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6 Cryptomorphisms

We have already mentioned that there are many different, but equivalent,
ways of defining a matroid. These different axiom schemes are called cryp-
tomorphisms. This chapter is dedicated to collecting and justifying some of
them.

Throughout this chapter, E will be a finite set. For the sake of com-
pleteness, let us start by restating the basis and independence axioms for
matroids. Let B and I be families of subsets of E. The basis axioms are as
follows.

B1. B is non-empty.

B2. If B1, B2 ∈ B, and x ∈ B1 − B2, then there exists an element y ∈
B2 −B1 such that (B1 − x) ∪ y ∈ B.

The independence axioms are as follows.

I1. ∅ ∈ I.

I2. If I1 ∈ I, and I2 ⊆ I1, then I2 ∈ I.

I3. If I1 and I2 are in I, and |I2| < |I1|, then there is an element e ∈ I1−I2
such that I2 ∪ e ∈ I.

The orthodox path is to define a matroid to be a pair (E, I), where I
is a family satisfying I1, I2, and I3. Then the independent sets are the
members of I, and the bases are the maximal members of I. This is the
approach you will find in most matroid textbooks. In Section 1 we took a
different approach, and defined a matroid to be a pair (E,B), where B is a
family satisfying B1 and B2. Then the members of B are bases, and their
subsets are the independent sets. Of course, these two different approaches
are equivalent because of Theorem 1.7, which we restate here in a slightly
different way.

Theorem 6.1. Let E be a finite set. If B is a family of subsets of E satis-
fying B1 and B2, and

I = {I ⊆ E : I ⊆ B for some B ∈ B},

then I satisfies I1, I2, and I3. Conversely, if I is a family of subsets of E
satisfying I1, I2, and I3, and B is the set of maximal members of I, then
B satisfies B1 and B2.
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Therefore we are free to define matroids via bases or independent sets,
as we wish.

Recall that a circuit of a matroid is a minimal dependent set. Let C be
a family of subsets of E. The circuit axioms are as follows.

C1. ∅ /∈ C.

C2. If C1, C2 ∈ C, and C1 ⊆ C2, then C1 = C2.

C3. If C1, C2 are distinct members of C, and e ∈ C1∩C2, then (C1∪C2)−e
contains a member of C.

We now restate and prove Theorem 1.11.

Theorem 6.2. LetM be a matroid, and let C be its family of circuits. Then
C satisfies C1, C2, and C3. Conversely, assume that E is a finite set and
C is a family of subsets of E. If C satisfies C1, C2, and C3, then it is
the collection of circuits of a matroid M , and the independent sets of M are
exactly the subsets of E that do not contain any member of C as a subset.

Proof. Let C be the family of circuits of a matroid. Because the empty set
is independent by I1, it cannot be a circuit. Therefore C1 holds. C2 holds
because circuits are minimal dependent sets by definition.

Now we prove that C3 holds. Let C1 and C2 be distinct circuits, and
assume e is in C1∩C2. Suppose that (C1∪C2)−e does not contain a circuit.
Then it is independent. Since C1 and C2 are distinct circuits, neither one
of them is contained in the other, by C2. Therefore there is some element
f in C1 − C2. By the definition of a circuit, C1 − f is independent. Let I
be a maximum-sized independent subset of C1 ∪C2 that contains C1− f . If
|I| < |(C1 ∪ C2)− e|, then by I3, there is an element in (C1 ∪ C2)− e that
is not in I, that can be added to I to create a larger independent set. This
contradicts the definition of I, so |I| ≥ |(C1 ∪C2)− e|. However, f is not in
I, because otherwise I contains the dependent set C1, and this contradicts
I2. Therefore I ⊆ (C1 ∪ C2)− f , so |I| ≤ |(C1 ∪ C2)− f | = |(C1 ∪ C2)− e|.
This means that |I| = |(C1 ∪ C2)− e| = |(C1 ∪ C2)− f |, and therefore I =
(C1 ∪C2)− f . But this set contains the circuit C2, which is a contradiction
as I is independent. Therefore C3 holds.

For the converse, we let C be a family of subsets of the finite set E
satistfying C1, C2, and C3. Let

I = {I ⊆ E : X /∈ C for all X ⊆ I}.

We want to show that I satisfies I1, I2, and I3.
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The conditionC1 shows that ∅ /∈ C, so the empty set contains no member
of C. Therefore ∅ ∈ I, and I1 is satisfied. If I1 ⊆ E contains no member of
C, then clearly no subset of I1 contains a member of C. Therefore all subsets
of I1 are contained in I, and I2 is satisfied.

Now we suppose that I2 and I ′1 are members of I, and that |I2| < |I ′1|,
but I3 fails for this pair. There is at least one member of I contained in
I ′1 ∪ I2 that is strictly larger than I2 (since I ′1 is such a subset). Amongst
all such subsets, assume that I1 has been chosen so that I1 ∩ I2 is as large
as possible. If I2 were contained in I1, then we would be able to extend I2
by a single element in I1 − I2 and remain in I. Since the element in I1 − I2
is also in I ′1− I2, this contradicts our assumption that I3 fails for I ′1 and I2,
so |I2 − I1| > 0. Let e be an element in I2 − I1.

Since |I1| > |I2|, the set I1 − I2 is non-empty. We claim that for any
f ∈ I1−I2, the set (I1∪e)−f contains a member of C. Let f ∈ I1−I2. Now
(I1∪e)−f is contained in I ′1∪I2, and is strictly larger than I2. Furthermore,
it meets I2 in one more element (namely e) than I1 does. Therefore (I1∪e)−f
does not belong to I, or else our choice of I1 is contradicted. Thus (I1∪e)−f
contains a member of C, as claimed.

Let f1 be any element in I1 − I2, so (I1 ∪ e) − f1 contains a member,
C1, of C. If C1 ∩ (I1 − I2) is empty, then C1 is contained in I2, and this
contradicts our assumption that I2 ∈ I. Therefore, there is some element
f2 in C1∩ (I1− I2). As f2 ∈ I1− I2, there is some member of C contained in
(I1∪e)−f2. Let us call this member C2. Note that both C1 and C2 contain
e, for otherwise one of C1 or C2 is contained in I1, which contradicts the
fact that I1 is in I. Moreover, C1 and C2 are distinct, for C2 cannot contain
f2 as it is contained in (I2 ∪ e)− f2, and f2 was chosen so that it belongs to
C1. Now C3 says that there is a member of C contained in (C1 ∪ C2) − e.
But (C1 ∪C2)− e is contained in I1, and this contradicts the fact that I1 is
in I. Therefore I3 holds.

We have shown that I is the family of independent sets of a matroid
M . We complete the proof by showing that C is the family of circuits of
M . Note that X ⊆ E is dependent in M if and only if it is not in I, which
means that X contains a member of C. Therefore X is a circuit of M if and
only if it is minimal with respect to containing a member of C. It is clear
that this is true if and only if X is itself a member of C. Thus C is exactly
the family of circuits of M , as required. □

Next we consider the rank function. Recall that if M is a matroid and
X is a subset of E(M), then r(X) is the cardinality of a maximum-sized
independent subset of X. The rank axioms are the following conditions on
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a function r from subsets of E to the integers.

R1. 0 ≤ r(X) ≤ |X|, for all X ⊆ E.

R2. r(Y ) ≤ r(X), for all X,Y ⊆ E such that Y ⊆ X.

R3. r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ), for all X,Y ⊆ E.

Now we restate and prove Theorem 1.16.

Theorem 6.3. Let M be a matroid, and let r be its rank function. Then r
satisfies R1, R2, and R3. Conversely, assume E is a finite set and r is a
function taking subsets of E to the integers. If r satisfies R1, R2, and R3,
then it is the rank function of a matroid M , and the independent sets of M
are exactly the subsets I ⊆ E satisfying r(I) = |I|.

Proof. Let r be the rank function of the matroid M . Since r(X) is the
cardinality of a subset of X, it certainly satisfies R1. If Y ⊆ X, then any
independent subset of Y is also an independent subset of X. This implies
that R2 holds.

Next we prove that R3 holds. Let X and Y be arbitrary subsets of
E(M). Let B be a maximum-sized independent set in X ∩ Y , so that
|B| = r(X ∩Y ). Now let B′ be a maximum-sized independent set contained
in X ∪ Y such that B′ contains B. We claim that |B′| = r(X ∪ Y ). If not,
then there is an independent set I contained in X ∪ Y that is larger than
B′. But I3 then implies that there is an element e in I−B′ such that B′∪ e
is independent. However B′ ∪ e is contained in X ∪ Y , and contains B.
Moreover, it is larger than B′, so our choice of B′ is contradicted. Therefore
B′ is a maximum-sized independent set contained in X ∪ Y , and hence
r(X ∪ Y ) = |B′|.

We now divide B′ into three parts. Let B1 be the intersection of B′

with X ∩ Y , let BX be the intersection of B′ with X − Y , and let BY be
the intersection of B′ with Y −X. We claim that B1 = B. Certainly B is
contained in B1, since B is contained in the intersection of B′ with X ∩ Y .
If B1 is not equal to B, then B1 is larger than B, and this contradicts our
choice of B, since B1 is independent (on account of it being a subset of B′)
and contained in X ∩ Y . Therefore B1 = B, so |B1| = r(X ∩ Y ).

Now

r(X ∪ Y ) + r(X ∩ Y ) = |B′|+ |B1| = (|BX |+ |B1|+ |BY |) + |B1|
= (|BX |+ |B1|) + (|BY |+ |B1|) = |B′ ∩X|+ |B′ ∩ Y |.
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As B′∩X is independent and contained in X it follows that |B′∩X| ≤ r(X).
Similarly, |B′ ∩ Y | ≤ r(Y ). Therefore R3 holds.

For the converse, we let r be a function taking the subsets of E to
integers, and we assume that R1, R2, and R3 hold. Let

I = {I ⊆ E : r(I) = |I|}.

We will show that I satisfies I1, I2, and I3.
By R1, 0 ≤ r(∅) ≤ |∅| = 0, so r(∅) = 0 = |∅|. Therefore the empty set

belongs to I, and I1 is satisfied. Suppose that I1 belongs to I and that I2
is a subset of I1. By applying R3 we see that

r(I2) + r(I1 − I2) ≥ r(I2 ∪ (I1 − I2)) + r(I2 ∩ (I1 − I2))

= r(I1) + r(∅)
= |I1|,

using that r(I1) = |I1|, as I1 is in I, and r(∅) = 0. So r(I2)+r(I1−I2) ≥ |I1|.
By applying R1 we see that

|I1| = |I2|+ |I1 − I2| ≥ r(I2) + r(I1 − I2) ≥ |I1|.

Therefore equality holds, so |I2|+ |I1 − I2| = r(I2) + r(I1 − I2), implying

|I2| − r(I2) = r(I1 − I2)− |I1 − I2|.

Now R1 implies that the left side of the last equation is non-negative, and
the right side is non-positive. Therefore both sides are zero, so |I2| = r(I2).
Therefore I2 belongs to I, so I2 is satisfied.

To prove that I3 is satisfied, we assume otherwise, and let I1 and I2 be
members of I such that |I2| < |I1|, but I2∪e /∈ I for every element e ∈ I1−I2.
Now let e be an arbitrary element in I1 − I2, so r(I2 ∪ e) ̸= |I2 ∪ e|. By
R1, r(I2 ∪ e) does not exceed |I2 ∪ e|, so r(I2 ∪ e) < |I2 ∪ e|. Equivalently,
r(I2 ∪ e) + 1 ≤ |I2 ∪ e|. Since I2 ∈ I, we have |I2| = r(I2). So, using R2,

|I2|+ 1 = r(I2) + 1 ≤ r(I2 ∪ e) + 1 ≤ |I2 ∪ e| = |I2|+ 1.

As equality holds, we deduce that r(I2∪e) = r(I2) for any element e ∈ I1−I2.
Now Proposition 5.5 shows that r(I2) = r(I2 ∪ (I1− I2)) = r(I1 ∪ I2). Using
R2 and the fact that both I1 and I2 are in I, we see that

|I1| = r(I1) ≤ r(I1 ∪ I2) = r(I2) = |I2| < |I1|.

Now we have a contradiction, so I3 holds.
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We have shown that I is the family of independent sets of a matroid M .
We now need to show that the rank function of M is r. Let X be an
arbitrary subset of E, and let s be the rank of X in M . We’ll show that
s = r(X). Now s is the cardinality of a maximum-sized member I of I that
is contained in X. So s = |I| = r(I), as I ∈ I.

If x is an arbitrary element of X − I, then I ∪ x is not in I, because I is
a maximum-sized member of I contained in X. Therefore r(I ∪x) ̸= |I ∪x|.
By R2, we deduce that r(I∪x) < |I∪x|, or equivalently r(I∪x)+1 ≤ |I∪x|.
Again, using R2, we see

|I|+ 1 = r(I) + 1 ≤ r(I ∪ x) + 1 ≤ |I ∪ x| = |I|+ 1.

As equality holds throughout, we deduce that r(I) = r(I ∪ x). Since x was
chosen arbitrarily from X−I, we can apply Proposition 5.5 and deduce that
s = r(I) = r(I ∪ (X − I)) = r(X), as required. □

We will state (without proof) three more axiom schemes for matroids.
First of all, we can characterise matroids via the closure operator. Let cl
be a function that takes the subsets of E to subsets of E, and consider the
following properties.

CL1. X ⊆ cl(X) for all X ⊆ E.

CL2. If Y ⊆ X ⊆ E, then cl(Y ) ⊆ cl(X).

CL3. cl(cl(X)) = cl(X) for all X ⊆ E.

CL4. If X ⊆ E, x ∈ E, and y ∈ cl(X ∪ x)− cl(X), then x ∈ cl(X ∪ y).

We saw, as Theorem 6.4, that the closure operator of a matroid satisfies
CL1–CL4. In fact, the next theorem shows that for any set E and function
from subsets of E to subsets of E satisfying CL1–CL4, the function is the
closure operator of a matroid on E.

Theorem 6.4. Let M be a matroid, and let cl be its closure operator. Then
cl satisfies CL1, CL2, CL3, and CL4. Conversely, assume E is a finite
set and cl is a function taking subsets of E to subsets of E. If cl satisfies
CL1, CL2, CL3, and CL4, then it is the closure operator of a matroid M
on ground set E, and the independent sets of M are precisely the subsets
I ⊆ E such that e /∈ cl(I − e) for every e ∈ I.

We can also axiomatise matroids via flats. Let F be a family of subsets
of E. Consider the following properties of F .
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F1. E ∈ F .

F2. If F1, F2 ∈ F , then F1 ∩ F2 ∈ F .

F3. If F ∈ F , and {F1, . . . , Fn} are the minimal members of F that prop-
erly contain F , then (F1 − F, . . . , Fn − F ) is a partition of E − F .

Theorem 6.5. Let M be a matroid, and let F be its family of flats. Then
F satisfies F1, F2, and F3. Conversely, assume E is a finite set and F
is a family of subsets of E. If F satisfies F1, F2, and F3, then it is the
family of flats of a matroid M on ground set E, and the independent sets of
M are exactly the subsets I ⊆ E such that for every element e ∈ I, there is
a set F ∈ F such that I − e ⊆ F and e /∈ F .

We now consider yet another characterisation of matroids. This charac-
terisation differs from those we have seen so far in that it has an algorithmic
flavour. One attractive feature of this characterisation is that it highlights
why matroids naturally arise in combinatorial optimisation.

We begin by discussing a well-known optimisation problem on graphs.
Let G = (V,E) be a connected graph and let w be a function from E into
R. We call w a weight function on G, and for all X ⊆ E(G), we define
the weight of X to be

∑
x∈X w(x). We are interested in the problem of

finding a minimum-weight spanning tree of G. For instance, an n-vertex
graph G could represent n towns to be linked by a railway network, where
the weight of an edge is the cost of adding a direct link between the two
towns corresponding to the edge’s ends. In this case, a minimum-weight
spanning tree corresponds to the cheapest railway network that links all n
towns.

One well-known solution to this problem is Kruskal’s algorithm. This
algorithm proceeds as follows. Initially, set S = ∅, where S represents a
potential solution that will be constructed incrementally. Order the edges
E from minimum weight to maximum weight. Then, proceed by considering
these edges one by one, in order, adding an edge e to S if it does not introduce
a cycle; that is, if G[S ∪ e] is a forest. When |S| = n − 1, then G[S] is a
spanning tree, which is output as a solution.

Kruskal’s algorithm is an instance of a so-called “greedy algorithm”, as
it greedily selects, to include in the solution, whichever edge appears to be
the best choice at that point in time. In other words, it makes a locally
optimal choice, that may or may not be globally optimal. It turns out that
this greedy approach does indeed give a globally optimal solution for the
problem of finding a minimum-weight spanning tree. In fact, the success
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of the greedy algorithm depends on whether the underlying structure is a
matroid.

The minimum-weight spanning tree problem is a particular instance of
a more general optimisation problem. Let I be a collection of subsets of a
finite set E, where I satisfies I1 and I2. As before, let w be a function from
E into R, which we call the weight function, and define the weight of X to
be
∑

x∈X w(x), where w(∅) = 0. The optimisation problem for (I, w) is to
find a maximal member B of I of maximum weight. We call B a solution
to this problem.

The greedy algorithm for the pair (I, w) proceeds as follows:

1. Set I := ∅.

2. While there is an element e ∈ E−I such that I∪e is in I, then choose
such an element e′ of maximum weight, set I := I ∪ e′, and repeat.

3. Output I.

Given an instance of the minimum-weight spanning tree problem on a
graph G with weight function w, by letting I be the forests of G, we see
that this problem is just the optimisation problem (I,−w). Observe that
Kruskal’s algorithm is then just the greedy algorithm on (I,−w).

The greedy algorithm is evidently an efficient algorithm for an optimisa-
tion problem, provided it does indeed give us an optimal solution. The next
theorem implies that, given a matroidM , the greedy algorithm on (I(M), w)
is optimal, for any weight function w : E(M) → R. In particular, it follows
that Kruskal’s algorithm is an optimal algorithm for the minimum-weight
spanning tree problem.

Let I be a family of subsets of a finite set E, and consider the following
property:

G1. For all weight functions w : E → R, the greedy algorithm finds a
maximal member of I of maximum weight.

It turns out that for any matroid M , the family of independent sets of
M satisfy G1. This may be somewhat surprising, but what is even more
surprising is that the greedy algorithm fails to give an optimal solution for
everything else.

Theorem 6.6. Let I be a collection of subsets of a finite set E. Then I is
the family of independent sets of a matroid on ground set E if and only if I
satisfies I1, I2, and G1.
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Another well-known efficient algorithm for finding a minimum-weight
spanning tree is Prim’s algorithm. We will not describe this algorithm here,
but it also employs a greedy-type strategy, which turns out to be optimal.
However, the optimality of this algorithm is not explained by the fact the
underlying structure is a matroid, but because it is a more general structure
known as a greedoid. Every matroid is a greedoid but the converse is not
true: for a greedoid, only a weaker version of I2 needs to hold.
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