6 Cryptomorphisms

We have already mentioned that there are many different, but equivalent, ways of defining a matroid. These different axiom schemes are called cryptomorphisms. This chapter is dedicated to collecting and justifying some of them.

Throughout this chapter, E will be a finite set. For the sake of completeness, let us start by restating the basis and independence axioms for matroids. Let \mathcal{B} and \mathcal{I} be families of subsets of E. The basis axioms are as follows.

B1. \mathcal{B} is non-empty.
B2. If $B_{1}, B_{2} \in \mathcal{B}$, and $x \in B_{1}-B_{2}$, then there exists an element $y \in$ $B_{2}-B_{1}$ such that $\left(B_{1}-x\right) \cup y \in \mathcal{B}$.

The independence axioms are as follows.
I1. $\emptyset \in \mathcal{I}$.
12. If $I_{1} \in \mathcal{I}$, and $I_{2} \subseteq I_{1}$, then $I_{2} \in \mathcal{I}$.
13. If I_{1} and I_{2} are in \mathcal{I}, and $\left|I_{2}\right|<\left|I_{1}\right|$, then there is an element $e \in I_{1}-I_{2}$ such that $I_{2} \cup e \in \mathcal{I}$.

The orthodox path is to define a matroid to be a pair (E, \mathcal{I}), where \mathcal{I} is a family satisfying $\mathbf{I} \mathbf{1}, \mathbf{I} \mathbf{2}$, and $\mathbf{I 3}$. Then the independent sets are the members of \mathcal{I}, and the bases are the maximal members of \mathcal{I}. This is the approach you will find in most matroid textbooks. In Section 1 we took a different approach, and defined a matroid to be a pair (E, \mathcal{B}), where \mathcal{B} is a family satisfying B1 and B2. Then the members of \mathcal{B} are bases, and their subsets are the independent sets. Of course, these two different approaches are equivalent because of Theorem 1.7, which we restate here in a slightly different way.

Theorem 6.1. Let E be a finite set. If \mathcal{B} is a family of subsets of E satisfying $\mathbf{B 1}$ and $\mathbf{B 2}$, and

$$
\mathcal{I}=\{I \subseteq E: I \subseteq B \text { for some } B \in \mathcal{B}\},
$$

then \mathcal{I} satisfies I1, I2, and I3. Conversely, if \mathcal{I} is a family of subsets of E satisfying I1, I2, and I3, and \mathcal{B} is the set of maximal members of \mathcal{I}, then \mathcal{B} satisfies B1 and B2.

Therefore we are free to define matroids via bases or independent sets, as we wish.

Recall that a circuit of a matroid is a minimal dependent set. Let \mathcal{C} be a family of subsets of E. The circuit axioms are as follows.

C1. $\emptyset \notin \mathcal{C}$.
C2. If $C_{1}, C_{2} \in \mathcal{C}$, and $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$.
C3. If C_{1}, C_{2} are distinct members of \mathcal{C}, and $e \in C_{1} \cap C_{2}$, then $\left(C_{1} \cup C_{2}\right)-e$ contains a member of \mathcal{C}.

We now restate and prove Theorem 1.11 .
Theorem 6.2. Let M be a matroid, and let \mathcal{C} be its family of circuits. Then \mathcal{C} satisfies $\mathbf{C 1}, \mathbf{C 2}$, and $\mathbf{C 3}$. Conversely, assume that E is a finite set and \mathcal{C} is a family of subsets of E. If \mathcal{C} satisfies $\mathbf{C 1}, \mathbf{C} 2$, and $\mathbf{C 3}$, then it is the collection of circuits of a matroid M, and the independent sets of M are exactly the subsets of E that do not contain any member of \mathcal{C} as a subset.

Proof. Let \mathcal{C} be the family of circuits of a matroid. Because the empty set is independent by I1, it cannot be a circuit. Therefore C1 holds. C2 holds because circuits are minimal dependent sets by definition.

Now we prove that $\mathbf{C} 3$ holds. Let C_{1} and C_{2} be distinct circuits, and assume e is in $C_{1} \cap C_{2}$. Suppose that $\left(C_{1} \cup C_{2}\right)-e$ does not contain a circuit. Then it is independent. Since C_{1} and C_{2} are distinct circuits, neither one of them is contained in the other, by C2. Therefore there is some element f in $C_{1}-C_{2}$. By the definition of a circuit, $C_{1}-f$ is independent. Let I be a maximum-sized independent subset of $C_{1} \cup C_{2}$ that contains $C_{1}-f$. If $|I|<\left|\left(C_{1} \cup C_{2}\right)-e\right|$, then by $\mathbf{I 3}$, there is an element in $\left(C_{1} \cup C_{2}\right)-e$ that is not in I, that can be added to I to create a larger independent set. This contradicts the definition of I, so $|I| \geq\left|\left(C_{1} \cup C_{2}\right)-e\right|$. However, f is not in I, because otherwise I contains the dependent set C_{1}, and this contradicts 12. Therefore $I \subseteq\left(C_{1} \cup C_{2}\right)-f$, so $|I| \leq\left|\left(C_{1} \cup C_{2}\right)-f\right|=\left|\left(C_{1} \cup C_{2}\right)-e\right|$. This means that $|I|=\left|\left(C_{1} \cup C_{2}\right)-e\right|=\left|\left(C_{1} \cup C_{2}\right)-f\right|$, and therefore $I=$ $\left(C_{1} \cup C_{2}\right)-f$. But this set contains the circuit C_{2}, which is a contradiction as I is independent. Therefore $\mathbf{C 3}$ holds.

For the converse, we let \mathcal{C} be a family of subsets of the finite set E satistfying C1, C2, and C3. Let

$$
\mathcal{I}=\{I \subseteq E: X \notin \mathcal{C} \text { for all } X \subseteq I\}
$$

We want to show that \mathcal{I} satisfies I1, I2, and I3.

The condition $\mathbf{C 1}$ shows that $\emptyset \notin \mathcal{C}$, so the empty set contains no member of \mathcal{C}. Therefore $\emptyset \in \mathcal{I}$, and I1 is satisfied. If $I_{1} \subseteq E$ contains no member of \mathcal{C}, then clearly no subset of I_{1} contains a member of \mathcal{C}. Therefore all subsets of I_{1} are contained in \mathcal{I}, and $\mathbf{I} \mathbf{2}$ is satisfied.

Now we suppose that I_{2} and I_{1}^{\prime} are members of \mathcal{I}, and that $\left|I_{2}\right|<\left|I_{1}^{\prime}\right|$, but I3 fails for this pair. There is at least one member of \mathcal{I} contained in $I_{1}^{\prime} \cup I_{2}$ that is strictly larger than I_{2} (since I_{1}^{\prime} is such a subset). Amongst all such subsets, assume that I_{1} has been chosen so that $I_{1} \cap I_{2}$ is as large as possible. If I_{2} were contained in I_{1}, then we would be able to extend I_{2} by a single element in $I_{1}-I_{2}$ and remain in \mathcal{I}. Since the element in $I_{1}-I_{2}$ is also in $I_{1}^{\prime}-I_{2}$, this contradicts our assumption that $\mathbf{I} \mathbf{3}$ fails for I_{1}^{\prime} and I_{2}, so $\left|I_{2}-I_{1}\right|>0$. Let e be an element in $I_{2}-I_{1}$.

Since $\left|I_{1}\right|>\left|I_{2}\right|$, the set $I_{1}-I_{2}$ is non-empty. We claim that for any $f \in I_{1}-I_{2}$, the set $\left(I_{1} \cup e\right)-f$ contains a member of \mathcal{C}. Let $f \in I_{1}-I_{2}$. Now $\left(I_{1} \cup e\right)-f$ is contained in $I_{1}^{\prime} \cup I_{2}$, and is strictly larger than I_{2}. Furthermore, it meets I_{2} in one more element (namely e) than I_{1} does. Therefore $\left(I_{1} \cup e\right)-f$ does not belong to \mathcal{I}, or else our choice of I_{1} is contradicted. Thus $\left(I_{1} \cup e\right)-f$ contains a member of \mathcal{C}, as claimed.

Let f_{1} be any element in $I_{1}-I_{2}$, so $\left(I_{1} \cup e\right)-f_{1}$ contains a member, C_{1}, of \mathcal{C}. If $C_{1} \cap\left(I_{1}-I_{2}\right)$ is empty, then C_{1} is contained in I_{2}, and this contradicts our assumption that $I_{2} \in \mathcal{I}$. Therefore, there is some element f_{2} in $C_{1} \cap\left(I_{1}-I_{2}\right)$. As $f_{2} \in I_{1}-I_{2}$, there is some member of \mathcal{C} contained in $\left(I_{1} \cup e\right)-f_{2}$. Let us call this member C_{2}. Note that both C_{1} and C_{2} contain e, for otherwise one of C_{1} or C_{2} is contained in I_{1}, which contradicts the fact that I_{1} is in \mathcal{I}. Moreover, C_{1} and C_{2} are distinct, for C_{2} cannot contain f_{2} as it is contained in $\left(I_{2} \cup e\right)-f_{2}$, and f_{2} was chosen so that it belongs to C_{1}. Now $\mathbf{C 3}$ says that there is a member of \mathcal{C} contained in $\left(C_{1} \cup C_{2}\right)-e$. But $\left(C_{1} \cup C_{2}\right)-e$ is contained in I_{1}, and this contradicts the fact that I_{1} is in \mathcal{I}. Therefore $\mathbf{I} 3$ holds.

We have shown that \mathcal{I} is the family of independent sets of a matroid M. We complete the proof by showing that \mathcal{C} is the family of circuits of M. Note that $X \subseteq E$ is dependent in M if and only if it is not in \mathcal{I}, which means that X contains a member of \mathcal{C}. Therefore X is a circuit of M if and only if it is minimal with respect to containing a member of \mathcal{C}. It is clear that this is true if and only if X is itself a member of \mathcal{C}. Thus \mathcal{C} is exactly the family of circuits of M, as required.

Next we consider the rank function. Recall that if M is a matroid and X is a subset of $E(M)$, then $r(X)$ is the cardinality of a maximum-sized independent subset of X. The rank axioms are the following conditions on
a function r from subsets of E to the integers.
R1. $0 \leq r(X) \leq|X|$, for all $X \subseteq E$.
R2. $r(Y) \leq r(X)$, for all $X, Y \subseteq E$ such that $Y \subseteq X$.
R3. $r(X)+r(Y) \geq r(X \cup Y)+r(X \cap Y)$, for all $X, Y \subseteq E$.
Now we restate and prove Theorem 1.16 .
Theorem 6.3. Let M be a matroid, and let r be its rank function. Then r satisfies R1, R2, and R3. Conversely, assume E is a finite set and r is a function taking subsets of E to the integers. If r satisfies $\mathbf{R 1}, \mathbf{R 2}$, and $\mathbf{R 3}$, then it is the rank function of a matroid M, and the independent sets of M are exactly the subsets $I \subseteq E$ satisfying $r(I)=|I|$.

Proof. Let r be the rank function of the matroid M. Since $r(X)$ is the cardinality of a subset of X, it certainly satisfies R1. If $Y \subseteq X$, then any independent subset of Y is also an independent subset of X. This implies that R2 holds.

Next we prove that R3 holds. Let X and Y be arbitrary subsets of $E(M)$. Let B be a maximum-sized independent set in $X \cap Y$, so that $|B|=r(X \cap Y)$. Now let B^{\prime} be a maximum-sized independent set contained in $X \cup Y$ such that B^{\prime} contains B. We claim that $\left|B^{\prime}\right|=r(X \cup Y)$. If not, then there is an independent set I contained in $X \cup Y$ that is larger than B^{\prime}. But $\mathbf{I} 3$ then implies that there is an element e in $I-B^{\prime}$ such that $B^{\prime} \cup e$ is independent. However $B^{\prime} \cup e$ is contained in $X \cup Y$, and contains B. Moreover, it is larger than B^{\prime}, so our choice of B^{\prime} is contradicted. Therefore B^{\prime} is a maximum-sized independent set contained in $X \cup Y$, and hence $r(X \cup Y)=\left|B^{\prime}\right|$.

We now divide B^{\prime} into three parts. Let B_{1} be the intersection of B^{\prime} with $X \cap Y$, let B_{X} be the intersection of B^{\prime} with $X-Y$, and let B_{Y} be the intersection of B^{\prime} with $Y-X$. We claim that $B_{1}=B$. Certainly B is contained in B_{1}, since B is contained in the intersection of B^{\prime} with $X \cap Y$. If B_{1} is not equal to B, then B_{1} is larger than B, and this contradicts our choice of B, since B_{1} is independent (on account of it being a subset of B^{\prime}) and contained in $X \cap Y$. Therefore $B_{1}=B$, so $\left|B_{1}\right|=r(X \cap Y)$.

Now

$$
\begin{aligned}
& r(X \cup Y)+r(X \cap Y)=\left|B^{\prime}\right|+\left|B_{1}\right|=\left(\left|B_{X}\right|+\left|B_{1}\right|+\left|B_{Y}\right|\right)+\left|B_{1}\right| \\
&=\left(\left|B_{X}\right|+\left|B_{1}\right|\right)+\left(\left|B_{Y}\right|+\left|B_{1}\right|\right)=\left|B^{\prime} \cap X\right|+\left|B^{\prime} \cap Y\right| .
\end{aligned}
$$

As $B^{\prime} \cap X$ is independent and contained in X it follows that $\left|B^{\prime} \cap X\right| \leq r(X)$. Similarly, $\left|B^{\prime} \cap Y\right| \leq r(Y)$. Therefore R3 holds.

For the converse, we let r be a function taking the subsets of E to integers, and we assume that R1, R2, and R3 hold. Let

$$
\mathcal{I}=\{I \subseteq E: r(I)=|I|\}
$$

We will show that \mathcal{I} satisfies I1, I2, and $\mathbf{I} 3$.
By R1, $0 \leq r(\emptyset) \leq|\emptyset|=0$, so $r(\emptyset)=0=|\emptyset|$. Therefore the empty set belongs to \mathcal{I}, and $\mathbf{I 1}$ is satisfied. Suppose that I_{1} belongs to \mathcal{I} and that I_{2} is a subset of I_{1}. By applying R3 we see that

$$
\begin{aligned}
r\left(I_{2}\right)+r\left(I_{1}-I_{2}\right) & \geq r\left(I_{2} \cup\left(I_{1}-I_{2}\right)\right)+r\left(I_{2} \cap\left(I_{1}-I_{2}\right)\right) \\
& =r\left(I_{1}\right)+r(\emptyset) \\
& =\left|I_{1}\right|,
\end{aligned}
$$

using that $r\left(I_{1}\right)=\left|I_{1}\right|$, as I_{1} is in \mathcal{I}, and $r(\emptyset)=0$. So $r\left(I_{2}\right)+r\left(I_{1}-I_{2}\right) \geq\left|I_{1}\right|$. By applying $\mathbf{R 1}$ we see that

$$
\left|I_{1}\right|=\left|I_{2}\right|+\left|I_{1}-I_{2}\right| \geq r\left(I_{2}\right)+r\left(I_{1}-I_{2}\right) \geq\left|I_{1}\right| .
$$

Therefore equality holds, so $\left|I_{2}\right|+\left|I_{1}-I_{2}\right|=r\left(I_{2}\right)+r\left(I_{1}-I_{2}\right)$, implying

$$
\left|I_{2}\right|-r\left(I_{2}\right)=r\left(I_{1}-I_{2}\right)-\left|I_{1}-I_{2}\right| .
$$

Now R1 implies that the left side of the last equation is non-negative, and the right side is non-positive. Therefore both sides are zero, so $\left|I_{2}\right|=r\left(I_{2}\right)$. Therefore I_{2} belongs to \mathcal{I}, so $\mathbf{I 2}$ is satisfied.

To prove that $\mathbf{I} \mathbf{3}$ is satisfied, we assume otherwise, and let I_{1} and I_{2} be members of \mathcal{I} such that $\left|I_{2}\right|<\left|I_{1}\right|$, but $I_{2} \cup e \notin \mathcal{I}$ for every element $e \in I_{1}-I_{2}$. Now let e be an arbitrary element in $I_{1}-I_{2}$, so $r\left(I_{2} \cup e\right) \neq\left|I_{2} \cup e\right|$. By R1, $r\left(I_{2} \cup e\right)$ does not exceed $\left|I_{2} \cup e\right|$, so $r\left(I_{2} \cup e\right)<\left|I_{2} \cup e\right|$. Equivalently, $r\left(I_{2} \cup e\right)+1 \leq\left|I_{2} \cup e\right|$. Since $I_{2} \in \mathcal{I}$, we have $\left|I_{2}\right|=r\left(I_{2}\right)$. So, using R2,

$$
\left|I_{2}\right|+1=r\left(I_{2}\right)+1 \leq r\left(I_{2} \cup e\right)+1 \leq\left|I_{2} \cup e\right|=\left|I_{2}\right|+1
$$

As equality holds, we deduce that $r\left(I_{2} \cup e\right)=r\left(I_{2}\right)$ for any element $e \in I_{1}-I_{2}$. Now Proposition 5.5 shows that $r\left(I_{2}\right)=r\left(I_{2} \cup\left(I_{1}-I_{2}\right)\right)=r\left(I_{1} \cup I_{2}\right)$. Using R2 and the fact that both I_{1} and I_{2} are in \mathcal{I}, we see that

$$
\left|I_{1}\right|=r\left(I_{1}\right) \leq r\left(I_{1} \cup I_{2}\right)=r\left(I_{2}\right)=\left|I_{2}\right|<\left|I_{1}\right| .
$$

Now we have a contradiction, so I3 holds.

We have shown that \mathcal{I} is the family of independent sets of a matroid M. We now need to show that the rank function of M is r. Let X be an arbitrary subset of E, and let s be the rank of X in M. We'll show that $s=r(X)$. Now s is the cardinality of a maximum-sized member I of \mathcal{I} that is contained in X. So $s=|I|=r(I)$, as $I \in \mathcal{I}$.

If x is an arbitrary element of $X-I$, then $I \cup x$ is not in \mathcal{I}, because I is a maximum-sized member of \mathcal{I} contained in X. Therefore $r(I \cup x) \neq|I \cup x|$. By R2, we deduce that $r(I \cup x)<|I \cup x|$, or equivalently $r(I \cup x)+1 \leq|I \cup x|$. Again, using R2, we see

$$
|I|+1=r(I)+1 \leq r(I \cup x)+1 \leq|I \cup x|=|I|+1
$$

As equality holds throughout, we deduce that $r(I)=r(I \cup x)$. Since x was chosen arbitrarily from $X-I$, we can apply Proposition 5.5 and deduce that $s=r(I)=r(I \cup(X-I))=r(X)$, as required.

We will state (without proof) three more axiom schemes for matroids. First of all, we can characterise matroids via the closure operator. Let cl be a function that takes the subsets of E to subsets of E, and consider the following properties.

CL1. $X \subseteq \operatorname{cl}(X)$ for all $X \subseteq E$.
CL2. If $Y \subseteq X \subseteq E$, then $\operatorname{cl}(Y) \subseteq \operatorname{cl}(X)$.
CL3. $\operatorname{cl}(\operatorname{cl}(X))=\operatorname{cl}(X)$ for all $X \subseteq E$.
CL4. If $X \subseteq E, x \in E$, and $y \in \operatorname{cl}(X \cup x)-\operatorname{cl}(X)$, then $x \in \operatorname{cl}(X \cup y)$.
We saw, as Theorem 6.4 that the closure operator of a matroid satisfies CL1-CL4. In fact, the next theorem shows that for any set E and function from subsets of E to subsets of E satisfying $\mathbf{C L} 1-\mathbf{C L 4}$, the function is the closure operator of a matroid on E.

Theorem 6.4. Let M be a matroid, and let cl be its closure operator. Then cl satisfies CL1, CL2, CL3, and CL4. Conversely, assume E is a finite set and cl is a function taking subsets of E to subsets of E. If cl satisfies CL1, CL2, CL3, and $\mathbf{C L 4}$, then it is the closure operator of a matroid M on ground set E, and the independent sets of M are precisely the subsets $I \subseteq E$ such that $e \notin \operatorname{cl}(I-e)$ for every $e \in I$.

We can also axiomatise matroids via flats. Let \mathcal{F} be a family of subsets of E. Consider the following properties of \mathcal{F}.

F1. $E \in \mathcal{F}$.
F2. If $F_{1}, F_{2} \in \mathcal{F}$, then $F_{1} \cap F_{2} \in \mathcal{F}$.
F3. If $F \in \mathcal{F}$, and $\left\{F_{1}, \ldots, F_{n}\right\}$ are the minimal members of \mathcal{F} that properly contain F, then $\left(F_{1}-F, \ldots, F_{n}-F\right)$ is a partition of $E-F$.

Theorem 6.5. Let M be a matroid, and let \mathcal{F} be its family of flats. Then \mathcal{F} satisfies F1, F2, and F3. Conversely, assume E is a finite set and \mathcal{F} is a family of subsets of E. If \mathcal{F} satisfies $\mathbf{F 1}, \mathbf{F} 2$, and $\mathbf{F 3}$, then it is the family of flats of a matroid M on ground set E, and the independent sets of M are exactly the subsets $I \subseteq E$ such that for every element $e \in I$, there is a set $F \in \mathcal{F}$ such that $I-e \subseteq F$ and $e \notin F$.

We now consider yet another characterisation of matroids. This characterisation differs from those we have seen so far in that it has an algorithmic flavour. One attractive feature of this characterisation is that it highlights why matroids naturally arise in combinatorial optimisation.

We begin by discussing a well-known optimisation problem on graphs. Let $G=(V, E)$ be a connected graph and let w be a function from E into \mathbb{R}. We call w a weight function on G, and for all $X \subseteq E(G)$, we define the weight of X to be $\sum_{x \in X} w(x)$. We are interested in the problem of finding a minimum-weight spanning tree of G. For instance, an n-vertex graph G could represent n towns to be linked by a railway network, where the weight of an edge is the cost of adding a direct link between the two towns corresponding to the edge's ends. In this case, a minimum-weight spanning tree corresponds to the cheapest railway network that links all n towns.

One well-known solution to this problem is Kruskal's algorithm. This algorithm proceeds as follows. Initially, set $S=\emptyset$, where S represents a potential solution that will be constructed incrementally. Order the edges E from minimum weight to maximum weight. Then, proceed by considering these edges one by one, in order, adding an edge e to S if it does not introduce a cycle; that is, if $G[S \cup e]$ is a forest. When $|S|=n-1$, then $G[S]$ is a spanning tree, which is output as a solution.

Kruskal's algorithm is an instance of a so-called "greedy algorithm", as it greedily selects, to include in the solution, whichever edge appears to be the best choice at that point in time. In other words, it makes a locally optimal choice, that may or may not be globally optimal. It turns out that this greedy approach does indeed give a globally optimal solution for the problem of finding a minimum-weight spanning tree. In fact, the success
of the greedy algorithm depends on whether the underlying structure is a matroid.

The minimum-weight spanning tree problem is a particular instance of a more general optimisation problem. Let \mathcal{I} be a collection of subsets of a finite set E, where \mathcal{I} satisfies $\mathbf{I} \mathbf{1}$ and $\mathbf{I} \mathbf{2}$. As before, let w be a function from E into \mathbb{R}, which we call the weight function, and define the weight of X to be $\sum_{x \in X} w(x)$, where $w(\emptyset)=0$. The optimisation problem for (\mathcal{I}, w) is to find a maximal member B of \mathcal{I} of maximum weight. We call B a solution to this problem.

The greedy algorithm for the pair (\mathcal{I}, w) proceeds as follows:

1. Set $I:=\emptyset$.
2. While there is an element $e \in E-I$ such that $I \cup e$ is in \mathcal{I}, then choose such an element e^{\prime} of maximum weight, set $I:=I \cup e^{\prime}$, and repeat.
3. Output I.

Given an instance of the minimum-weight spanning tree problem on a graph G with weight function w, by letting \mathcal{I} be the forests of G, we see that this problem is just the optimisation problem $(\mathcal{I},-w)$. Observe that Kruskal's algorithm is then just the greedy algorithm on $(\mathcal{I},-w)$.

The greedy algorithm is evidently an efficient algorithm for an optimisation problem, provided it does indeed give us an optimal solution. The next theorem implies that, given a matroid M, the greedy algorithm on $(\mathcal{I}(M), w)$ is optimal, for any weight function $w: E(M) \rightarrow \mathbb{R}$. In particular, it follows that Kruskal's algorithm is an optimal algorithm for the minimum-weight spanning tree problem.

Let \mathcal{I} be a family of subsets of a finite set E, and consider the following property:

G1. For all weight functions $w: E \rightarrow \mathbb{R}$, the greedy algorithm finds a maximal member of \mathcal{I} of maximum weight.

It turns out that for any matroid M, the family of independent sets of M satisfy G1. This may be somewhat surprising, but what is even more surprising is that the greedy algorithm fails to give an optimal solution for everything else.

Theorem 6.6. Let \mathcal{I} be a collection of subsets of a finite set E. Then \mathcal{I} is the family of independent sets of a matroid on ground set E if and only if \mathcal{I} satisfies $\mathbf{I 1}, \mathbf{I 2}$, and G1.

Another well-known efficient algorithm for finding a minimum-weight spanning tree is Prim's algorithm. We will not describe this algorithm here, but it also employs a greedy-type strategy, which turns out to be optimal. However, the optimality of this algorithm is not explained by the fact the underlying structure is a matroid, but because it is a more general structure known as a greedoid. Every matroid is a greedoid but the converse is not true: for a greedoid, only a weaker version of $\mathbf{I} 2$ needs to hold.

