MAT	ГН 361	Terms Test 1	2020		
Nam	le:	ID number:			
•	Duration: 50 MINUTES.		40 Marks		
•	Write your name and ID num	ber in the spaces provided.			
•	Attempt every question.				
Que	stion 1. (i) Define what is	meant by a <i>bipartite</i> graph.	[1]		
(ii)	State the Handshaking Lemm	la.	[1]		
(iii)	Recall the complete bipartite graph K_{mn} . Use the Handshaking Lemma to prove that K_{mn} has mn edges. [2]				
(iv)	Prove that if C is a cycle of a bipartite graph, then C has an even number of edges [:				
Que	estion 2. Let G be a connected	l graph.			
(i)	Define what is meant by an i	sthmus of G .	[1]		
(ii)	Let $e = uv$ be an isthmus of G . Prove that u and v lie in different components $G \setminus e$.				
(iii)	Define what is meant by a cu	$t \ vertex \ of \ G.$	[1]		
(iv)	Draw a clearly labelled grap vertex.	h that has <i>exactly one</i> is thmus and <i>exa</i>	ctly one cut [3]		
Que	estion 3. Let $e = uv$ be an edge	ge of the graph G and let C be a cycle of t	the graph G .		
(i)	Prove that, if $e \in C$, then C	$-\{e\}$ is a cycle of G/e .	[3]		
(ii)	Assume that $e \notin C$, but that cycle of G/e .	both u and v are vertices of C . Prove the	at C is not a [2]		
Que	stion 4. (i) Define what it	means for a graph G to be 2-connected.	[2]		
(ii)	Draw a clearly labelled 2-con having the property that	nected graph with two clearly labelled ec	lges e and f		
	• $G \setminus e$ is not 2-connected;	and	[2]		
	• G/f is not 2-connected.		[2]		

Question 5. Recall the following theorem from the notes. Let G be a *loopless* graph, with *at least two edges* and *no isolated vertices*. Then G is 2-connected if and only if, for any pair a, b of edges, G has a cycle containing both a and b.

(i)	Explain why we need the condition that G is <i>loopless</i> . [1]
(ii)	Explain why we need the condition that G has at least two edges. [1]
(iii)	Explain why we need the condition that G has no isolated vertices. [1]
$(: \ldots)$	Use the theorem to succee that if a succeed a succeed in the succeed and a succeed and	1.

(iv) Use the theorem to prove that if u and v are distinct vertices of a 2-connected graph G, then G has a cycle containing both u and v. [3]

Question 6. Let G = (V, E) be a graph.

(i)	i) Define what is meant by a <i>separa</i>	ation in G .	[2]
(1)	i) Denne what is meane by a separ		141

- (ii) Define what is meant by the *boundary* of a separation in G. [1]
- (iii) Define what is meant by the *order* of a separation in G. [1]

Question 7. Consider the graph G illustrated below.

- (i) Find all proper separations of order 1 in G. [3]
- (ii) Find a proper separation of order 2 in G. [1]

