
MATH432 - 2024 Assignment 2 Solutions.

Q1. Consider the following graph G.
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Draw a geometric representation of M(G). Label the elements appropriately. [4]

Solution: There are different ways one can attempt to draw this. Apart from the
collinearaties (i.e. {a, e, f}, {b, f, g}, {c, g, h}, {d, e, h}), you need to make clear that it
is a rank-4 matroid (i.e. not all the points are lying in one plane), and that the points
{a, b, c, d} are coplanar (which one can indicate by showing that these points lie on two
lines that intersect at some point).
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Q2. Consider the rank-4 matroid M with the geometric representation given below (and also
seen in Assignment 1 Q1). Draw a graph G such that M = M(G). Label the edges of G
appropriately.
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Solution:
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Q3. Draw a geometric representation of the ternary matroid that has a representation over
GF(3) given by the following matrix. Label the elements, and provide some working.


a b c d e f g h

1 0 0 1 1 0 1 1
0 1 0 1 0 1 1 2
0 0 1 0 1 1 1 2


[6]

Solution: This matroid clearly has rank 3, and has no dependent sets of size at most
two. The 3-element circuits are: {a, b, d}, {a, c, e}, {b, c, f}, {b, e, g}, {c, d, g}, {d, e, h}, and
any 3-element subset of {a, f, g, h}. There are different ways to draw the geometric
representation; here is one possibility:
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Q4. The following diagram shows geometric representations of two rank-4 matroids. Find a
matrix that represents the first matroid over the field GF(2), and a matrix that represents
the second over GF(3). Label the columns appropriately, and provide some working.
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Solution: Both matroids have rank 4, and {a, b, c, d} is a basis, so (if representable) we
can choose these columns to be labelled by a 4× 4 identity matrix.



For this first, we can then look at the fundamental circuits relative to {a, b, c, d}, which
tells us which matrix entries are zero or non-zero. Any non-zero entry must be 1, so we
obtain the following GF(2)-representation:


a b c d e f g h

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

.
Note that different solutions are possible (e.g., if you chose a different basis to label the
identity matrix).

For the second, we start similarly and again, by considering fundamental circuits rela-
tive to the basis {a, b, c, d}, we can find whether the remaining entries are zero or non-
zero. Now, however, the non-zero elements could be 1 or 2. By trial and error (we will
see more methodical approaches later in the course), we can find the following GF(3)-
representation:


a b c d e f g h

1 0 0 0 1 1 1 0
0 1 0 0 1 1 2 1
0 0 1 0 1 0 2 2
0 0 0 1 0 1 1 2

.
Q5. Let M be the rank-3 matroid shown below.
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Draw a geometric representation of M∗. Show some working. [6]

Solution: Since M has rank 3 and |E(M)| = 7, the matroid M∗ has rank 4. Since M has
rank 3, hyperplanes correspond to lines of the geometric representation, and complements
of these sets are cocircuits of M , i.e. circuits of M∗. Since M∗ has rank 4, we’re primarily
interested in the circuits of M∗ of size at most 4, corresponding to the lines of length at
least three in M . These are: {a, b, f}, {c, e, f}, {b, d, e}, {a, c, d, g}. The complements
of these sets are: {c, d, e, g}, {a, b, d, g}, {a, c, f, g}, {b, e, f} (so these are non-spanning
circuits in M).

Again, there are different ways you can draw the rank-4 matroid M∗; the important thing
is to ensure that {b, e, f} are collinear, and each of {c, d, e, g}, {a, b, d, g}, and {a, c, f, g}
are coplanar. One option is the following:
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Q6. Let M be a matroid, and let e and f be elements of E(M) that are not coloops. Prove
that {e, f} is a cocircuit of M if and only if every circuit of M that contains one of e and
f contains both. [5]

Solution: First assume that every circuit that contains one of e and f contains both.
We start by showing that E − {e, f} is non-spanning. Suppose E − {e, f} is spanning.
Then it contains a basis B. Then e /∈ B, and B∪e contains a unique circuit that contains
e. But this circuit does not contain f , so we have a contradiction. Therefore E − {e, f}
is non-spanning. Hence E −{e, f} is contained in a maximal non-spanning set, that is, a
hyperplane. Let H be this hyperplane. Now the complement of H is a cocircuit contained
in {e, f}. Since neither {e} nor {f} is a cocircuit (since these elements are not coloops),
it follows that {e, f} is a cocircuit.

For the converse, assume that {e, f} is a cocircuit, so that H = E(M) − {e, f} is a
hyperplane. We want to show that no circuit contains precisely one of {e, f}. Assume,
towards a contradiction, that C is a circuit containing (without loss of generality) e but
not f . Then C − e is an independent subset of H. Let I be a maximal independent
subset of H ∪ e such that C − e ⊆ I. Observe that e /∈ I, for otherwise C is contained in
the independent set I. Since H is a hyperplane, and e is not in H, it follows that H ∪ e
contains a basis of M of size r(M). If |I| < r(M), then we could use the axiom I3 to
augment I to a larger subset of H ∪ e, contradicting our choice of I. Therefore I is a
basis of M . But H does not contain a basis of M , so e ∈ I, a contradiction.

Q7. A matroid is self-dual if it is isomorphic to its dual. Prove that if M is a self-dual matroid
with ground set E, then |E| is even. [4]

Solution: Assume that M is isomorphic to M∗. An isomorphism between M and M∗

is a bijection such that a set is independent in M if and only if its image is independent
in M∗. It follows that a set is a basis in M if and only if its image is a basis in M∗.
Therefore M and M∗ have the same rank. But then r(M) = r(M∗) = |E| − r(M). Since
r(M) = |E| − r(M), this implies 2r(M) = |E|, so |E| is even, as desired.

Q8. Recall sparse paving matroids from Assignment 1. A matroid M is sparse paving if and
only if every circuit of M has cardinality at least r(M), and whenever C and C ′ are
distinct circuits of M with size r(M), then |C ∩ C ′| < r(M)− 1.1 [9]

(i) Let M be a sparse paving matroid with rank r. Prove that if C is a circuit in M of
size r, then C is a hyperplane.

1You do not need to prove this statement (it follows easily from the definition seen previously).



Solution: Note that C is not spanning, because it is the same size as a basis, but
it is not a basis. In order to show that C is a hyperplane, we must show that it is
maximal with respect to being non-spanning. Assume for a contradiction that C is
not a hyperplane. Then there is an element, x /∈ C, such that C ∪x is not spanning.
Let y be an element in C. Then C−y is an independent set (because C is minimally
dependent), and |C − y| = r − 1. If (C − y) ∪ x is independent, then it is a basis,
because it is the same size as a basis. But in this case, C ∪ x is spanning, contrary
to assumption. Therefore (C − y) ∪ x is dependent, so it contains a circuit. Since
|(C − y) ∪ x| = r, it follows that (C − y) ∪ x is actually a circuit itself. But the
intersection between C and (C−y)∪x has cardinality r−1, and this a contradiction.
Therefore C is a hyperplane.

(ii) Prove that if M is sparse paving, then M∗ is sparse paving.

Solution: Let E be the ground set of M , and let n be |E|. Then the rank of M∗

is n − r. We start by showing that every cocircuit of M has cardinality n − r or
n− r + 1. Recall that every cocircuit is the complement of a hyperplane. Thus we
let H be a hyperplane of M , and let I be a maximal independent subset of H. If x
is an arbitrary element not in H, then H ∪ x contains a basis. So the rank of H ∪ x
is r, but the rank of H is less than r. It follows that the rank of H must be r − 1.
Therefore I is an independent set with cardinality r− 1. Firstly, if H = I, then the
complementary cocircuit has cardinality n− |H| = n− r + 1, as desired. Therefore
we may assume that there is an element x in H − I. Then I ∪ x is not independent,
so it contains a unique circuit. As |I ∪x| = r, it follows that I ∪x must be a circuit.
Assume that y ∈ H − I is distinct from x. Then by the same argument, I ∪ y is a
circuit of size r. But I ∪ x and I ∪ y intersect in a set of size r − 1, and we have a
contradiction. We deduce that x is the only element in H − I, so H = I ∪ x, and
the complementary cocircuit has size n− |H| = n− r, as desired.

We must also show that if C∗
1 and C∗

2 are distinct cocircuits with size n − r, then
|C∗

1∩C∗
2 | < n−r−1. Let Hi be the complementary hyperplane of C∗

i . Then |Hi| = r,
and r(Hi) = r − 1, so Hi must be dependent, and in fact it must be a circuit. Thus
|H1 ∩H2| < r − 1, which means that

|C∗
1 ∩ C∗

2 | = |E| − |H1 ∪H2| = |E| − (|H1|+ |H2| − |H1 ∩H2|)
< n− r − r + (r − 1) = n− r − 1

as desired.

Q9. Let M be a matroid on the ground set E with r as its rank function. Recall that we use
2E to denote the power set of E. Define a new function, r∗ : 2E → Z by the equation
r∗(X) = r(E −X) + |X| − r(M) for every subset X ⊆ E. Prove directly that r∗ satisfies
the three conditions R1, R2, and R3, using only the fact that r satisfies R1, R2, and
R3, and no other facts about matroid duality. [8]

Solution: Let X be any subset of E. Then

|X|+ r(E −X) ≥ r(X) + r(E −X) ≥ r(X ∩ (E −X)) + r(X ∪ (E −X))

≥ r(∅) + r(E) = 0 + r(M) = r(M).



Thus r∗(X) = r(E −X) + |X| − r(M) ≥ 0.

Also, E − X ⊆ E, so r(E − X) ≤ r(E) = r(M). Therefore r(E − X) − r(M) ≤ 0, so
r(E −X) + |X| − r(M) ≤ |X|, which implies that r∗(X) ≤ |X|. Thus r∗ satisfies R1.

Assume that Y ⊆ X. Then

|X| − |Y |+ r(E −X) = |X − Y |+ r(E −X) ≥ r(X − Y ) + r(E −X) ≥
r(∅) + r((X − Y ) ∪ (E −X)) = 0 + r(E − Y )

This implies |Y |+ r(E − Y ) ≤ |X|+ r(E −X), so |Y |+ r(E − Y )− r(M) ≤ |X|+ r(E −
X)− r(M). Thus r∗(Y ) ≤ r∗(X), so r∗ satisfies condition R2.

Finally, let X and Y be subsets of E. Then

r∗(X ∩ Y ) + r∗(X ∪ Y ) = r(E − (X ∩ Y )) + |X ∩ Y | − r(M)

+ r(E − (X ∪ Y )) + |X ∪ Y | − r(M)

= r((E −X) ∪ (E − Y )) + r((E −X) ∩ (E − Y ))

+ |X ∩ Y |+ |X|+ |Y | − |X ∩ Y | − 2r(M)

≤ r(E −X) + r(E − Y ) + |X|+ |Y | − 2r(M)

= r∗(X) + r∗(Y )

Therefore R3 holds for r∗.

Q10. Find an infinite sequence of graphs G4, G5, G6, . . . such that Gi has exactly i vertices for
each i, and M(Gi) has a circuit that is also a hyperplane. [4]

Solution: The following diagram shows the first few wheel graphs. The edges on the
outside ‘rim’ of the wheel form a circuit that is a hyperplane.

G4 G5 G6 G7


