MATH 361	Terms Test 1	2020

Name: \qquad ID number: \qquad

- Duration: 50 MINUTES.

40 Marks

- Write your name and ID number in the spaces provided.
- Attempt every question.

Question 1. (i) Define what is meant by a bipartite graph.
(ii) State the Handshaking Lemma.
(iii) Recall the complete bipartite graph $K_{m n}$. Use the Handshaking Lemma to prove that $K_{m n}$ has $m n$ edges.
(iv) Prove that if C is a cycle of a bipartite graph, then C has an even number of edges.

Question 2. Let G be a connected graph.
(i) Define what is meant by an isthmus of G.
(ii) Let $e=u v$ be an isthmus of G. Prove that u and v lie in different components of $G \backslash e$.
(iii) Define what is meant by a cut vertex of G.
(iv) Draw a clearly labelled graph that has exactly one isthmus and exactly one cut vertex.

Question 3. Let $e=u v$ be an edge of the graph G and let C be a cycle of the graph G.
(i) Prove that, if $e \in C$, then $C-\{e\}$ is a cycle of G / e.
(ii) Assume that $e \notin C$, but that both u and v are vertices of C. Prove that C is not a cycle of G / e.

Question 4. (i) Define what it means for a graph G to be 2-connected.
(ii) Draw a clearly labelled 2-connected graph with two clearly labelled edges e and f having the property that

- $G \backslash e$ is not 2-connected; and
- G / f is not 2-connected.

Question 5. Recall the following theorem from the notes. Let G be a loopless graph, with at least two edges and no isolated vertices. Then G is 2 -connected if and only if, for any pair a, b of edges, G has a cycle containing both a and b.
(i) Explain why we need the condition that G is loopless.
(ii) Explain why we need the condition that G has at least two edges.
(iii) Explain why we need the condition that G has no isolated vertices.
(iv) Use the theorem to prove that if u and v are distinct vertices of a 2-connected graph G, then G has a cycle containing both u and v.

Question 6. Let $G=(V, E)$ be a graph.
(i) Define what is meant by a separation in G.
(ii) Define what is meant by the boundary of a separation in G.
(iii) Define what is meant by the order of a separation in G.

Question 7. Consider the graph G illustrated below.
(i) Find all proper separations of order 1 in G.
(ii) Find a proper separation of order 2 in G.

