Q1. Consider the following graph G.

Draw a geometric representation of M(G). Label the elements appropriately. [4]

Solution: There are different ways one can attempt to draw this. Apart from the collinearaties (i.e. $\{a, e, f\}$, $\{b, f, g\}$, $\{c, g, h\}$, $\{d, e, h\}$), you need to make clear that it is a rank-4 matroid (i.e. not all the points are lying in one plane), and that the points $\{a, b, c, d\}$ are coplanar (which one can indicate by showing that these points lie on two lines that intersect at some point).

Q2. Consider the rank-4 matroid M with the geometric representation given below (and also seen in Assignment 1 Q1). Draw a graph G such that M = M(G). Label the edges of G appropriately.

[4]

Solution:

Q3. Draw a geometric representation of the ternary matroid that has a representation over GF(3) given by the following matrix. Label the elements, and provide some working.

$$\begin{bmatrix} a & b & c & d & e & f & g & h \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 2 \end{bmatrix}$$

[6]

Solution: This matroid clearly has rank 3, and has no dependent sets of size at most two. The 3-element circuits are: $\{a, b, d\}, \{a, c, e\}, \{b, c, f\}, \{b, e, g\}, \{c, d, g\}, \{d, e, h\}$, and any 3-element subset of $\{a, f, g, h\}$. There are different ways to draw the geometric representation; here is one possibility:

Q4. The following diagram shows geometric representations of two rank-4 matroids. Find a matrix that represents the first matroid over the field GF(2), and a matrix that represents the second over GF(3). Label the columns appropriately, and provide some working.

Solution: Both matroids have rank 4, and $\{a, b, c, d\}$ is a basis, so (if representable) we can choose these columns to be labelled by a 4×4 identity matrix.

For this first, we can then look at the fundamental circuits relative to $\{a, b, c, d\}$, which tells us which matrix entries are zero or non-zero. Any non-zero entry must be 1, so we obtain the following GF(2)-representation:

$$\begin{bmatrix} a & b & c & d & e & f & g & h \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Note that different solutions are possible (e.g., if you chose a different basis to label the identity matrix).

For the second, we start similarly and again, by considering fundamental circuits relative to the basis $\{a, b, c, d\}$, we can find whether the remaining entries are zero or nonzero. Now, however, the non-zero elements could be 1 or 2. By trial and error (we will see more methodical approaches later in the course), we can find the following GF(3)representation:

a	b	c	d	e	f	g	h	
[1]	0	0	0	1	1	1	0	1
0	1	0	0	1	1	2	1	
0	0	1	0	1	0	2	2	
0	0	0	1	0	1	1	2	

Q5. Let M be the rank-3 matroid shown below.

Draw a geometric representation of M^* . Show some working.

[6]

Solution: Since M has rank 3 and |E(M)| = 7, the matroid M^* has rank 4. Since M has rank 3, hyperplanes correspond to lines of the geometric representation, and complements of these sets are cocircuits of M, i.e. circuits of M^* . Since M^* has rank 4, we're primarily interested in the circuits of M^* of size at most 4, corresponding to the lines of length at least three in M. These are: $\{a, b, f\}, \{c, e, f\}, \{b, d, e\}, \{a, c, d, g\}$. The complements of these sets are: $\{c, d, e, g\}, \{a, b, d, g\}, \{a, c, f, g\}, \{b, e, f\}$ (so these are non-spanning circuits in M).

Again, there are different ways you can draw the rank-4 matroid M^* ; the important thing is to ensure that $\{b, e, f\}$ are collinear, and each of $\{c, d, e, g\}$, $\{a, b, d, g\}$, and $\{a, c, f, g\}$ are coplanar. One option is the following:

Q6. Let M be a matroid, and let e and f be elements of E(M) that are not coloops. Prove that $\{e, f\}$ is a cocircuit of M if and only if every circuit of M that contains one of e and f contains both. [5]

Solution: First assume that every circuit that contains one of e and f contains both. We start by showing that $E - \{e, f\}$ is non-spanning. Suppose $E - \{e, f\}$ is spanning. Then it contains a basis B. Then $e \notin B$, and $B \cup e$ contains a unique circuit that contains e. But this circuit does not contain f, so we have a contradiction. Therefore $E - \{e, f\}$ is non-spanning. Hence $E - \{e, f\}$ is contained in a maximal non-spanning set, that is, a hyperplane. Let H be this hyperplane. Now the complement of H is a cocircuit contained in $\{e, f\}$. Since neither $\{e\}$ nor $\{f\}$ is a cocircuit (since these elements are not coloops), it follows that $\{e, f\}$ is a cocircuit.

For the converse, assume that $\{e, f\}$ is a cocircuit, so that $H = E(M) - \{e, f\}$ is a hyperplane. We want to show that no circuit contains precisely one of $\{e, f\}$. Assume, towards a contradiction, that C is a circuit containing (without loss of generality) e but not f. Then C - e is an independent subset of H. Let I be a maximal independent subset of $H \cup e$ such that $C - e \subseteq I$. Observe that $e \notin I$, for otherwise C is contained in the independent set I. Since H is a hyperplane, and e is not in H, it follows that $H \cup e$ contains a basis of M of size r(M). If |I| < r(M), then we could use the axiom **I3** to augment I to a larger subset of $H \cup e$, contradicting our choice of I. Therefore I is a basis of M. But H does not contain a basis of M, so $e \in I$, a contradiction.

Q7. A matroid is *self-dual* if it is isomorphic to its dual. Prove that if M is a self-dual matroid with ground set E, then |E| is even. [4]

Solution: Assume that M is isomorphic to M^* . An isomorphism between M and M^* is a bijection such that a set is independent in M if and only if its image is independent in M^* . It follows that a set is a basis in M if and only if its image is a basis in M^* . Therefore M and M^* have the same rank. But then $r(M) = r(M^*) = |E| - r(M)$. Since r(M) = |E| - r(M), this implies 2r(M) = |E|, so |E| is even, as desired.

- **Q8.** Recall sparse paving matroids from Assignment 1. A matroid M is sparse paving if and only if every circuit of M has cardinality at least r(M), and whenever C and C' are distinct circuits of M with size r(M), then $|C \cap C'| < r(M) 1$.¹ [9]
 - (i) Let M be a sparse paving matroid with rank r. Prove that if C is a circuit in M of size r, then C is a hyperplane.

¹You do not need to prove this statement (it follows easily from the definition seen previously).

Solution: Note that C is not spanning, because it is the same size as a basis, but it is not a basis. In order to show that C is a hyperplane, we must show that it is maximal with respect to being non-spanning. Assume for a contradiction that C is not a hyperplane. Then there is an element, $x \notin C$, such that $C \cup x$ is not spanning. Let y be an element in C. Then C - y is an independent set (because C is minimally dependent), and |C - y| = r - 1. If $(C - y) \cup x$ is independent, then it is a basis, because it is the same size as a basis. But in this case, $C \cup x$ is spanning, contrary to assumption. Therefore $(C - y) \cup x$ is dependent, so it contains a circuit. Since $|(C - y) \cup x| = r$, it follows that $(C - y) \cup x$ is actually a circuit itself. But the intersection between C and $(C - y) \cup x$ has cardinality r - 1, and this a contradiction. Therefore C is a hyperplane.

- (ii) Prove that if M is sparse paving, then M^* is sparse paving.
 - **Solution:** Let E be the ground set of M, and let n be |E|. Then the rank of M^* is n r. We start by showing that every cocircuit of M has cardinality n r or n r + 1. Recall that every cocircuit is the complement of a hyperplane. Thus we let H be a hyperplane of M, and let I be a maximal independent subset of H. If x is an arbitrary element not in H, then $H \cup x$ contains a basis. So the rank of $H \cup x$ is r, but the rank of H is less than r. It follows that the rank of H must be r 1. Therefore I is an independent set with cardinality r 1. Firstly, if H = I, then the complementary cocircuit has cardinality n |H| = n r + 1, as desired. Therefore we may assume that there is an element x in H I. Then $I \cup x$ must be a circuit. Assume that $y \in H I$ is distinct from x. Then by the same argument, $I \cup y$ is a circuit of size r. But $I \cup x$ and $I \cup y$ intersect in a set of size r 1, and we have a contradiction. We deduce that x is the only element in H I, so $H = I \cup x$, and the complementary cocircuit has size n |H| = n r, as desired.

We must also show that if C_1^* and C_2^* are distinct cocircuits with size n - r, then $|C_1^* \cap C_2^*| < n - r - 1$. Let H_i be the complementary hyperplane of C_i^* . Then $|H_i| = r$, and $r(H_i) = r - 1$, so H_i must be dependent, and in fact it must be a circuit. Thus $|H_1 \cap H_2| < r - 1$, which means that

$$|C_1^* \cap C_2^*| = |E| - |H_1 \cup H_2| = |E| - (|H_1| + |H_2| - |H_1 \cap H_2|)$$

$$< n - r - r + (r - 1) = n - r - 1$$

as desired.

Q9. Let M be a matroid on the ground set E with r as its rank function. Recall that we use 2^E to denote the power set of E. Define a new function, $r^* \colon 2^E \to \mathbb{Z}$ by the equation $r^*(X) = r(E - X) + |X| - r(M)$ for every subset $X \subseteq E$. Prove directly that r^* satisfies the three conditions **R1**, **R2**, and **R3**, using only the fact that r satisfies **R1**, **R2**, and **R3**, and no other facts about matroid duality. [8]

Solution: Let X be any subset of E. Then

$$\begin{split} |X| + r(E - X) &\geq r(X) + r(E - X) \geq r(X \cap (E - X)) + r(X \cup (E - X)) \\ &\geq r(\emptyset) + r(E) = 0 + r(M) = r(M). \end{split}$$

Thus $r^*(X) = r(E - X) + |X| - r(M) \ge 0$. Also, $E - X \subseteq E$, so $r(E - X) \le r(E) = r(M)$. Therefore $r(E - X) - r(M) \le 0$, so $r(E - X) + |X| - r(M) \le |X|$, which implies that $r^*(X) \le |X|$. Thus r^* satisfies **R1**. Assume that $Y \subseteq X$. Then

$$|X| - |Y| + r(E - X) = |X - Y| + r(E - X) \ge r(X - Y) + r(E - X) \ge r(\emptyset) + r((X - Y) \cup (E - X)) = 0 + r(E - Y)$$

This implies $|Y| + r(E - Y) \le |X| + r(E - X)$, so $|Y| + r(E - Y) - r(M) \le |X| + r(E - X) - r(M)$. Thus $r^*(Y) \le r^*(X)$, so r^* satisfies condition **R2**.

Finally, let X and Y be subsets of E. Then

$$\begin{aligned} r^*(X \cap Y) + r^*(X \cup Y) &= r(E - (X \cap Y)) + |X \cap Y| - r(M) \\ &+ r(E - (X \cup Y)) + |X \cup Y| - r(M) \\ &= r((E - X) \cup (E - Y)) + r((E - X) \cap (E - Y)) \\ &+ |X \cap Y| + |X| + |Y| - |X \cap Y| - 2r(M) \\ &\leq r(E - X) + r(E - Y) + |X| + |Y| - 2r(M) \\ &= r^*(X) + r^*(Y) \end{aligned}$$

Therefore **R3** holds for r^* .

Q10. Find an infinite sequence of graphs G_4, G_5, G_6, \ldots such that G_i has exactly *i* vertices for each *i*, and $M(G_i)$ has a circuit that is also a hyperplane. [4]

Solution: The following diagram shows the first few *wheel* graphs. The edges on the outside 'rim' of the wheel form a circuit that is a hyperplane.

