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2 Graphic, linear, and transversal matroids

Matroids underlie several mathematical structures, such as graphs, and a
set of vectors in a vector space. In this section, we see how matroids arise
in these settings.

First, we need to recall several notions that you will have seen before,
relating to linear algebra and graphs. In particular, graph terminology can
vary, so watch out for any differences from what you are used to!

Field preliminaries

First, we make the notion of a multiset precise. This is a set with repetition
of elements allowed. More formally:

Definition 2.1. A multiset is a pair (S, ρ), where S is a set and ρ is a
function from S to the positive integers. If s is in S, then ρ(s) tells us how
many times s appears in the multiset. If (S, ρ) and (S′, ρ′) are multisets,
then we say that (S′, ρ′) is a subset of (S, ρ) if S′ ⊆ S and ρ′(s) ≤ ρ(s) for
all s ∈ S′.

When (S, ρ) is a multiset, we abuse notation and write S to represent
the multiset.

Recall that if F is a set, then a binary operation on F is a function,

∗ : F × F → F,

from the Cartesian product F × F , to F . If a and b are in F , then a ∗ b
denotes the image of (a, b) under ∗. Familiar examples of binary operations
include addition and multiplication. A field F = (F,+, ·, 0, 1) consists of a
set F , with binary operations + (addition) and · (multiplication), such that
F has distinct members 0 (the additive identity) and 1 (the multiplicative
identity) such that the following statements are true for any a, b, c ∈ F .

F1. a+ (b+ c) = (a+ b) + c.

F2. a+ 0 = a = 0 + a

F3. There is an element −a ∈ F (the additive inverse of a) such that
a+ (−a) = 0 = (−a) + a.

F4. a+ b = b+ a.

F5. a · (b · c) = (a · b) · c.
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F6. a · 1 = a = 1 · a.

F7. If a ̸= 0, then there is an element a−1 ∈ F (the multiplicative inverse
of a) such that a · a−1 = 1 = a−1 · a.

F8. a · b = b · a.

F9. a · (b+ c) = (a · b) + (a · c).
We refer to the members of F as the elements of the field.

To simplify notation, we will often use F to stand both for the field,
and for the set of elements in that field (that is, we write F in place of
F ). We also refer to the additive and multiplicative identities of F as ‘zero’
and ‘one’ respectively. Moreover, we omit the · sign, so a · b is written ab.
Note that + and · may not be the same as addition and multiplication in,
say, the real numbers. For example, if we let F = {0, 1}, and define +
and · to be addition and multiplication modulo 2 (so that 1 + 1 = 0), then
(F,+, ·, 0, 1) is a field. In general, the integers modulo a prime p form a field,
which we denote GF(p). The rational numbers, real numbers, and complex
numbers are other examples of fields. Moreover, there are other fields, with
only finitely many elements, that do not arise from considering the integers
modulo a prime. We will not discuss their structure here, however, we will
note the following fundamental theorem from abstract algebra.

Theorem 2.2. Suppose that q is a positive integer. There is a field with q
elements if and only if q is a power of a prime. Moreover, if q is a power of
a prime, then all fields with q elements are isomorphic.

Two fields (F,+, ·, 0, 1) and (F ′,⊕,⊙, 0′, 1′) are isomorphic if there is
a bijection ψ : F → F ′ such that ψ(a + b) = ψ(a) ⊕ ψ(b) and ψ(a · b) =
ψ(a)⊙ ψ(b) for all a, b ∈ F .

Theorem 2.2 tells us that there are (for example) no fields of size six,
ten, or twelve. On the other hand, there are unique (up to isomorphism)
fields of size two, three, and four. If q is a power of a prime, then GF(q)
denotes the field with q elements.

If F = (F,+, ·, 0, 1) is a field, and F ′ ⊆ F has the property that F′ =
(F ′,+, ·, 0, 1) is a field, then we say F′ is a subfield of F.

Exercise 2.3. Prove that the intersection of any family of subfields is an-
other subfield.

Let F be a field. Because of the previous exercise, the intersection of all
subfields of F is itself a subfield. We call this the prime subfield of F. The
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prime subfield consists of the numbers produced by repeatedly adding 1 to
itself and repeatedly subtracting 1 from 0, and then taking the multiplica-
tive inverses of all the numbers we construct in this way. One of the key
ingredients in the proof of Theorem 2.2 is showing that the prime subfield is
either isomorphic to the field of rational numbers, or to the integers modulo
a prime number. If the prime subfield of F is isomorphic to the integers
modulo p, for some prime p, then we say that the characteristic of F is p.
In this case, adding together p copies of any number in F produces 0. If
the prime subfield is isomorphic to the field of rationals, we say that F has
characteristic zero.

Now suppose that F is a field, and that n is some positive integer. Then
Fn is the set of ordered n-tuples of the form (v1, v2, . . . , vn), where each vi
is an element of F. If u = (u1, . . . , un) and v = (v1, . . . , vn) are members of
Fn, then u+ v is defined to be

(u1 + v1, u2 + v2, . . . , un + vn).

Similarly, if α is some element of F, then αu is

(αu1, αu2, . . . , αun).

The members of Fn are called vectors. The set of vectors, along with these
operations of addition and scalar multiplication, forms a vector space.

We use 0 to denote the member (0, 0, . . . , 0) of Fn. Suppose that V =
{v1, . . . ,vt} is a multiset of vectors in Fn. We say that a linear combination
of V is a sum α1v1 + α2v2 + · · ·+ αtvt where each α1, . . . , αt is in F and at
least one of the elements αi is non-zero. We say that V is linearly dependent
if there exists a linear combination of V that is equal to 0. If V is not linearly
dependent then it is linearly independent. Obviously a set that contains 0
is linearly dependent. A multiset that contains more than one copy of any
vector is also linearly dependent. If v is a member of Fn, and v can be
expressed as a linear combination

v = α1v1 + α2v2 + · · ·+ αtvt

for some sequence α1, . . . , αt of elements of F, then we say that V spans v.

Representable matroids.

Theorem 2.4. Let A be a matrix over a field F, where the columns are
labelled by elements of a set E. Let I be the set of subsets X of E for which
the columns labelled by X form a linearly independent set. Then there is a
matroid on ground set E whose family of independent sets is I.
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Proof. The empty set of vectors is trivially linearly independent. It is also
easy to see that any subset of a linearly independent set is itself linearly
independent (since if a set of vectors has no linear combination that is 0,
then neither will a subset of those vectors). Therefore I1 and I2 are satisfied.
It remains to prove that I3 holds. Suppose that I1 and I2 are independent
subsets of E, and that |I2| < |I1|. We abuse notation and also use I1 and
I2 to refer to the set of vectors labelled by I1 and I2, respectively. Assume
for a contradiction that there is no element v ∈ I1 − I2 such that I2 ∪ v is
linearly independent.

Let I2 = {v1, . . . ,vt}, and let v be an arbitrary vector in I1 − I2. Then
I2 ∪ v is linearly dependent, by our assumption. Therefore

α1v1 + α2v2 + · · ·+ αtvt + αv = 0

for some elements (not all zero) α1, . . . , αt, α in F. If α = 0, then I2 is
linearly dependent, which is a contradiction. Therefore α ̸= 0, so α has a
multiplicative inverse, α−1, and

v = (−α−1α1)v1 + · · ·+ (−α−1αt)vt.

Thus I2 spans every vector in I1 − I2. Obviously I2 spans every vector in
I2, so I2 spans every vector in I1 ∪ I2.

We have shown that there is at least one subset of I1 ∪ I2 with size t
that spans I1 ∪ I2. Suppose that U is such a set, and that U has been
chosen so that |U ∩ I1| is as large as possible. Let U = {u1, . . . ,ut}. Since
|I1| > |I2| = t = |U |, there is some vector v ∈ I1−U . Then v is spanned by
U , so

v = α1u1 + · · ·+ αtut

for some elements α1, . . . , αt ∈ F. Therefore

α1u1 + · · ·+ αtut + (−1)v = 0. (2.1)

If α1 = α2 = · · · = αt = 0, then v = 0. But this is contradictory, as no
linearly independent set can contain the zero vector, and v is contained in
the linearly independent set I1. Hence, at least one of α1, . . . , αt is non-
zero. If αi = 0 whenever ui /∈ I1, then we could remove the terms in (2.1)
that correspond to vectors not in I1, and deduce that I1 contains a linearly
dependent set. This is a contradiction, so there must be some i such that
ui /∈ I1 and αi ̸= 0. This means that, by relabelling, we can assume that α1

is non-zero, and that u1 is not in I1.
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Now
u1 = (−α−1

1 α2)u2 + · · ·+ (−α−1
1 αt)ut + α−1

1 v

so u1 is spanned by (U −u1)∪v. Since every vector in I1∪ I2 is spanned by
U , it is easy to see that this means that every vector in I1 ∪ I2 is spanned
by (U − u1) ∪ v. But |(U − u1) ∪ v| = t, and (U − u1) ∪ v intersects I1 in
one more element than U does. This contradicts our choice of U .

Therefore I3 is satisfied, and I is the family of independent sets of a
matroid, as desired. □

Let F be a field, and let A be a matrix with entries from F, whose
columns are labelled by elements of a set X. Let m be the number of rows
in A. Then Theorem 2.4 says that there is a matroid with X as its ground
set, whose independent sets are the subsets of X that correspond to linearly
independent sets of columns of A. We use the notation M [A] to denote this
matroid, and we say that M [A] is representable over F, or F-representable.
A matroid is linear (or representable) if it is F-representable for some field
F. A matroid is binary if it is representable over GF(2) and it is ternary if
it is representable over the field GF(3). Characterizing the F-representable
matroids, for various fields F, is one of the oldest and most difficult problems
in matroid theory.

Note that any multiset of vectors from a vector space Fm, for some field
F, can be put in a matrix A (over F), and given some column labels. So, for
any multiset of vectors, there is a corresponding matroid.

Example. Figure 5 shows a matrix over the finite field GF(2) and a ge-
ometric representation of the corresponding binary matroid. You should
verify that a 3-element set of points in the matroid is a basis if and only if
the corresponding set of columns is linearly independent in the matrix.

This rank-3 matroid is called the Fano matroid, and it is denoted by F7.
It plays a very important role in the study of binary matroids. ♢

Exercise 2.5. Prove that U2,4 is not a binary matroid.

Graphic preliminaries

Definition 2.6. A graph G consists of a set V , a set E, and an incidence
function ϕ that maps elements of E to a subset of V of size one or two.

An equivalent viewpoint of graphs is a pair G = (V,E) where V is a set
and E is a multiset such that each member of E is a subset of V of size one
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Figure 5: A matrix over GF(2) and its matroid.

or two. (There is no fundamental difference to these viewpoints, but there
are some pros and cons to either approach. We go with the first option,
though introduce terminology that often avoids explicitly referring to the
incidence function ϕ.)

We say that V and E are the vertex set and the edge set of G, respec-
tively. If G is a graph, then V (G) and E(G) denote its vertex set and edge
set respectively. If e ∈ E and ϕ(e) = {v}, then e is called a loop (at v). If
e ∈ E and ϕ(e) = {u, v} for distinct u, v ∈ V , then e is a non-loop edge,
and e joins u and v. We say that u and v are the ends of e. If e and e′

are non-loop edges that join the same pair of vertices, then we say that e
and e′ are parallel edges. Although the study of infinite graphs is very well
developed, we will always assume that E and V are finite.

A graph is often represented by a drawing in which the vertices are dots
and an edge e with ϕ(e) = {u, v} is represented by a line joining u and v.
Note that if there are parallel edges e and e′ joining u and v, then these are
represented by two lines that join u and v. A loop at v is represented by a
small circle touching the vertex v. There may be more than one loop at a
vertex.

Example. The drawing in Figure 6 represents a graph G with V (G) =
{v1, . . . , v4}, E(G) = {e1, . . . , e7}, and incidence function ϕ such that
ϕ(e1) = {v1, v2}, ϕ(e2) = {v2, v3}, ϕ(e3) = {v3, v4}, ϕ(e4) = {v1, v4},
ϕ(e5) = {v1, v4}, ϕ(e6) = {v1, v3}, ϕ(e7) = {v3}. ♢

If v ∈ ϕ(e) for some v ∈ V and e ∈ E, then we say that e and v are
incident. A vertex that is not incident with any edges is an isolated vertex.
If u and v are distinct vertices and there is an edge e such that ϕ(e) = {u, v},
then we say that u and v are adjacent.

Next we define subgraphs. Assume that G = (V,E) is a graph and that
E′ ⊆ E. Let

V ′ =
⋃
e∈E′

ϕ(e)
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Figure 6: An example of a graph drawing.

be the set of all vertices that are incident with an edge in E′. Then G[E′]
is the graph (V ′, E′). Similarly, if V ′ is a subset of V , then let

E′ = {e ∈ E : ϕ(e) ⊆ V ′}

be the set of edges that are only incident with vertices in V ′. Now G[V ′]
denotes the graph (V ′, E′). This is sometimes called the subgraph induced
by V ′.

Example. If G is the graph shown in Figure 6, then G[{e4, e6, e7}] and
G[{v1, v3, v4}] are the subgraphs shown in Figure 7. ♢

v1

v4
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v4

e3

e4 e5

e7

G[{e4, e6, e7}] G[{v1, v3, v4}]

e6

v3
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Figure 7: Two subgraphs

A walk in a graph G is an alternating sequence of vertices and edges of
G,

v0, e0, v1, e1, v2, . . . , vt−1, et−1, vt,

such that ϕ(ei) = {vi, vi+1} for 0 ≤ i ≤ t − 1. We say that this is a walk
from v0 to vt. If the vertices v0, . . . , vt are pairwise distinct, then the walk
is said to be a path. If v1, . . . , vt are pairwise distinct, and v0 = vt, then the
walk is said to be a cycle. Note that if e is a loop at the vertex v, then v, e, v
is a cycle.

Exercise 2.7. Let G be a graph with vertices u and v. Prove that if there
is a walk from u to v, then there is a path from u to v.
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Note that an implication of Exercise 2.7 is that if u and v are vertices in a
connected graph G, then there is a path from u to v.

We define a relation ∼ on the vertices of a graph. Let u and v be vertices.
Then u ∼ v if there is a walk from u to v.

Exercise 2.8. Let G be a graph with vertex set V . Prove that ∼ is an
equivalence relation on V .

Let G be a graph. The equivalence classes of ∼ are called connected
components of G. If G has only one connected component, then it is a
connected graph. A graph that contains no cycles is called a forest. A
connected forest is a tree.

Let G be a graph with vertex set V and edge set E, and let v ∈ V be a
vertex. The degree of v ∈ V is given by the formula

|{e ∈ E : v ∈ ϕ(e), e is a non-loop edge}|+2|{e ∈ E : v ∈ ϕ(e), e is a loop edge}|.

Intuitively, the degree of v is the number of edges incident with v, but where
loops count for double.

Proposition 2.9. Every tree with at least one vertex contains a vertex with
degree at most one.

Proof. Let G be a tree, and let v0, e0, v1, e1, v2, . . . , vt−1, et−1, vt be a path
in G with as many vertices as possible. If t = 0, then this means that G
has no edges, or else we would choose a path with at least one edge. In this
case, G has only one vertex, and this vertex has degree zero, so we are done.
Therefore we assume that t > 0.

Now v0 is incident with at least one edge, e0, so v0 has degree at least
one. Assume that the degree of v0 is greater than one. Since G has no
loops, there is an edge, e, incident with v0, such that e is not equal to e0.
Let the other vertex incident with e be v. If v is not in v1, . . . , vt, then
v, e, v0, e0, v1, . . . , vt−1, et−1, vt is a longer path, so v is equal to vi for some
i ∈ {1, . . . , t}. Now v, e, v0, e0, v1, . . . , vi−1, ei−1, vi is a cycle of G, which
contradicticts that G is a tree. Therefore the degree of v0 is exactly one. □

Let G = (V,E) be a graph. A forest of G is a subset F ⊆ E such that
G[F ] is a forest. In other words, F is a forest if G[F ] contains no cycles.

Proposition 2.10. Let F be a non-empty forest of the graph G. Let k be
the number of components of G[F ]. Then the number of vertices in G[F ] is
|F |+ k.
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Proof. The proof is by induction on |F |. Suppose |F | = 1. Then G[F ]
contains exactly one component. As the edge in F is not a loop, the number
of vertices in G[F ] is two, so the result holds when |F | = 1. We now assume
that |F | is greater than one.

Let F ′ be a maximal non-empty subset of F such that G[F ′] is con-
nected. Since G[F ′] is connected and contains no cycle, it is a tree. By
Proposition 2.9, we can choose a vertex v that has degree at most one in
G[F ′]. As G[F ′] is connected and contains at least one edge, it follows that
v has degree exactly one in G[F ′]. Let f be the edge of G[F ′] that is incident
with v.

We claim that G[F ′ − f ] is connected. Let u and u′ be two arbitrary
vertices of G[F ′ − f ]. Notice that v is not a vertex of G[F ′ − f ], so neither
u nor u′ is equal to v. As G[F ′] is connected, there is a path P from u to
u′ in G[F ′]. The path P cannot contain v, or else it would be forced to use
the edge f twice, in which case P is not a path. So the path P from u to
u′ does not use v, and it follows that P is a path from u to u′ in G[F ′ − f ].
Since there is a path between any two vertices of G[F ′ − f ], it follows that
G[F ′ − f ] is connected, as claimed.

First assume F ′ is a single edge. Then G[F − f ] contains one fewer
component than G[F ]. By induction, the number of vertices in G[F − f ]
is |F − f | + (k − 1) = |F | + k − 2. As G[F − f ] has two fewer vertices
than G[F ], we deduce that the number of vertices in G[F ] is |F | + k, as
required. Now assume that F ′ has more than one edge. Then the number
of connected components of G[F − f ′] is k. By induction the number of
vertices in G[F − f ] is |F − f | + k = |F | + k − 1. As G[F − f ′] has one
fewer vertex than G[F ], since it does not contain v, the number of vertices
in G[F ] is |F |+ k, which completes the proof. □

Let G be a graph. If F is a forest of G and F is not properly contained
in any other forest of G, then it is a maximal forest.

Proposition 2.11. Let F be a maximal forest of the graph G, and let u
and v be distinct vertices of G. If there is a walk from u to v in G, then
there is a walk from u to v in G[F ].

Proof. Suppose there is a walk from u to v in G. Assume for a contradiction
that there is no walk from u to v in G[F ]. Then u and v are not in the same
component of G[F ]. Let P be a path from u to v in G. Let the vertices of P
be v0, . . . , vt, where u = v0 and v = vt. Let i be the first index such that vi
is not in the same component of G[F ] as vi+1. Let e be the edge of P that
joins vi to vi+1. Then e is not in F . As F is a maximal forest, it follows

18



MATH432 (2024) Discrete Mathematics 2. Graphic matroids, etc.

that G[F ∪ e] contains a cycle. This cycle must use e, since G[F ] does not
contain a cycle. This means that G[F ] contains a path from vi to vi+1, but
this is impossible as these vertices are not in the same component of G[F ].
This contradiction completes the proof. □

Corollary 2.12. Let F be a maximal forest of the graph G. Let n be the
number of vertices in G, and let k be the number of components in G. Then
|F | = n− k.

Proof. Note that the maximal forest F does not contain any loop edges, so
we lose no generality by assuming that G has no loops. Let s be the number
of isolated vertices in G. Each of these vertices is a component of G, so by
deleting these vertices we obtain a graph G′ with s fewer vertices and s fewer
components. Let n′ and k′ be the number of vertices of G′, and the number
of components of G′, respectively. Since n′ − k′ = (n− s)− (k− s) = n− k,
and a maximal forest of G is also a maximal forest of G′, it suffices to show
the result holds for a graph with no isolated vertices. Henceforth, we assume
that G has no isolated vertices. Now each vertex of G is joined to a different
vertex by a walk in G. Therefore every vertex is joined to a different vertex
by a walk in G[F ], by Proposition 2.11. Hence every vertex of G is also a
vertex of G[F ]; in particular, G[F ] has n vertices.

Let u and v be two distinct vertices of G. If they are not joined by a walk
in G, then they are certainly not joined by a walk in the subgraph G[F ]. On
the other hand, if u and v are joined by a walk in G, then they are joined by
a walk in G[F ], by Proposition 2.11 again. This shows that the equivalence
classes defined by the relation ∼ are exactly the same for the vertices of G
as they are for the vertices of G[F ]; in particular, the number of components
in G[F ] is k. Now, by Proposition 2.10, |F | = n− k, as required. □

Graphic matroids.

Now we can show that every graph gives rise to a matroid.

Theorem 2.13. Let G be a graph with edge set E, and let

B = {B ⊆ E : B is a maximal forest of G}.

Then there is a matroid with ground set E whose family of bases is B.

Proof. It suffices to show that B satisfies the axioms B1 and B2. So first we
check that B is non-empty. For any graph, the empty set is a forest, since it
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contains no cycles. Hence every graph contains at least one forest, and thus
at least one maximal forest. This shows B is not empty, so B1 holds.

Next we show that B obeys the axiom B2. Let B1 and B2 be maximal
forests of G, and let x be an edge in B1−B2. Assume that x joins the vertices
u and v. If there were a path from u to v in the subgraph G[B1 − x], then
this path, together with x, would form a cycle in G[B1], which contradicts
that B1 is a forest. Hence there is no such path, so there is no walk from u
to v in G[B1 − x]. Thus u and v are in different components of G[B1 − x].

Because B2 is a maximal forest, and x is not in B2, it follows that B2∪x
is not a forest, and hence G[B2 ∪ x] contains a cycle. This cycle must have
x as an edge, or else G[B2] would contain a cycle. Therefore G[B2] contains
a path from u to v. Let v0, v1, . . . , vt be the vertices of such a path, where
u = v0 and v = vt. Let i be the smallest integer such that vi and vi+1 are
not in the same component of G[B1 − x]. Let y be an edge in B2 that joins
vi to vi+1. Note that y ̸= x, since x is not in B2. Furthermore, y is not in
B1, as vi and vi+1 are not in the same component of G[B1 − x].

We will show that (B1 − x)∪ y is a maximal forest. For a contradiction,
assume that (B1 − x) ∪ y is not a forest. Then G[(B1 − x) ∪ y] contains
a cycle, and this cycle must contain y, since G[B1 − x] does not contain a
cycle. Therefore G[B1 − x] contains a path from vi to vi+1. But vi and
vi+1 are not in the same component of G[B1 − x], so this is contradictory.
Therefore (B1 − x) ∪ y is a forest. We note that |(B1 − x) ∪ y| = |B1|. By
Corollary 2.12, each maximal forest of G has the same size, so (B1 − x) ∪ y
is a maximal forest, and B2 is satisfied. □

Theorem 2.13 tells us that if G = (V,E) is a graph, there is a corre-
sponding matroid with E as its ground set and the maximal forests of G as
its bases. We denote this matroid byM(G), and we call it the cycle matroid
of G. We say that a matroid M is graphic if there exists some graph G such
that M =M(G).

Exercise 2.14. Let G = (V,E) be a graph, and let X ⊆ E. Prove that

(a) X is independent in M(G) if and only if G[X] is a forest, and

(b) X is a circuit of M(G) if and only if X is a cycle in G.

Example. Figure 8 shows K4, the complete graph on four vertices, and two
geometric representations of its cycle matroid, M(K4). You should verify
that a basis in the matroid corresponds to the edges of a maximal forest
of K4. In the second representation we have used a curved line (so it is no
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longer a representation in Euclidean space). Curved lines and planes are
common features of matroid representations. ♢
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f
a

b

c

f

e

d

K4 M(K4)
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f d

M(K4)
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Figure 8: A graph and two geometric representations of its cycle matroid.

Exercise 2.15. Prove that the uniform matroid U2,4 is not graphic.

Transversal matroids. In this section we introduce one more fundamen-
tal class of matroids (although we will spend less time considering this fam-
ily). Let G be a bipartite graph with bipartition (E,A). This means that
the vertex set of G is E ∪A, where E ∩A = ∅, and every edge of G joins a
vertex in E to a vertex to A. If X ⊆ E, then we say that X is matchable if
there is a set T of edges of G such that every vertex in X is incident to an
edge of T , and no vertex of G is incident to more than one edge of T . We
say that T certifies that X is matchable.

Exercise 2.16. Let G be a graph with no loops where no vertex is incident
to more than two edges. Prove that every component of G is either a path
or a cycle.

Theorem 2.17. Let G be a bipartite graph with bipartition (E,A). Let I
be the collection of matchable subsets of E. Then there is a matroid with
ground set E whose family of independent sets is I.

Proof. The empty set of edges certifies that the empty subset is matchable.
Therefore I1 is satisfied. If T is a set of edges certifying that I1 ⊆ E is
matchable, then T also certifies that any subset of I1 is matchable, so I2 is
satisfied.

To prove that I3 holds, we let I1 and I2 be two matchable subsets of E,
and assume that |I2| < |I1|. Let T1 and T2 be sets of edges that certify I1 and
I2, respectively, are matchable. By removing redundant edges from T1 and
T2, we can assume that |I1| = |T1| and |I2| = |T2|. Consider the subgraph
G[T1 ∪ T2]. Note that G has no loops. Any vertex in G[T1 ∪ T2] is incident
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with at most one edge in T1 and at most one edge in T2. Therefore every
component of G[T1 ∪ T2] is either a path or a cycle. This means that if S is
the set of edges of a component of G[T1∪T2], then −1 ≤ |S∩T1|−|S∩T2| ≤ 1.
For at least one component, S must satisfy |S∩T1|−|S∩T2| = 1, since |T1| =
|I1| > |I2| = |T2|. This component must be a path, v0, e1, v1, . . . , vt−1, et, vt,
where e1 and et are in T1 and v0 is in I1 − I2. Note that e2, e4, e6, . . . , et−1

are in T2. Let T
′ be

(T2 − {e2, e4, e6, . . . , et−1}) ∪ {e1, e3, e5, . . . , et}.

No vertex is in more than one edge in T ′, and every vertex in I2 ∪ v0 is in
one edge in T ′. Now the set of edges T ′ certifies that I2 ∪ v0 is matchable,
so I3 holds, and thus I is the collection of independent sets of a matroid,
as desired. □
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Figure 9: A bipartite graph and its corresponding transversal matroid.

Any matroid that arises from a bipartite graph as in Theorem 2.17 is
said to be a transversal matroid.

In Figure 9 we see a bipartite graph, and a geometric representation of
the corresponding transversal matroid.

Exercise 2.18. Find examples of two non-isomorphic bipartite graphs that
correspond to isomorphic transversal matroids.
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