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5 Closure and flats

We start this chapter with two definitions.

Definition 5.1. Let M be a matroid, and let X be a subset of E(M). The
closure of X, written cl(X) or clM (X), is the set

{e ∈ E(M) : r(X ∪ e) = r(X)}.

Equivalently, cl(X) = X ∪ {e ∈ E(M) − X : r(X ∪ e) = r(X)}. The
function cl takes subsets of E(M) to subsets of E(M). We call it the closure
operator of M . If e is in the closure of X, we say that X spans e.

Example. Consider the matroid in Figure 17. The set {a, e} spans g, since
{a, e} and {a, e, g} have the same rank. Furthermore, {a, e, f} and {a, e, h}
have the same rank as {a, e}, so {a, e} spans f and h. However, {a, e, b} has
rank three, which is more than the rank of {a, e}, so {a, e} does not span b.
In fact, the closure of {a, e} is {a, e, f, g, h}. ♢
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Figure 17: A rank-3 matroid.

Exercise 5.2. Recall that a spanning set is one that contains a basis. For
a matroidM and set X ⊆ E(M), prove that X is spanning inM if and only
if the closure of X is equal to E(M).

Definition 5.3. A flat of a matroid M is a subset X ⊆ E(M) such that
cl(X) = X.

In other words, X is a flat if r(X ∪ e) > r(X), for every element e ∈
E(M)−X; that is, it is maximal with respect to having rank equal to r(X).

Example. Again consider the rank-3 matroid shown in Figure 17. Recall
the convention that, in a geometric representation, loops are shown in a box
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to one side. The set {b, f, c, h} is a flat of this matroid, since if we extend it
by adding a new element, its rank will increase from two to three. For the
same reason, {a, e, f, g, h} and {b, g, h} are flats. However, {a, b, d} is not
a flat, since it has the same rank as {a, b, d, h}. Similarly, {c, d, h} is not a
flat, because it has the same rank as {c, d, g, h}. ♢

Note that X fails to be a flat if and only if there is an element e ∈
E(M)−X such that r(X ∪ e) = r(X). A hyperplane is just a flat with rank
r(M)− 1.

Exercise 5.4. Prove that if e is a loop of the matroid M , then e is in every
flat of M .

Proposition 5.5. Let E be a finite set, and let r be a function taking subsets
of E to integers. Assume that r satisfies the properties R2 and R3 stated
on page 9. If X and Y are subsets of E such that r(X ∪y) = r(X) for every
element y ∈ Y −X, then r(X ∪ Y ) = r(X).

Proof. The proof is by induction on |Y − X|. If |Y − X| = 0 then Y is
contained in X and the result is immediate. Assume that |Y − X| = t,
where t > 0, and that the result holds for all subsets X and Y such that
|Y −X| < t. Now let y be an element in Y −X. Then r(X ∪ y) = r(X),
by hypothesis, and r(X ∪ (Y − y)) = r(X), by induction. Therefore, by
applying statements R2 and R3, we see that

r(X) + r(X) = r(X ∪ (Y − y)) + r(X ∪ y)
≥ r((X ∪ (Y − y)) ∪ (X ∪ y)) + r((X ∪ (Y − y)) ∩ (X ∪ y))
= r(X ∪ Y ) + r(X)

≥ r(X) + r(X).

(The last inequality follows from applying R2 to X ⊆ X∪Y .) Since the first
and last terms in this sequence of inequalities are equal, all the inequalities
must in fact be equalities. Therefore r(X) + r(X) = r(X ∪ Y ) + r(X). The
result follows. □

Note that the rank function of a matroid satisfies R2 and R3, by Theo-
rem 1.16. Therefore we can apply Proposition 5.5 to matroid rank functions.

Proposition 5.6. Let M be a matroid, and let X be a subset of E(M).

(i) r(cl(X)) = r(X).
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(ii) cl(X) is a flat of M .

Proof. The first statement follows immediately from the definition of closure
and Proposition 5.5. Suppose that the second statement is false. Then
there is an element x ∈ E(M) − cl(X) such that r(cl(X) ∪ x) = r(cl(X)).
Because x is not in cl(X), it follows that r(X) ̸= r(X ∪ x). Since R2
implies that r(X) ≤ r(X ∪ x), we deduce that r(X) < r(X ∪ x). Now
X ∪ x ⊆ cl(X) ∪ x, since X ⊆ cl(X), so by using R2 again, we see that
r(X ∪ x) ≤ r(cl(X)∪ x) = r(cl(X)). Together, these inequalities imply that
r(X) < r(cl(X)), which contradicts statement (i). □

In Proposition 5.8, we summarise the properties of the closure operator.
First, we require a lemma.

Lemma 5.7. For a matroidM on ground set E, suppose X ⊆ E and e ∈ E.
Then

(i) r(X ∪ x) ∈ {r(X), r(X) + 1}, and

(ii) if x /∈ cl(X), then r(X ∪ x) = r(X) + 1.

Proof. Clearly (i) holds when x ∈ X, so suppose x ∈ E − X. By R2,
r(X) ≤ r(X ∪ x). By R3, r(X ∪ x) + r(∅) ≤ r(X) + r({x}), where r(∅) = 0
and r({x}) ≤ 1, by R1. So r(X ∪ x) ≤ r(X) + 1, and hence (i) holds. For
(ii), observe that if x /∈ cl(X), then r(X ∪ x) ̸= r(X), so, by (i), r(X ∪ x) =
r(X) + 1, as required. □

Proposition 5.8. Let M be a matroid with closure operator cl. Then cl
satisfies the following properties:

CL1. X ⊆ cl(X) for all X ⊆ E.

CL2. If Y ⊆ X ⊆ E, then cl(Y ) ⊆ cl(X).

CL3. cl(cl(X)) = cl(X) for all X ⊆ E.

CL4. If X ⊆ E, x ∈ E, and y ∈ cl(X ∪ x)− cl(X), then x ∈ cl(X ∪ y).

Proof. Since cl(X) = X ∪ {e ∈ E(M) −X : r(X ∪ e) = r(X)}, CL1 holds.
For CL2, let e ∈ cl(Y ), where Y ⊆ X ⊆ E. Then r(Y ∪ e) = r(Y ). Let BY

be a basis of Y . Then BY is also a basis of Y ∪ e. Now X ∪ e has a basis
BX∪e that contains BY . Note that BX∪e does not contain e, for otherwise
BX∪e∩(Y ∪e) is an independent set contained in Y ∪e that properly contains
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BY , contradicting that BY is a basis of Y ∪ e. Since BX∪e does not contain
e, it is also a basis of BX . So r(X ∪ e) = r(X), implying e ∈ cl(X). Thus
CL2 holds. Since cl(X) is a flat, by Proposition 5.6(ii), CL3 holds.

Finally, consider CL4. Suppose y ∈ cl(X ∪ x) − cl(X), for some x ∈ E
and X ⊆ E. Then r(X ∪ {x, y}) = r(X ∪ x), and r(X ∪ y) = r(X) + 1, by
Lemma 5.7(ii). Now

r(X) + 1 = r(X ∪ y) ≤ r(X ∪ {x, y}) = r(X ∪ x) ≤ r(X) + 1,

by R2 and Lemma 5.7(i). So equality holds throughout, implying r(X ∪
{x, y}) = r(X ∪ y). Hence x ∈ cl(X ∪ y). □

Proposition 5.9. Let M be a matroid, let X be a subset of E(M), and let
x ∈ E(M) − X. Then x ∈ cl(X) if and only if there is a circuit C of M
such that x ∈ C, and C is contained in X ∪ x.

Proof. Suppose that x ∈ cl(X). Let I be a maximum-sized independent set
contained in X. Then I is also a maximum-sized independent set in X ∪ x,
because r(X ∪ x) = r(X). Therefore I ∪ x is dependent. Proposition 1.12
implies that there is a circuit C contained in I ∪ x that contains x. This
proves one direction of the proposition.

For the other direction, assume that such a circuit C exists. Then C−x
is an independent set contained in X. Let I be an independent set that is
maximum-sized subject to the constraints C − x ⊆ I ⊆ X. Suppose that X
contains an independent set I ′ that is larger than I. Then I3 implies that
there is an element y ∈ I ′−I such that I∪y is independent. But I∪y contains
C − x, and is contained in X, contradicting our choice of I. Therefore I is
a maximum-sized independent set contained in X, so r(X) = |I|.

Now assume that X ∪ x contains an independent set that is larger than
I. Again, using I3, we see that there is an element y ∈ (X ∪ x) − I such
that I ∪ y is independent. If y is in X − I, then I is not a maximum-sized
independent set contained in X. Therefore y is not in X, which means that
y = x. But then, as C − x ⊆ I, the set I ∪ y contains the circuit C, which
contradicts the fact that I ∪ y is independent. Hence I is also a maximum-
sized independent set in X ∪ x, so r(X ∪ x) = |I| = r(X). This implies that
x ∈ cl(X), as desired. □

Proposition 5.10. Suppose that F1 and F2 are flats of a matroid M . Then
F1 ∩ F2 is also a flat of M .
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Proof. Let E be the ground set ofM . Towards a contradiction, suppose that
there is an element x ∈ E−(F1∩F2) such that r((F1∩F2)∪x) = r(F1∩F2).
Then, by Proposition 5.9, there is a circuit C contained in (F1∩F2)∪x such
that x ∈ C.

Since C ∪ x is contained in F1 ∪ x, Proposition 5.9 implies that x is in
the closure of F1, so r(F1 ∪ x) = r(F1). But F1 is a flat, so this implies that
x ∈ F1. Similarly, C ∪ x is contained in F2 ∪ x, so r(F2 ∪ x) = r(F2) by
Proposition 5.9, which in turn implies that x ∈ F2, since F2 is a flat. Now
x ∈ F1 ∩ F2, contradicting that x ∈ E − (F1 ∩ F2). □

Exercise 5.11. Demonstrate that the union of two flats need not be a flat.

Now we know that if F1 and F2 are flats, then F1 ∩ F2 is a flat. The
union of F1 and F2 need not be a flat, but cl(F1∪F2) is certainly a flat, and
any flat that contains both F1 and F2 also contains cl(F1 ∪F2). This shows
that the flats of a matroid form a lattice under the relation of set inclusion.
The meet of any two flats is their intersection, and the join of any two flats
is the closure of their union.

We conclude this chapter by proving some useful facts about circuits,
flats, and closure.

Proposition 5.12. Suppose that C and C∗ are, respectively, a circuit and
a cocircuit of the matroid M . Then |C ∩ C∗| ≠ 1.

Proof. Let E be the ground set ofM . Assume that C and C∗ meet in a single
element x. Now E − C∗ is a hyperplane of M , by Proposition 3.6. Since x
is not contained in the hyperplane E−C∗, it follows that r((E−C∗)∪x) ̸=
r(E −C∗). But C is a circuit contained in (E −C∗)∪ x, and x is contained
in C. Therefore x is in the closure of E − C∗, by Proposition 5.9, which
implies that r((E − C∗) ∪ x) = r(E − C∗). Thus we have a contradiction,
which proves the result. □

The next result is called the strong circuit-elimination axiom, since it is
a strengthening of C3.

Proposition 5.13. Let C1 and C2 be distinct circuits of a matroid. Let e
be an element in C1 ∩ C2, and let f be an element in C2 − C1. Then there
is a circuit C3 contained in (C1 ∪ C2)− e such that f ∈ C3.

Proof. Let X = (C1 ∪ C2) − {e, f}. The circuit C1 is contained in X ∪ e,
and e is contained in C1. Proposition 5.9 implies that e is in the closure of
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X, so r(X ∪ e) = r(X). Now X ∪ {e, f} contains the circuit C2, and C2

contains f . This means that f is in the closure of X ∪ e, so r(X ∪ {e, f}) =
r(X ∪ e) = r(X). But r(X) ≤ r(X ∪ f) ≤ r(X ∪ {e, f}) = r(X), so we
deduce that r(X ∪f) = r(X), and therefore that f ∈ cl(X). Proposition 5.9
now implies that there is a circuit contained in X ∪ f = (C1 ∪ C2)− e that
contains f , as required. □

We can use the closure operator to give a characterisation of the circuits
in a single-element contraction.

Proposition 5.14. Let M be a matroid, let C be its family of circuits, and
let e be a non-loop element in E(M). The family of circuits of M/e is

{C − e : C ∈ C, e ∈ C} ∪ {C ∈ C : e /∈ cl(C)}.

Proof. Let C be a circuit of M containing e. Then C − e is dependent in
M/e. If X is a proper subset of C − e, then X ∪ e is a proper subset of
C, and is therefore independent in M ; therefore X is independent in M/e.
This means that C − e is a circuit in M/e. So the family of circuits of M/e
contains {C − e : C ∈ C, e ∈ C}.

Next we assume that C is a circuit of M such that e /∈ cl(C). As C ∪ e
is dependent in M , the set C is dependent in M/e. Let X be any proper
subset of C. Then X is independent inM . If X ∪e is dependent, then X ∪e
contains a circuit of M , by Proposition 1.12, and this circuit contains e.
Then Proposition 5.9 implies that e is in the closure of C, a contradiction.
Therefore X ∪ e is independent in M , so X is independent in M/e. This
shows that C is a circuit of M/e. So the family of circuits of M/e contains
{C ∈ C : e /∈ cl(C)}.

To complete the proof, we assume C1 is a circuit of M/e. Then C1 ∪ e
is dependent in M , so C1 ∪ e contains a circuit C ′ of M . Suppose there is
some x ∈ C1 −C ′. The set C1 − x is independent in M/e, so (C1 − x)∪ e is
independent in M . But (C1−x)∪ e contains the circuit C ′, a contradiction.
This means that C ′ contains every element of C1. If C

′ also contains e, then
C ′ = C1 ∪ e, and C1 is a member of {C − e : C ∈ C, e ∈ C}. Therefore we
suppose that e is not in C ′, so that C ′ = C1 is a circuit of M . Towards a
contradiction, suppose that e ∈ cl(C1). Proposition 5.9 implies that thereM
has a circuit C ′′ contained in C1∪ e such that e is in C ′′. Now C ′′ cannot be
equal to C1∪e, for then C ′′ properly contains the circuit C1 ofM . Therefore
C ′′ − e is properly contained in C1. But, as C

′′ is a circuit of M containing
e, the set C ′′ − e is a circuit of M/e, as argued in the first paragraph of this
proof. From the contradiction that the circuit C ′′ − e is properly contained
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in the circuit C1 of M/e, we deduce that e /∈ cl(C1). Therefore C1 belongs
to {C ∈ C : e /∈ cl(C)}, as required. □

Finally we introduce a useful matroid operation. A circuit-hyperplane is
a circuit that is also a hyperplane.

Proposition 5.15. Let M be a matroid with I as its family of independent
sets, and a circuit-hyperplane X. Then there is a matroid on ground set
E(M) whose family of independent sets is I ∪ {X}.

Proof. First we note that r(X) = |X|−1, since X is a circuit. Furthermore,
r(X) = r(M)− 1, as X is a hyperplane. This implies |X| = r(M).

Since I contains the empty set, so does I ∪ {X}. Therefore I1 holds.
Every proper subset ofX is independent inM , sinceX is a circuit. Therefore
every subset of a member of I ∪ {X} is also a member of I ∪ {X}, and I2
holds.

To prove I3, we assume that I1 and I2 are members of I ∪ {X} and
|I2| < |I1|. Since |X| = r(M) ≥ |I1|, it follows that I2 is in I. If I1 is also in
I, then I2 ∪ e is in I for some e ∈ I1 − I2, since I3 holds for I. So we may
assume that I1 = X. Suppose |I2| < |X| − 1. Then we can let X ′ be any
subset of X with cardinality |X| − 1, in which case X ′ is in I, since X is a
circuit of M . Now we can apply I3 to I2 and X ′, so there exists an element
e ∈ X ′ − I2 ⊆ I1 − I2 such that I2 ∪ e ∈ I, as required. So we may also
assume that |I2| = |X| − 1.

Suppose there is an element e ∈ X − cl(I2). If I2 ∪ e is dependent in M ,
then Proposition 1.12 implies that I2 ∪ e contains a circuit of M , and e is
contained in this circuit. Then Proposition 5.9 implies e is in cl(I2), contrary
to hypothesis. So I2 ∪ e is in I, and I3 is again satisfied. Therefore we may
also assume that X ⊆ cl(I2). Suppose there is an element e ∈ cl(I2) − X.
Then X ∪ e is spanning in M , since X is a hyperplane. But X ∪ e ⊆ cl(I2),
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Figure 18: The Fano matroid and the non-Fano matroid.
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so r(M) = r(X ∪ e) ≤ r(cl(I2)) = r(I2) = |I2| = |I1| − 1 = r(M) − 1, a
contradiction. Thus cl(I2) − X = ∅; that is, X ⊇ cl(I2). Now X = cl(I2).
As I2 ⊆ cl(I2), we see that I2 ⊆ X. Recall that |I2| = |X| − 1, so there is a
unique element in X − I2; let e be this element, so X = I2 ∪ e. Then I2 ∪ e
is in I ∪ {X}, so I3 is once again satisfied. □

If X is a circuit-hyperplane of M , then we say the matroid with
I(M) ∪ {X} as its set of independent sets is obtained from M by relaxing
X. Figure 18 shows the Fano matroid F7, and the non-Fano matroid F−

7 ,
which is obtained from the Fano matroid by relaxing the circuit-hyperplane
{d, e, f}.
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