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3 Duality

The notion of matroid duality encompasses the notion of duality for planar
graphs, and orthogonality in linear algebra. It gives us a powerful tool for
studying matroids: if it is difficult to examine some particular property of a
matroid, then we can always switch to its dual, and see if things are easier
to understand.

Before we introduce duality, we make the following definition. Assume
B is a basis of a matroid M , and e is in E(M)−B. Then B ∪ e is certainly
dependent, because B is maximally independent. Now Proposition 1.12
asserts that there is a unique circuit contained in B∪e, and that this circuit
contains e. We denote this unique circuit by C(e,B), and we call it the
fundamental circuit of e with respect to B.

Proposition 3.1. Suppose that B1 and B2 are bases of a matroid, and that
x is in B2 − B1. There is an element y in B1 − B2 such that (B1 − y) ∪ x
is a basis.

Note that this is a genuinely different statement from B2, although they
look very similar. The axiom B2 says that if we remove an element in
B1 − B2 from B1, then we can find an element in B2 − B1 to replace it
so that the resulting set is a basis. Proposition 3.1 says that if we add an
element in B2 −B1 to B1, then there is an element in B1 −B2 that we can
remove so that the resulting set is a basis.

Proof of Proposition 3.1. Since x is not contained in B1, by Proposi-
tion 1.12 there is a fundamental circuit C(x,B1), and this circuit contains x.
Now C(x,B1) cannot be contained in B2, for C(x,B1) is dependent and B2

is independent. Therefore there is an element y contained in C(x,B1)−B2.
Then y is contained in B1 −B2. Since B1 ∪ x contains a unique circuit, and
y is contained in this circuit, it follows that (B1− y)∪x contains no circuit,
and is therefore independent. As (B1 − y) ∪ x has the same cardinality as
B1, and is independent, it is a basis. This completes the proof. □

Lemma 3.2. Let M be a matroid with ground set E, and let B be its family
of bases. Define B∗ to be the family of complements of bases; that is,

B∗ = {E −B : B ∈ B}.

Then B∗ is the family of bases of a matroid on the ground set E.
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Proof. Since B contains at least one basis, B∗ contains at least one com-
plement of a basis. Therefore B∗ is non-empty, and B1 is satisfied. Now
assume that E−B1 and E−B2 are members of B∗. Let x be an element in

(E −B1)− (E −B2) = B2 −B1.

By Proposition 3.1 there is an element y in B1 −B2 = (E −B2)− (E −B1)
such that (B1−y)∪x is a basis. Now E−((B1−y)∪x) = ((E−B1)−x)∪y,
so ((E − B1) − x) ∪ y belongs to B∗. Therefore B2 is satisfied, and B∗ is
indeed a family of bases. □

Definition 3.3. Suppose that M is a matroid on the ground set E, and
that B is its family of bases. Let B∗ be the family of complements of bases.
The matroid on the ground set E with B∗ as its family of bases is called the
dual of M , and is written M∗.

Example. Figure 10 shows a rank-2 matroid and its dual. Check that every
basis in the dual is the complement of a basis in the rank-2 matroid. ♢
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Figure 10: A matroid and its dual

If M is a matroid then obviously (M∗)∗ = M . Independent sets of M∗

are said to be coindependent sets of M . Similarly, the bases, and circuits of
M∗, are called cobases and cocircuits of M , respectively. Our next task is
to characterise some of these sets. A spanning set of a matroid is a subset
of the ground set that contains a basis. Therefore a set is spanning if and
only if it has the same rank as the entire ground set. The next result follows
almost immediately from the definition of the dual matroid.

Proposition 3.4. Let M be a matroid with ground set E, and let X be a
subset of E.

(i) The set X is a cobasis of M if and only if E −X is a basis of M .

(ii) The set X is coindependent in M if and only if E −X is spanning in
M .
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Before we characterise cocircuits we need a definition.

Definition 3.5. Let M be a matroid. A subset X ⊆ E(M) is a hyperplane
of M if r(X) = r(M)− 1, and r(X ∪ x) = r(M) for every x ∈ E(M)−X.

Equivalently, a hyperplane is a set that is maximal with respect to being
non-spanning. In other words, X is a hyperplane if X is not spanning, but
X ′ is spanning whenever X ⊆ X ′ ⊆ E(M) and X ′ ̸= X.

Proposition 3.6. Let M be a matroid and let X be a subset of E(M).
Then X is a cocircuit of M if and only if E(M)−X is a hyperplane of M .

Proof. We observe that X is a cocircuit if and only if it is dependent in M∗,
and it is minimal with respect to this property. This is true if and only
if X is minimal with respect to the property that its complement is non-
spanning, by Proposition 3.4(ii); that is, if and only if E(M)−X is maximal
with respect to being non-spanning, which is equivalent to E(M)−X being
a hyperplane. □

A parallel pair of M∗ is called a series pair of M and a parallel class of
M∗ is called a series class of M . A loop of M∗ is known as a coloop of M .
Thus e is a coloop of M if and only if {e} is a cocircuit of M , which (by
Proposition 3.6) is true if and only if the complement of {e} is a hyperplane
in M .

Proposition 3.7. Let M be a matroid and let e be an element of E(M).
The following are equivalent:

(i) e is a coloop of M ,

(ii) e is in every basis of M , and

(iii) e is not in any circuit of M .

Proof. (i) ⇔ (ii): If e is a coloop of M , then it is a loop of M∗. This means
that {e} is a circuit of M∗, so e is not contained in any basis of M∗. Since
the bases of M∗ are the complements of bases of M , it follows that e is
in every basis of M . On the other hand, if e is in every basis of M , then
it is not in any basis of M∗, and therefore {e} is dependent in M∗. This
establishes that (i) and (ii) are equivalent.

(ii) ⇔ (iii): Suppose e is contained in a circuit C. Then C − e is in-
dependent in M because it is a proper subset of a minimal dependent set.
Thus C − e is contained in a basis B of M . However, B cannot contain e,
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for then B would contain the circuit C. So if e is contained in a circuit C,
then there is a basis B that does not contain e. Conversely, if there is a
basis B of M that does not contain e, then B ∪ e contains a unique circuit,
and this circuit contains e, by Proposition 1.12.

We have shown that e is contained in a circuit if and only if there is a
basis that does not contain e. Equivalently, e is not in any circuit if and
only if e is in every basis. Therefore (ii) and (iii) are equivalent. □

Now we turn to the rank function. The next result follows immediately
from the definition of M∗.

Proposition 3.8. Let M be a matroid. Then r(M∗) = |E| − r(M).

If M is a matroid, then r∗ denotes the rank function of the dual ma-
troid M∗. Thus r∗(X) is the cardinality of a maximum-sized coindependent
set contained in X, for any subset X of E(M).

Proposition 3.9. Let M be a matroid with ground set E and rank func-
tion r. The rank function r∗ of M∗ is given by the formula

r∗(X) = |X|+ r(E −X)− r(M)

for any subset X ⊆ E.

Proof. Let I∗ be a maximum-sized coindependent set contained in X, so
r∗(X) = |I∗|. Then E − I∗ is spanning, by Proposition 3.4. Therefore there
is a basis B contained in E−I∗. Suppose there is an element x inX−I∗ such
that x is not in B. Then I∗ ∪ x is strictly larger than I∗, since x /∈ I∗, and
I∗ ∪ x is contained in the cobasis E−B. Therefore I∗ ∪ x is coindependent,
and contained inX, and this violates our choice of I∗. ThereforeX−I∗ ⊆ B.
In particular, since B ⊆ E − I∗, we have that I∗ = X − (B ∩X).

Observe that B−X is independent. Next, suppose there is an element x
in E − (B ∪X) such that (B −X)∪ x is independent. Then B ∪ x contains
a unique circuit, C(x,B), by Proposition 1.12. Our assumption means that
C(x,B) is not contained in (B−X)∪x. Therefore we can choose an element
y ∈ C(x,B) ∩ X. Since B ∪ x contains a unique circuit C(x,B), and y is
in C(x,B), it follows that (B − y) ∪ x is independent and, as it is the same
size as B, it is a basis. As I∗ ∪ y has empty intersection with (B − y) ∪ x,
we see that I∗ ∪ y is coindependent. This contradicts our choice of I∗, so
(B −X)∪ x is dependent for any element x in E − (B ∪X). Consequently,
no independent subset of E −X is larger than B −X, for if such a subset
existed, I3 would be violated. This means that r(E −X) = |B −X|.
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Finally,

r∗(X) = |I∗|
= |X| − |B ∩X|
= |X| − (|B| − |B −X|)
= |X| − r(M) + r(E −X)

as required. □

Duality and classes of matroids. Next we will examine how duality
affects the various classes of matroids we have already considered. The next
result follows immediately from the definition of the dual matroid.

Proposition 3.10. The dual of a uniform matroid is also uniform. In par-
ticular, the dual of Ur,n is Un−r,n.

Exercise 3.11. Prove that the dual of a sparse paving matroid is sparse
paving.

Exercise 3.12. Construct a transversal matroid whose dual is not transver-
sal.

Our next job is to show that if F is a field, then the dual of any F-
representable matroid is also F-representable. First, we introduce a slightly
different way of thinking about representable matroids. Previously, for a
matrix A, we found a corresponding matroid M [A] having the columns of
A as its ground set. For a representable matroid M with rank r and ground
set of size n, it is often convenient to instead obtain a matrix A′, such that
[I|A′] is a representation of M , where A′ has r rows and n − r columns,
and each element of M corresponds to either a row or column of A′. We
formalise this below.

Let A be a matrix with entries from the field F, and suppose that the
rows of A are labelled with the ordered set X, while the columns are labeled
with the ordered set Y . If X ′ ⊆ X and Y ′ ⊆ Y , then A[X ′, Y ′] denotes the
submatrix of A with rows labelled by X ′ and columns labelled by Y ′.

Proposition 3.13. Let A be a matrix over the field F with rows and
columns labelled by the disjoint ordered sets X and Y respectively, and let
r = |X|. Let

B = {X} ∪ {Z : Z ⊆ X ∪ Y, |Z| = r, and det(A[X − Z, Y ∩ Z]) ̸= 0}.
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Then B is the family of bases of a matroid M on the ground set X ∪ Y .
Moreover, if I is the r × r identity matrix with columns labelled by X, then
M =M [I|A].

Proof. We consider the matrix [I|A] which is formed by appending an r× r
identity matrix in front of A, where we label the first r columns of [I|A] with
the r elements of X (in order), and label the remaining columns of [I|A] with
the ordered elements of Y . It suffices to show that the bases of M [I|A] are
exactly the members of B, as defined in the proposition. To see this, note
that a set Z ⊆ X ∪ Y is a basis of M [I|A] if and only if |Z| = r and the set
of columns labelled by Z is linearly independent. This is true if and only if
the r × r matrix made up of the columns in Z has a non-zero determinant.
Let S denote this r× r submatrix of [I|A]. If x is an element in X ∩Z, then
the column of S labelled by x contains a single non-zero entry. Furthermore,
S has a non-zero determinant if and only the matrix produced from S by
deleting the column x and the row containing that non-zero entry also has a
non-zero determinant. Continuing in this way, we see that S has a non-zero
determinant if and only if either Z = X (where we delete rows and columns
until we produce the empty matrix), or the matrix A[X − Z, Y ∩ Z] has a
non-zero determinant. This is true if and only if Z belongs to B. □

When A is a matrix over a field, with rows and columns labelled X and
Y respectively, then there is a corresponding matroid with X ∪ Y as its
ground set, as supplied by Proposition 3.13. Alternatively, we can label the
columns of an |X|×|X| identity matrix I by X, and the columns of A by Y ,
so that all columns of [I|A] are labelled, and consider the matroid M [I|A]
(in the sense of Theorem 2.4). Either way, we are dealing with the same
representable matroid.

Example. In Figure 11, A is a matrix over the field GF(3), and a geomet-
ric representation of the rank-3 matroid M [I|A] is given. Note that, for
example, A[{a, b}, {d, e}] is [

1 1
1 0

]
and this matrix has determinant −1. This corresponds to the fact that
{c, d, e} is a basis of M [I|A]. On the other hand, A[{a, b}, {d, g}] is[

1 1
1 1

]
which has determinant equal to 0. This corresponds to the fact that {c, d, g}
is not a basis.

28



MATH432 (2024) Discrete Mathematics 3. Duality

The matroid shown in Figure 11 is called the non-Fano matroid, and is
denoted by F−

7 . ♢
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Figure 11: A matrix over GF(3) and the matroid it represents.

Proposition 3.14. Let M be an F-representable matroid, for some field F,
and let B be a basis of M . There is a matrix A over the field F such that M
is equal to M [I|A], where the columns of the identity matrix I are labelled
by B.

Proof. Since M is F-representable, there is a matrix A′ over F such that M
is equal to M [A′]. It is relatively easy to see that if A′′ is obtained from A′

by a sequence of the following operations, then M [A′′] =M [A′].

• Multiplying a column by a non-zero constant.

• Multiplying a row by a non-zero constant.

• Adding a row to another row.

• Swapping two columns (as long as we swap the column labels at the
same time).

If the column rank of A′ is r, then by performing a sequence of these oper-
ations (and possibly deleting some rows that contain only zeroes), we can
transform A′ into a matrix of the form [Ir|A], where Ir is an r × r identity
matrix whose columns are labelled by B. Now it is easy to see that M is
equal to M [I|A]. □

The last two propositions illustrate that there are two different ways of
thinking about an F-representable matroid M : we can take the ground set
of M to be the set of columns of a matrix, or the set of rows and columns.
We may switch between the two, according to convenience.
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Proposition 3.15. Let F be a field, and let M be an F-representable ma-
troid. Then M∗ is also F-representable. In particular, if A is a matrix over
F such that M = M [I|A], then M∗ = M [I|AT ], where AT is the transpose
of A.

Proof. Let the rows and columns of A be labelled by the (ordered) sets X
and Y respectively (so the rows and columns of AT are labelled by Y and
X respectively). Now the bases of M are

{X} ∪ {Z : Z ⊆ X ∪ Y, |Z| = |X|, det(A[X − Z, Y ∩ Z]) ̸= 0}.

This means that the bases of M∗ are precisely

{Y }∪{(X ∪Y )−Z : Z ⊆ X ∪Y, |Z| = |X|, det(A[X−Z, Y ∩Z]) ̸= 0} =

{Y } ∪ {Z ′ : Z ′ ⊆ X ∪ Y, |Z ′| = |Y |, det(A[X ∩ Z ′, Y − Z ′]) ̸= 0}.

But A[X∩Z ′, Y −Z ′] has non-zero determinant if and only if AT [Y −Z ′, X∩
Z ′] has non-zero determinant, so the bases of M∗ are

{Y } ∪ {Z ′ : Z ′ ⊆ X ∪ Y, |Z ′| = |Y |, det(AT [Y − Z ′, X ∩ Z ′]) ̸= 0}

and this means that M∗ is exactly M [I|AT ]. □

Now we will move to thinking about the duals of graphic matroids. Un-
like the case for representable matroids, the dual of a graphic matroid need
not be graphic. A matroid whose dual is graphic is said to be cographic, and
if G is a graph, then M∗(G) denotes the dual of the graphic matroid M(G).
Soon we will prove that a cographic matroid might not be graphic. First,
we establish some more facts about graphic matroids.

Proposition 3.16. Suppose that M is a graphic matroid. Then there is a
connected graph G such that M =M(G).

Proof. Since M is graphic, there is a graph G′ such that M = M(G′). If
G′ is connected then we are done, so let us assume that G′ has connected
components H1, . . . ,Ht, where t > 1. For each i ∈ {1, . . . , t}, choose a
vertex vi in Hi. We construct the graph G by identifying the t vertices
v1, . . . , vt. Thus G is certainly connected. Moreover, it is easy to see that a
set of edges in G forms a cycle if and only if it forms a cycle in G′. Therefore
M(G) has exactly the same family of circuits as M(G′). This means that
M(G) =M(G′), as required. □
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The next result follows immediately from Corollary 2.12.

Corollary 3.17. Let G = (V,E) be a graph with k connected components.
The rank of M(G) is |V | − k.

Let G be a connected graph. A spanning tree of G is a forest, E′, of G
such that G[E′] is connected and every vertex of G is in G[E′].

Exercise 3.18. Let G be a connected graph. Prove that the maximal
forests of G are exactly the spanning trees of G.

Let G = (V,E) be a graph, and let X be some subset of E. Then G\X is
the subgraph (V,E −X). Note that G\X is not necessarily the same graph
as G[E−X]. The former has V as its vertex set, whereas the latter contains
only those vertices that are incident with at least one edge in E−X. An edge
cut of G is a subset X ⊆ E such that G\X has more connected components
than G does. A minimal edge cut is known as a bond.

Proposition 3.19. Let G = (V,E) be a graph. For X ⊆ E, the set X is
coindependent in M(G) if and only if X is not an edge cut of G.

Proof. Assume that X is not an edge cut, so that G\X has the same number
of components as G. Since G and G\X have the same number of vertices,
Corollary 2.12 implies thatM(G) andM(G\X) have bases of the same size.
In particular, this means that there is a basis of M(G) that is contained in
E −X. Hence X is coindependent in M(G).

For the converse, assume that X is an edge cut. If G has k components,
then G\X has at least k+1. Now Corollary 2.12 implies that r(M(G\X)) <
r(M(G)). This implies that no forest of G can be contained in E − X, so
no basis of M(G) can be contained in E −X. Thus, by Proposition 3.4(ii),
X is not coindependent in M(G). □

Since a cocircuit is a minimal set that is not coindependent, and a bond
is a minimal edge cut, the next result follows immediately.

Corollary 3.20. Let G = (V,E) be a graph. For a subset X ⊆ E, the set X
is a cocircuit of M(G) if and only if X is a bond of G.

Recall that the degree of the vertex v is

|{e ∈ E : v ∈ e, e is a non-loop edge}|+ 2|{e ∈ E : v ∈ e, e is a loop}|.
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Exercise 3.21. Prove that the average degree of the graph G = (V,E) is
2|V |/|E|.

Now we can give an example of a cographic matroid that is not graphic.
Recall that Kn is the complete graph on n vertices. That is, Kn has exactly
n vertices, no loops or parallel edges, and every pair of vertices is joined by
an edge. Figure 12 shows the complete graph K5.

Figure 12: The graph K5.

Proposition 3.22. The cographic matroid M∗(K5) is not graphic.

Proof. Towards a contradiction, suppose thatM∗(K5) is graphic. By Propo-
sition 3.16, there is a connected graph G such that M(G) =M∗(K5). Let n
be the number of vertices in G. Corollary 3.17 implies that M(G) has rank
n− 1. The number of edges in K5 is ten, and r(M(K5)) = 4. Thus M∗(K5)
has rank 10−4 = 6, by Proposition 3.8. Now n−1 = 6. As G has ten edges,
and seven vertices, the average degree in G is 20/7 < 3. This means that
some vertex v in G has degree at most two, so v is incident with at most
two edges. The set of edges incident with v is an edge cut, so this set of
edges contains a bond of G. But this means that M(G) =M∗(K5) contains
a cocircuit of size at most two, by Proposition 3.19. As every circuit of
M(K5) has size at least three, this is a contradiction. □

Exercise 3.23. Give an example of a graph with a vertex v such that the
set of edges incident with v is not a bond.

Proposition 3.22 doesn’t tell the entire story, since some cographic ma-
troids are graphic. Recall that, informally, a graph is planar if it can be
drawn in the plane without any edges crossing.

More formally, a planar embedding of G consists of an injective func-
tion fv from V (G) to the plane R2, and another function fe taking each
edge of G to a “segment”: a subset of R2 that is homeomorphic to the seg-
ment [0, 1]. The ends of this segment are the image of the ends of the edge,
and the images of two distinct edges can only meet at the ends. If we delete
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the image of these functions from the plane, then we are left with a collec-
tion of open discs, and these discs are called the faces of the embedding. A
face in a planar embedding is (usually) bounded by a cycle of the graph.
(Note, however, that a cycle in a planar embedding may bound a collection
of several faces, and that a face may be not bounded be a cycle.) Then, a
graph is planar if it has a planar embedding. A plane graph is a graph (the
underlying graph) together with a planar embedding of the graph. When
G is a plane graph, for simplicity we also use G to refer to the underlying
graph of G, and the faces of G are the faces of the planar embedding of G.

Exercise 3.24. Give an example of a plane graph with a face that is not
bounded by a cycle.

Consider a plane graph G. Let F be the set of faces of G. The geometric
dual, denoted G∗, is a graph with F as its vertex set and E as its edge set.
In the planar embedding of G, an edge e is incident with at most two faces,
and in G∗, the edge e is incident with exactly these faces. (Note that the
geometric dual may depend on our choice of planar embedding.) Figure 13
shows a planar embedding of a graph G, and a geometric dual of G.

G G∗

Figure 13: Constructing a geometric dual.

Exercise 3.25. Prove that if every vertex in the graph G has degree at
least two, then G contains a cycle.

Theorem 3.26. Let G be a planar graph. Then M∗(G) is a graphic ma-
troid. In particular, if G is a plane graph with geometric dual G∗, then
M∗(G) =M(G∗).

Proof. Consider a cycle in G∗, and let C be its edge set and F its vertex
set. We will show that C contains a bond of G. The vertices of the cycle F
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correspond to faces in the planar embedding of G. Using the Jordan Curve
Theorem, we see that this cycle of faces divides the vertices of G into two
non-empty parts: those ‘inside’ the cycle, and those ‘outside’. Any edge of
G that joins these two parts is an edge in C. Thus C is an edge cut of G,
and hence contains a bond of G.

Now let X be a bond of G. We will show that X contains a cycle of
G∗. Because X is a minimal edge cut, there is a partition (A,B) of the
vertices of G such that every edge in X joins a vertex in A to a vertex in B.
Moreover, in G\X, there is no path from a vertex in A to a vertex in B. Let
F be the set of faces in the planar embedding that are incident with edges
in X, and let F be an arbitrary face in F . It is possible that F is the only
face incident with an edge in X. In this case |X| = 1, and in the geometric
dual G∗, the singleton X is a loop. Therefore we will assume that there are
at least two faces in F . This implies that every face in F is bounded by a
cycle of G. Since F is incident with an edge of X, it must be incident with
at least two, for otherwise we can find a path from a vertex in A to a vertex
in B in the graph G\X. This shows that in the geometric dual, every face
in F is joined to at least two other faces in F by edges in X. This in turn
implies that the subgraph of G∗ with vertex set F and edge-set X contains
a cycle.

Now we have shown that every cycle of G∗ contains a bond of G, and
every bond of G contains a cycle of G∗. This implies that the cycles of G∗

are exactly the bonds of G. The result now follows by Corollary 3.20. □

As we will see later, the converse of Theorem 3.26 also holds. That is, if
M∗(G) is graphic, then G is planar.
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