Lecture 1, exercise 1: Show that $U_{r, n}$ is a matroid.
Recall that for a set E of size n, and an integer r with $0 \leq r \leq n$, we defined $U_{r, n}$ to be the pair (E, \mathcal{B}) with $\mathcal{B}=\{B \subseteq E:|B|=r\}$.
Let $E\left(U_{r, n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. We need to show that \mathcal{B} satisfies (B1) and (B2).
For (B1), observe that there is at least one r-element set for any $r \geq 0$ (in particular, if $r=0$, then \emptyset is such a set). So $\mathcal{B} \neq \emptyset$, and (B1) is satisfied.
It remains to show that (B2) holds. Let $B_{1}, B_{2} \in \mathcal{B}$ with $x \in B_{1}-B_{2}$. Since $\left|B_{1}-B_{2}\right| \geq 1$, and $\left|B_{1}-B_{2}\right|=\left|B_{2}-B_{1}\right|$ (as $\left.\left|B_{1}\right|=\left|B_{2}\right|\right)$, there exists $y \in B_{2}-B_{1}$. Let $B_{3}=\left(B_{1}-x\right) \cup y$. Then $\left|B_{3}\right|=\left|B_{1}\right|=r$, and $B_{3} \subseteq E$, so $B_{3} \in \mathcal{B}$ as required.

Lecture 2, exercise 1: Let M be a matroid with rank r. Prove that:
M is uniform if and only if every circuit of M has size $r+1$.
Let E be the ground set of M, and suppose that M is uniform. Then $M \cong U_{r, n}$ for some non-negative integer r, where $n=|E|$. Every subset of E of size r is a basis, by the definition of a uniform matroid. The independent sets of M are $\mathcal{I}=\{X \subseteq E: X \subseteq B$ for some $B \in \mathcal{B}\}$ (by the definition of independent sets), so $\mathcal{I}=\{X \subseteq E:|X| \leq r\}$. A subset of $E(M)$ is dependent if it is not a member of \mathcal{I}. So the dependent sets of M are $\{X \subseteq E:|X| \geq r+1\}$. In particular, the circuits (i.e. the minimal dependent sets) are precisely the subsets of E of size $r+1$. So every circuit of M has size $r+1$.

For the other direction, suppose every circuit of M has size $r+1$. We will first show

$$
\mathcal{C}(M)=\{C \subseteq E:|C|=r+1\} ;
$$

that is, every subset of E with size $r+1$ is a circuit. This holds vacuously if $|E|=r$, so let $|E|<r$. Towards a contradiction, suppose $X \subseteq E$ with $|X|=r+1$, but X is not a circuit. If X is dependent, then it is not minimal; that is, it contains a circuit of size at most r, but no such circuit exists. So X is independent. But then M has an independent set of size $r+1$, so M has a basis of size at least $r+1$, contradicting that M has rank r. We deduce that every subset of E of size $r+1$ is a circuit (i.e., a minimal dependent set). Now every subset of E of size r is a maximal independent set (i.e., a basis). Thus $M \cong U_{r, n}$, so M is uniform, as required.
Lecture 2, exercise 2: Let E be a finite set, and let r be an integer with $0<r<|E|$. Let \mathcal{C}^{\prime} be a collection of r-element subsets of E such that if C_{1} and C_{2} are distinct members of \mathcal{C}^{\prime}, then $\left|C_{1} \cap C_{2}\right|<r-1$. Let \mathcal{B} be the family of r-element subsets of E that are not in \mathcal{C}^{\prime}; that is, $\mathcal{B}=\left\{B \subseteq E:|B|=r\right.$ and $\left.B \notin \mathcal{C}^{\prime}\right\}$. Prove that (E, \mathcal{B}) is a matroid.
We need to prove that \mathcal{B} satisfies (B1) and (B2). Towards a contradiction, suppose that $\mathcal{B}=\emptyset$. Then every r-element subset of E is in \mathcal{C}^{\prime}. Since $r>0$, we have $r-1 \geq 0$. We arbitrarily choose a subset X of E with $|X|=r-1$. As $r<|E|$, we have $r-1 \leq|E|-2$, so there are distinct
elements $y, z \in E-X$. Then $X \cup y$ and $X \cup z$ are in \mathcal{C}^{\prime}, but $|(X \cup y) \cap(X \cup z)|=|X|=r-1$, a contradiction. We deduce that $\mathcal{B} \neq \emptyset$, satisfying (B1).
Now for (B2), suppose that $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1}-B_{2}$. Note that (since $\left|B_{1}\right|=\left|B_{2}\right|$) we have $\left|B_{2}-B_{1}\right|=\left|B_{1}-B_{2}\right| \geq 1$. If $\left|B_{2}-B_{1}\right|=1$, then $B_{2}=\left(B_{1}-x\right) \cup y$. That is, choosing y as the unique element in $B_{2}-B_{1}$, we have $\left(B_{1}-x\right) \cup y \in \mathcal{B}$ as desired. So (B2) holds when $\left|B_{2}-B_{1}\right|=1$. Now suppose $\left|B_{2}-B_{1}\right| \geq 2$. Then there exist distinct elements $e, f \in B_{2}-B_{1}$. Suppose (towards a contradiction) that $\left(B_{1}-x\right) \cup e \notin \mathcal{B}$ and $\left(B_{1}-x\right) \cup f \notin \mathcal{B}$. Then, as $\left|\left(B_{1}-x\right) \cup e\right|=\left|\left(B_{1}-x\right) \cup f\right|=r$, we have $\left(B_{1}-x\right) \cup e \in \mathcal{C}^{\prime}$ and $\left(B_{1}-x\right) \cup f \in \mathcal{C}^{\prime}$. But $\left|\left(\left(B_{1}-x\right) \cup e\right) \cap\left(\left(B_{1}-x\right) \cup f\right)\right|=\left|B_{1}-x\right|=r-1$, contradicting that the intersection of two distinct members of \mathcal{C}^{\prime} has size smaller than $r-1$. From this contradiction, we deduce that at least one of $\left(B_{1}-x\right) \cup e$ and $\left(B_{1}-x\right) \cup f$ is in \mathcal{B}. So (B2) also holds when $\left|B_{2}-B_{1}\right| \geq 2$. This completes the proof.

