- There are 3 questions, worth 20 marks each.
- You have 90 minutes.
- Answer all questions in the spaces provided. You may use the reverse side if more space is required, or more paper is available on request.

Question 1. (20 marks) Let M be the matroid represented over the real numbers by the following matrix:

$$
\begin{aligned}
& \begin{array}{llllll}
a & b & c & d & e & f
\end{array} \\
& {\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

(a) Give a geometric representation of M. Be sure to clearly label the elements of M.
(b) Find a 3-element circuit, and a 4-element circuit, of M.
(c) Find a 3-element cocircuit, and a 4-element cocircuit, of M.
(d) Find two distinct hyperplanes of M.
(e) Find two distinct bases of M.
(f) Give a geometric representation of M^{*} and a matrix representation of M^{*}. For each representation, clearly label the elements of M^{*}. Comment on the relationship between M and M^{*}.
(g) Find a coindependent set that is a flat.
(h) Find a cobasis X such that $\operatorname{cl}(X)=X$.
(i) Is M 2-connected? Explain your answer.
(j) Does M have any 3 -separations? Explain your answer.
(k) Find a matrix that represents M / a over the reals, and give a geometric representation of M / a. Label the elements in each representation.
(l) Is M graphic? Briefly explain your answer.

Question 2. (20 marks) Definitions and short proofs.
(a) State the circuit axioms for a matroid.
(b) Define what is meant by the dual M^{*} of a matroid M.
(c) Let x be an element of a matroid M. Define the contraction M / x of x from M.
(d) State what it means for the rank function of a matroid M to be submodular. (In other words, state the third rank axiom.)
(e) Let λ_{M} be the connectivity function of a matroid M. Show that $\lambda_{M}(X) \geq 0$ for all $X \subseteq E(M)$.
(f) Let M be a matroid with ground set E. Prove the following:
(i) For $X \subseteq E$, the set X is a coindependent if and only if $E-X$ is spanning.
(ii) For $e \in E$, the element e is a coloop if and only if $E-e$ is a hyperplane.

Question 3. (20 marks)
(a) Consider the uniform matroid $U_{r, n}$. Specify the bases, flats, rank function, and closure operator of $U_{r, n}$.
(b) Say $x \in E\left(U_{r, n}\right)$. Describe $U_{r, n} / x$ and $U_{r, n} \backslash x$.
(c) Construct geometric representations of $U_{1,4}, U_{2,5}$, and $U_{3,6}$.
(d) Find an excluded minor for the class of uniform matroids.
(e) Provide four (pairwise non-isomorphic) matroids that are excluded minors for the class of $G F(5)$-representable matroids.
(f) Consider the rank-4 matroid M with the following geometric representation:

What fields is M representable over, if any? Provide an argument to support your answer.
(g) Consider the following graph G.

Provide a matrix A with all entries in $\{0,1,-1\}$ such that, for any field \mathbb{F}, if A is viewed as a matrix over \mathbb{F}, then $M[A] \cong M(G)$. Label the columns of A.

