · v = 1 is
the kinematic singularity alluded to previously.) Therefore

uT (I − v ⊗ u)−1 = uT +
(u · v)uT

1− u · v
=

uT

1− u · v
, (B.172)

at least for u · v 6= 1. Similarly

(1− u · v)(I − v ⊗ u)−1 = (1− u · v)I + v ⊗ u, (B.173)

for u · v 6= 1. Secondly observe

(I − v ⊗ u)(I − ẋ⊗ u)−1 = (I − v ⊗ u)

(
I +

∞∑
n=1

(ẋ⊗ u)n

)

= I − v ⊗ u

(
∞∑
n=0

(ẋ · u)n

)
+ ẋ⊗ u

(
∞∑
n=0

(ẋ · u)n

)
= I − v ⊗ u

1− ẋ · u
+

ẋ⊗ u
1− ẋ · u

= I +
(ẋ− v)⊗ u

1− ẋ · u
, (B.174)

with this particular derivation holding for |ẋ · u| < 1, though the result itself holds for
ẋ · u 6= 1. Therefore, for ẋ · u 6= 1, we have

(I − v ⊗ u)(I − ẋ⊗ u)−1(ẋ− v) =

(
I +

(ẋ− v)⊗ u
1− ẋ · u

)
(ẋ− v)

= (ẋ− v) +
(ẋ− v)u · (ẋ− v)

1− ẋ · u

= (ẋ− v)

{
1− ẋ · u+ u · (ẋ− v)

1− ẋ · u

}
= (ẋ− v)

{
1− u · v
1− ẋ · u

}
. (B.175)
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B.10 Consistency of dynamics and kinematics

Note that from Hamilton’s equations we know ẋ = ∂H/∂p, so to first order (which is all we
require) ∆E = ẋ ·∆p. Then from our discussion of the energy-momentum transformation
laws, and specifically the fact that energy-momentum differences transform linearly, we
have

ẋ ·∆p = γ ˙̄x ·∆p̄+ ∆p̄TΣv = ∆p̄ · (γ ˙̄x+ Σv), (B.176)

and
∆p = γ ( ˙̄x ·∆p̄)u+ ΣT∆p̄ = (γ u⊗ ˙̄x+ ΣT )∆p̄. (B.177)

But then, for arbitrary ∆p̄{
ẋT (γ u⊗ ˙̄x+ ΣT )− (γ ˙̄xT + ΣvT )

}
∆p̄ = 0, (B.178)

implying
ẋT (γ u⊗ ˙̄x+ ΣT ) = (γ ˙̄xT + vTΣT ). (B.179)

That is
(γ ˙̄x⊗ u+ Σ)ẋ = (γ ˙̄x+ Σv) (B.180)

whence
ẋ = (γ ˙̄x⊗ u+ Σ)−1(γ ˙̄x+ Σv). (B.181)

This is equivalent to the velocity transformation law we previously derived. (Note that
˙̄x = 0 implies ẋ = v, while ẋ = 0 implies ˙̄x = −Σv/γ.)

It is perhaps easier to start from the inverse transformations

∆E → ∆Ē =
∆E −∆p · v
γ(1− u · v)

, (B.182)

and
∆p→ ∆p̄ = (Σ−1)T (I − u⊗ v)−1(∆p−∆Eu). (B.183)

The energy transformation equation implies

˙̄x ·∆p̄ =
(ẋ− v) ·∆p
γ(1− u · v)

, (B.184)

while the momentum transformation equation yields

∆p̄ = (Σ−1)T (I − u⊗ v)−1(∆p− [ẋ ·∆p]u) (B.185)

= (Σ−1)T (I − u⊗ v)−1(I − u⊗ ẋ)∆p. (B.186)

But then{
˙̄xT (Σ−1)T (I − u⊗ v)−1(I − u⊗ ẋ)− (ẋ− v)T

γ(1− u · v)

}
∆p = 0, (B.187)
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whence

˙̄xT (Σ−1)T (I − u⊗ v)−1(I − u⊗ ẋ) =
(ẋ− v)T

γ(1− u · v)
. (B.188)

Therefore

(I − ẋ⊗ u)(I − v ⊗ u)−1Σ−1 ˙̄x =
ẋ− v

γ(1− u · v)
, (B.189)

and we see

˙̄x = Σ(I − v ⊗ u)(I − ẋ⊗ u)−1 (ẋ− v)

γ(1− u · v)
. (B.190)

But (see appendix B.9)

(I − v ⊗ u)(I − ẋ⊗ u)−1 = I +
(ẋ− v)⊗ u

1− ẋ · u
. (B.191)

Furthermore (see appendix B.9)

(I − v ⊗ u)(I − ẋ⊗ u)−1(ẋ− v) = (ẋ− v)

{
1− u · v
1− ẋ · u

}
. (B.192)

So finally

˙̄x =
Σ(ẋ− v)

γ(1− u · ẋ)
, (B.193)

which is the 3-velocity transformation law we had previously derived. (Note that ˙̄x = 0
implies ẋ = v, while ẋ = 0 implies ˙̄x = −Σv/γ.)
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