SCHOOL OF MATHEMATICS AND STATISTICS
Te Kura Matai Tatauranga

MATH 466/467 APPLIED MATHEMATICS Autumn 2016

Assignment

Set: February 2016 Due: May 2016

Honours-level Special Relativity

As the assignment /project for the Special Relativity module of the Honours-
level Applied Mathematics paper I want you to write up some of the exercises
in the Special Relativity for Honours notes. Note that some of the exercises
are rather trivial, being designed to test your knowledge of the basics, while
others are deliberately more challenging.

1. [Trivial]
Let
10 0 0
o 41 0 o0
=10 0 +1 0
0 0 0 +1
Verify that
nt=mn,

in the sense of ™! being the inverse matrix for 7.

2. [Easy]
Pick a specific fixed point X; and look at the set

C(Xy) = {Xy | n(AX,AX) =0} .

then C'(X7) is called the light-cone. (See figure overleaf.)

Verify that C'(X;) as defined above really is (both geometrically and
topologically) a double cone with apex at Xj.
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Figure 1: Light cone in special relativity. Time runs vertically up the page.



3. [Straightforward]
Prove that LTnL o n is the only solution to the following implication:

VAX  (AX)'n(AX) =0 — (AX)T[LTnL)(AX) =0
Hint: Take the matrix multiplications above and write them out by
hand, writing AX = (cAt; AZ), and so splitting spacetime into space+time.
What happens if I reverse At?

What happens if I rotate Az?
4. [Easy]
Verify that the set of Lorentz transformations £ = {L} defined by the

condition

L={L|L"nL =n},
forms a group under matrix multiplication.

This is easy; at worst you will have to spend a few seconds reminding
yourself of the group axioms.

5. [Straightforward]
Explicitly verify that for any 4-vector N = (0,n), where n is any 3-
space unit vector satisfying ||n|| = 1, the matrix

L=1,-2N®N
is a Lorentz transformation in the most general sense.
How would you physically interpret these transformations?

6. [Straightforward]
Explicitly verify that the three matrices

+1 0 0 0 +1 0 0 O +1 0 O
0O -1 0 0], 0O +1 0 O 0 -1 0
0O 0 -1 0] 0O 0 -1 0] 0 0 +1
0O 0 0 +1 0O 0 0 -1 0O 0 0

are all Lorentz transformations in the most general sense.

How would you physically interpret these transformations?



7.

10.

11.

[Easy]
Simplify life by working in 141 dimensions (one space dimension, one
time dimension). Take

Verify that
B 1 1 -
e Y

is the only solution to
Lg N2 Lo = 12.
[Very easy]
Verify that LQ(_/8> = Lg(ﬁ)_l.
Hint: This is very easy, stop and think. If you are actually trying to

invert a matrix you are doing too much work.

[Very easy]
Explicitly verify that for any arbitrary Lorentz transformation defined
by the condition L7 LT = n we have

det[L] = £1.

[Very easy]
Explicitly verify that for any arbitrary Lorentz transformation defined
by the condition Ln LT = n we have

Lt =nL"n.

[Straightforward; somewhat long]
Consider the Lorentz transformations in 3+1 dimensions.

(3 space dimensions, 1 time dimension.)

Adopting units where ¢ = 1, restricting to motion in the x direction,
and assuming no time reversal or parity flips, we have:

t— 1 = y(t - Ba);



r— o' =5(x — Bt);
y—y =y
z— 2 =z

where
1

abviey

We can now, using column vectors, write the Lorentz transformations
in matrix form as

X = X'=L(B) X,

where
t t v =6 0 0
A P A T O
z 2z 0 0 01
Now:

(a) Evaluate det[L(73)].

(b) Evaluate [L(3)]7!, and interpret it.

In particular, show that [L(3)]~! is also a Lorentz transformation
for some velocity. Which velocity?

(c) Consider an object that is at rest in the original ¢, x,y, z coordi-
nates, so that its world-line may be parameterized as

X(t) =[t,0,0,0]".

If we look at this same object using the primed coordinate system
(t',2',y, 2') what is its world-line

X'(t) = 777

in this new coordinate system? From this, deduce the velocity of
the object in the primed coordinate system.



(d) Now consider a pair of Lorentz transformations acting in sequence:
Xo — X1 = L(B1) Xo;
X1 — Xo = L(B2) X

so that
Xo — Xo = L(ﬁQ) L(ﬁl) Xo.

Show by explicit matrix multiplication that the matrix product
L(y) L(y) is itself a Lorentz transformation matrix for some (;2:

L(ﬁu) = L(@) L(ﬁl)-

Explicitly evaluate (15 as a function of 3, and [s:
Bia = f(Br,B2) = 177
(e) Defining the matrix

100 0
o 100
=10 010

0 00 1

show by direct and explicit matrix multiplication that

L(B) n L(B)" =n
for all values of 3.
(f) Hence derive a formula for [L(8)]7! in terms of L(3)T and 7.

12. [Tricky; may require a little thinking.|
Take the full Lorentz transformation and assume v < ¢, that is § =
v/c < 1sothat vy =1/4/1—-p?=~ 1.

Then the Lorentz transformations reduce to
VL

t'~t— Ex
¥~ x— ot
=y
2=z
These are not quite Galileo’s transformations. What is that vz /c? term

doing there? Carefully analyze the situations under which that term
can safely be neglected. (It’s ndé as simple as just saying v < ¢.)



13. [Straightforward; a little long]
Define a variable 0 (typically called the “rapidity variable”) by

(a)

6 = tanh™' 3 = tanh~'(v/c).

Use this definition to calculate (3, v, and v 3 as functions of ra-
pidity

3= 777
N = 777
NB= 777

Hence take the 1 4+ 1 Lorentz transformation matrix

L) = { e ?ﬂ

and rewrite it as a function of rapidity
L(0) = 777

Now consider the effect of composing two Lorentz transformations.
Because the Lorentz transformations form a group, we know that
their product is another Lorentz transformation. That is, for any
6, and 6, there will exist some 65 such that

L(612) = L(02) L(6,)

Explicitly verify this fact, and explicitly calculate 6,5 as a function
of 6, and 6,.
912(91,92) = 777

Hint: The answer will be very simple!

Using the results determined above, deduce (with proof, which
is very simple) the law of composition of (collinear) velocities for
special relativity:

’Ulg(’Ul,UQ) = 777
Comment: There is a reason you will hardly ever see the law

of composition of non-collinear velocities in special relativity —
generically it is just too messy.



14.

15.

16.

17.

[Tricky]
Perform a Lorentz transformation in some arbitrary direction 7 (instead
of along the z axis). Thatisv=vn = [ cn.

Show that in this case:

T =[-n®n| &+~ n—ot)n.
Hint: Stop, think. Look at this from the appropriate direction.

[Straightforward]
Define the Poincare transformations as the collection of ordered pairs
P = (L,a) where L is a Lorentz transformation and a is a 4-vector,
to be thought of as a translation in spacetime. We are to think of the
Poincare transformations as acting on spacetime position according to
the rule

X—-PX)=LX +a

Identify a natural way of defining a “multiplication/ composition” op-
eration on Poincare transformations and verify that the Poincare trans-
formations form a group under this operation.

[Straightforward]

Now verify that your physically natural definition of the “multipli-
cation/ composition” operation on Poincare transformations not only
makes the Poincare transformations a group — it also makes the Poincare
transformations a semi-group in the sense defined in the notes.

[Straightforward]
Consider the two definitions:

e An event X chronologically precedes an event Xs, denoted X; <
XQ if both
n(AX,AX) <0

and
At > 0.



(c)

An event X causally precedes an event X5, denoted X; < X5 if
both
n(AX,AX) <0

and
At > 0.

What is the physical difference between these two definitions?
Exactly where do the two definitions differ?

Look up the technical definition of a partial ordering.

Verify that both of these definitions satisfy the axioms of a partial
ordering.

(You will need to distinguish a “strict partial order” from a “non-
strict partial order”; for background you can always look up the
discussion of partial orders in Math464/Math 465 — used there
when dealing with elementary notions of topology.)

Verify that these definitions are Lorentz invariant, so that any
two observers will agree on chronological precedence and causal
precedence. (This last step is a little trickier.)

18. [Somewhat tricky]
Define the “pseudo metric”

d(X,Y) =/ |n([X - Y],[X - Y])|.

This particular definition always produce a real positive number.

(a)

(b)

[Relatively easy.]
Suppose the three events X, Y, and Z are all lie in the same space-
like hyperplane. Prove that the triangle inequality is satisfied.

[A little trickier.]

Suppose the three events X, Y, and Z are all pairwise spacelike
separated from each other. Prove that the triangle inequality is
sometimes satisfied and sometimes violated.

[A little trickier.]
Suppose the three events X, Y, and Z are all pairwise timelike



19.

20.

21.

22.

23.

separated from each other. Prove that the triangle inequality is
maximally violated in the sense that

dX,Y)>d(X,Z2)+d(Z,Y)

[Straightforward]
Show that on any spacelike hyperplane a Lorentzian metric in the full
Minkowski space induces a true metric on the spacelike hyperplane.

Hint: Using translations and Lorentz transformations bring any generic
spacelike hyperplane into a simple “canonical form”.

[Straightforward]
Show that on any timelike hyperplane there will be pairs of points that
are spacelike and lightlike separated.

Hint: Using translations and Lorentz transformations bring any generic
timelike hyperplane into a simple “canonical form”.

[Straightforward]
Show that on any lightlike hyperplane there will be pairs of points that
are spacelike separated.

Hint: Using translations and rotations bring any generic lightlike hy-

perplane into a simple “canonical form”.

[Straightforward]

Suppose X and Z are any two points in Minkowski space.

Show that Ve > 0 it is possible to pick a point Y in such a way that
dX,)Y)+d(Y,Z) <e.

This implies that any two points X and Z in Minkowski space can be

connected by an arbitrarily short curve.

Note that this typically will not be a straight line.

[Straightforward]

For a spacelike hypersurface, define the notion of a normal vector in

terms of a 4-vector that is 4-orthogonal to every displacement in the
hypersurface. Show that this normal vector is timelike.

10



24.

25.

26.

27.

28.

[Straightforward]
For a timelike hypersurface, define an appropriate notion of normal
vector and demonstrate that this normal vector is spacelike.

[Straightforward]
Show that every lightlike vector is orthogonal to itself.

(Yes, this is somewhat counter-intuitive the first time you see it.)

[Straightforward]
Show that for a lightlike hypersurface the normal to the hypersurface
lies in the plane of the hypersurface.

(Yes, this is somewhat counter-intuitive the first time you see it.)

Fasy]
Show that for any two 4-vectors A and B the inner product

n(A,B) = AT n B
is a Lorentz invariant.

[Tricky]
Suppose we have two different observers, of 4-velocities

Vit=m(Lv)  and V3 =mp(livy).

Show that their relative speed (the speed of one observer as seen by
the other) is

V(0 = 5)% — () x 0y)?/c?
1— ’171 . ?72/02

v =

Hint: Calculate the invariant quantity n(Vi, V) = n,4V2VY in two
different suitably chosen reference frames.

Hint: The case where ¢; and v are collinear is particularly simple, and
reduces to something you can readily understand in terms of results
you have seen before. Its the general situation where #; and v, are not
collinear that makes this tricky.

11



29. [Easy]
By Taylor series expansion, (or by using the Binomial expansion for
fractional powers), at low velocities verify that the exact SR result

m002

V1—0v2/c?

E =mc* vy =

approximates to

3 mov*

1
E moc® + —mov? + =
T M T g

+ O(v°).

30. [Easy]
Verify that the 3-velocity of a particle can be calculated in terms of its
energy and rest mass by

2 4
mg ¢

E? -

v(E)=cy/1—

31. [Easy]
Verify that the 3-velocity of a particle can be calculated in terms of its
momentum and rest mass by

p

v(p) =¢c ———.
@) Vmg ¢+ p?

32. [Easy]
Let P, and P, both be null vectors so that both n(P;, P;) = 0 and
7’](P2, P2> = O

Either:

e Find, with proof, the necessary and sufficient conditions to have
7’](P17 PQ) = 0.

e Or prove that this is impossible.
Physically interpret this result.
33. [Easy]

Let P; and P, both be timelike vectors so that (in our choice of signa-
ture) n(Py, P1) < 0 and n(P,, P») < 0.

Either:

12



e Find, with proof, the necessary and sufficient conditions to have
7’](P1, Pg) =0.

e Or prove that this is impossible.
Physically interpret this result.

34. [Trivial]
Relativistic Kinematics:

(a) If P = (E/c,p) is a lightlike vector, what can we say about the
speed of the particle?

(b) If P = (E/e¢,p) is a timelike vector, what can we say about the
speed of the particle?

(¢) If P = (F/ec,p) is a spacelike vector, what can we say about the
speed of the particle?

Hint: Stop, think. Do not blindly calculate.

35. [Substantial but straightforward.]
Relativistic Kinematics:

Suppose we have two particles with four-momentum P, and P:
Py = (Ei/e,p1); Py = (Ey/c,ps).

(a) Calculate:
n(Pi, Py) =Pl nPy=777

(b) Interpret this Lorentz invariant quantity in two separate ways,
first by going to the rest frame of particle 1; and second by going
to the rest frame of particle 2.

(c) Prove that if Py is timelike and P is timelike, then P, + P; is
timelike.
(This is the situation corresponding to the four-momenta of two
slower-than-light particles being added.)

(d) Prove that if P; is timelike or lightlike (null), and P, is timelike
or lightlike (null), then P, + P; is timelike or lightlike (null).

(This is the situation corresponding to the four-momenta of two
physical particles, either slower than light or travelling at exactly
the speed of light, being added.)

13



(e) If P+ P, is lightlike, and P; and P, are both individually physical
(timelike or lightlike) then this can only happen if there is a very
special relationship between P; and P,. What is this relationship?
Prove it. Interpret the result.

36. [Tricky. This problem involves generic 4-acceleration.]
Show that in component language

dve

dr

mo v ‘/b:|Fb

So that (mass)x (4-acceleration) = (the projection of the 4-force onto
the three-plane perpendicular to the 4-velocity).

37. [Slightly nontrivial. This problem involves straight-line acceleration.]
A spaceship travels at some variable speed u(7) in some fixed direction.

Its proper acceleration (measured in its own rest frame) is a(7), and 7
is the proper time. Its initial speed is ug.

(a) Show that
wUr) —%0_ gt {m} .

1 —u(T)ug/c? c

(b) Equivalently, demonstrate that

_ up +ctanhy
1+ ugtanhx/c’

u(r)

where

fOT a(T’)dT/'

X:
C

(c) Finally, using # = u/c, show that this is equivalent to

o+ tanh x

Br) = 1+ By tanh x’

where

o(r) = alr) e = [ atar



38.

39.

[Slightly nontrivial. This problem involves straight-line acceleration. |
Consider a particle that at proper time 7y is located at (to, zo,0,0), and
whose 4-velocity at proper time 7y is Vy = (cosh xo, sinh xo, 0, 0).

Suppose it accelerates in the x direction with proper 4-acceleration
g(7). (That is, the acceleration as measured in the particle’s instanta-
neous rest frame is g(7).)

Suppose further that we have adopted units so that ¢ — 1.
Define

(a) Show that the spacetime trajectory [world-line| of the particle is

£(r) = 70 + / " sinh(xo + x(7)]d7:

70

t(r) =to+ /T cosh|xo + x(7)]dT.

70

Hint: Differentiate.
To fully solve the problem you will need to differentiate twice.

(b) Finally, show that this is compatible with the previous question.

[Slightly nontrivial. This problem involves generic acceleration.]
Check that in general (without assuming U is parallel to @)

5 [ mer
dt At |\ /T— 2/

mod mo0(7 - @)/c?

Vi—wj@ | (- ey

TRT]
= mo{’ﬂ‘f‘”ﬁ }

2 |7
Notation: (b® @) d = b(c- d).

Hint: If it helps, you can first check that everything works for ¢ parallel
to @, and then check the general case.

15



40.

41.

42.

43.

[Slightly nontrivial. This problem involves acceleration.]
The previous question justifies the definition of an “effective relativistic
mass”, which is a 3 X 3 matrix:

By hook or by crook establish that

] = YL [I ) M} |

mo 2

Hint: Stop, think. Do not blindly calculate. Since I have given you
both meg and [meg] ™! this is really easy.

[Slightly nontrivial. This problem involves acceleration.]
Using the results of the previous two questions check that

| [oF
l

f=

Q.

t
implies

1 —v2/c? TRU| -

a= —/ {I -—— | I
mo C

Comment: The fact that his formula is relatively complicated is one

of the reasons people tend not to work with 3-force and 3-acceleration

in SR — working with 4-force and 4-acceleration is often much simpler.

[Straightforward.]
Verify that for a charged particle in an electro-magnetic field the 3-
acceleration is

R e PO
mo C

qy/1—v%/c? 7 (7-E)0 vxB
c

What happens to the 3-acceleration as |0 — ¢?

[Straightforward; pure linear algebra.]
Take a big square or rectangular matrix and break it apart into smaller
but still rectangular blocks; these are called “partitioned matrices”.

16



44.

45.

Verify that matrix multiplication satisfies the “block multiplication”
A B E F | | AE+BC AF+BH
C D G H| | CE+DG CF+ DH

If necessary, look up a few reference books.

This is simply a standard trick of linear algebra.

Note that the order in which the matrix multiplications is carried out

is important.

[Substantial but straightforward.]

Lorentz transformation for Electric and Magnetic fields:

In the notes I've shown you what happens if we Lorentz transform in
a general direction. Now let’s simplify life.

Starting from the formulae for general 5, verify that if we Lorentz
transform in the = direction, so that § = (/,0,0), then we have the
simpler results:

E*=E% B =B BBY); B =(E°+ OB)

B*=B*  BY=~(BY+BE?); B*=~(B°—BEY).

[Straightforward.]
Lorentz transformation for Electric and Magnetic fields:
Find the Lorentz transformation properties for the two quantities
|E|> — |B|? and F - B.
(a) That is, evaluate

|E]> = |B]? — |E)> — |B|> = 777

and L L.
E-B—E-B=77

(b) You should be able to do this easily enough for a general Lorentz
transformation in an arbitrary direction, but there is no real loss
of generality in assuming the Lorentz transformation acts along
the = axis. Why? (There is a very easy argument.)

17



46.

47.

Hint: If you are getting messy complicated final results you are doing
something wrong.

[Straightforward.]
Lorentz transformation for Electric and Magnetic fields:

(a) Evaluate the two quantities F'% F,, and egpeq F'%° F°? in terms of
E and B.
(b) This should make the reason for the results of the previous exercise
obvious. Why?
[Straightforward]
Lorentz transformation for Electric and Magnetic fields:

The general electromagnetic field is

0 |+E, +E, +E.

~E,| 0 +B. —B,

~B,|-B. 0 +B,

—E.|+B, —B, 0

(a) Show that by performing a general Lorentz transformation, (boost
[change of velocity] plus rotation), you can at any specified point
always bring it into the standard form

(b) Explicitly evaluate the quantities £ and B in terms of the two
quantities F% F;, and egpeq F % F.

18



48.

49.

50.

[Tricky; conceptual question]
Lorentz transformation for Electric and Magnetic fields:

Consider a situation where there is no electric field, E = 0, but there
is a magnetic field, B # 0. A moving electron then experiences a force

—

F:qﬁxé/c,

and so does not travel in a straight line, its path is deflected.

Now do a Lorentz transformation into the rest frame of the electron. In
its rest frame, the 3-velocity of the particle is by definition zero. So in
this frame the magnetic force seems to have vanished? What is going
on here? Please explain?

[Straightforward; easy.]
Define
hab — nab + Ve Vb,

or equivalently
hy = 6%+ V* V.

Prove that h%, really is a projection operator in the sense that
h% hb. = h“..

[Tricky.|
Consider a fluid with a position-dependent 4-velocity vector field V*.

Define the 4-acceleration vector field to be A¢ = V* vV, V2.

Verify that with this definition of the 4-acceleration, the 4-acceleration
is everywhere 4-orthogonal to the 4-velocity.

—HHFH



