MATH432 2023	\mathbf{Test}	12 October
First name:		
Last name:		
Student number:		

- There are 3 questions, worth 20 marks each.
- You have 90 minutes.
- Answer all questions in the spaces provided. You may use the reverse side if more space is required, or more paper is available on request.

Question 1. (20 marks) Let M be the matroid represented over the real numbers by the following matrix:

$$\begin{bmatrix} a & b & c & d & e & f \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

(a) Give a geometric representation of M. Be sure to clearly label the elements of M.

- (b) Find a 3-element circuit, and a 4-element circuit, of M.
- (c) Find a 3-element cocircuit, and a 4-element cocircuit, of M.
- (d) Find two distinct hyperplanes of M.
- (e) Find two distinct bases of M.

(f) Give a geometric representation of M^* and a matrix representation of M^* . For each representation, clearly label the elements of M^* . Comment on the relationship between M and M^* .

- (g) Find a coindependent set that is a flat.
- (h) Find a cobasis X such that cl(X) = X.
- (i) Is M 2-connected? Explain your answer.

- (j) Does M have any 3-separations? Explain your answer.
- (k) Find a matrix that represents M/a over the reals, and give a geometric representation of M/a. Label the elements in each representation.

(l) Is M graphic? Briefly explain your answer.

Question 2. (20 marks) Definitions and short proofs.

(a) State the circuit axioms for a matroid.

(b) Define what is meant by the dual M^* of a matroid M.

(c) Let x be an element of a matroid M. Define the contraction M/x of x from M.

- (d) State what it means for the rank function of a matroid M to be *submodular*. (In other words, state the third rank axiom.)
- (e) Let λ_M be the connectivity function of a matroid M. Show that $\lambda_M(X) \ge 0$ for all $X \subseteq E(M)$.

(f) Let M be a matroid with ground set E. Prove the following:
(i) For X ⊆ E, the set X is a coindependent if and only if E - X is spanning.

(ii) For $e \in E$, the element e is a coloop if and only if E - e is a hyperplane.

Question 3. (20 marks)

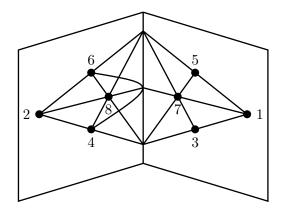
(a) Consider the uniform matroid $U_{r,n}$. Specify the bases, flats, rank function, and closure operator of $U_{r,n}$.

(b) Say $x \in E(U_{r,n})$. Describe $U_{r,n}/x$ and $U_{r,n}\setminus x$.

(c) Construct geometric representations of $U_{1,4}$, $U_{2,5}$, and $U_{3,6}$.

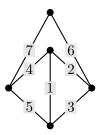
- (d) Find an excluded minor for the class of uniform matroids.
- (e) Provide four (pairwise non-isomorphic) matroids that are excluded minors for the class of GF(5)-representable matroids.

(f) Consider the rank-4 matroid M with the following geometric representation:



What fields is M representable over, if any? Provide an argument to support your answer.

(g) Consider the following graph G.



Provide a matrix A with all entries in $\{0, 1, -1\}$ such that, for any field \mathbb{F} , if A is viewed as a matrix over \mathbb{F} , then $M[A] \cong M(G)$. Label the columns of A.