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7. Ramsey Theory

A major theme of graph theory has been the emergence of the understanding
that, in some sense, complete chaos is impossible. Probably the first result
in graph theory of this type is Ramsey’s Theorem. It was proved in 1928 by
Frank Plumpton Ramsey. It has turned out to be another example of a
truly seminal theorem. Incidentally, Ramsey proved it, almost as an aside, in a
paper on logic.

We have already seen an example in an assignment. If I take K6 and colour
the edges either red or blue, then the graph must either have a red triangle or
a blue triangle. Ramsey’s Theorem is a generalisation of this.

Let G be a graph, and let U ⊆ V (G). We say that U is a clique if every pair
of distinct vertices in U are adjacent. As you would expect, when U is a clique
with |U | = t, we say that it is a clique of size t. In this section, we are primarily
interested in the case that G is a simple graph; then, U ⊆ V (G) is a clique of
size t if G[U ] is isomorphic to Kt.

Let n be a positive integer, and let K be a complete graph on n vertices with
the edges coloured red or blue. For t < n, we say that a subset U of t vertices
of K is a red clique if all the edges in K[U ] are red, and is a blue clique if all the
edges in K[U ] are blue. We say that U is a monochromatic clique if it is either
a red or a blue clique.

Theorem 7.1 (Ramsey’s Theorem, 1928). For every positive integer t, there
is a number r(t) such that the following holds: if G is a red-blue edge-coloured
complete graph with at least r(t) vertices, then G has a monochromatic clique
of size t.

In other words, given a very large 2-edge-coloured clique, we must have a large
set of vertices where all edges between those vertices are the same colour. These
“monochromatic cliques” are a structure that we cannot avoid.

It turns out that the best way to prove Theorem 7.1 is to prove a stronger
theorem. We’ll ask a slightly more sophisticated question. For positive integers
s and t is it the case that, given a sufficiently large red-blue edge-coloured
complete graph, we can always find a red clique of size s or a blue clique of
size t?

This may seem like a more difficult thing to prove, but, in fact, it is easier.

Theorem 7.2. For all positive integers s and t, there is a number r(s, t) such
that if G is a red-blue edge-coloured complete graph with at least r(s, t) vertices,

https://en.wikipedia.org/wiki/Frank_P._Ramsey
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then G has either a red clique of size s, or a blue clique of size t. Moreover,
when s, t ≥ 2, we have r(s, t) ≤ r(s− 1, t) + r(s, t− 1).

The natural way have a go at proving this theorem is by some sort of induction,
but we have a problem. Induction works when we have a linear order, which is
what happens when we are counting something like vertices or edges. But here
we have ordered pairs (s, t).

The trick is to put a linear order on ordered pairs of positive integers. The
ordering we will use is very standard, and it’s worth looking at in more detail.

Lexicographic Ordering. Let S be a set with a relation ≺ on S. Then ≺ is
a linear order on S if the following hold:

(i) for all a, b ∈ S, if a ≺ b, then b ̸≺ a;
(ii) for all a, b, c ∈ S, if a ≺ b and b ≺ c, then a ≺ c;
(iii) for all a ∈ S, we have a ̸≺ a; and
(iv) for all a, b ∈ S with a ̸= b we have either a ≺ b or b ≺ a.

Strictly speaking, we didn’t need condition (iii). It’s really a question of
whether we are defining ⪯ or ≺. In any case, the point is that a linear order
is a partial order with the property that every pair of distinct elements is
comparable one way or another.

Of course the natural numbers form a linear order with the normal ordering.
So do the letters of the alphabet, with

a ≺ b ≺ c ≺ · · · ≺ y ≺ z.

Recall that a word from a set S is just an ordered string s1s2 · · · sn where si ∈ S
for all i ∈ {1, 2, . . . , n}.

→ There is no fundamental difference between words and vectors; the only
real difference between the word s1s2 · · · sn and the vector (s1, s2, . . . , sn)
is the notation.

→ The crucial point is that in words, and vectors, the order matters. The
word rat is different from the word art, just as the vector (r, a, t) is
different from the vector (a, r, t).
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Let S be a linearly ordered set and let S∗ be a set of words from S. The
lexicographic ordering on the members of S∗ is obtained as follows. Say u =
u1u2 · · ·um and v = v1v2 · · · vn are distinct words in S∗, where m ≤ n.

• If v1v2 · · · vm = u1u2 · · ·um, then u ≺ v.
• Otherwise, let i be the first index such that ui ̸= vi. If ui ≺ vi, then
u ≺ v; whereas if vi ≺ ui, then v ≺ u.

It’s not hard to see that lexicographic ordering is a linear order. Of course, if
you can use a dictionary, then you already understand lexicographic ordering.
The word limb appears before limbic as an example of the first rule. The word
wilderness appears before wildfire as an example of the second, since e ≺ f .

Our original motivation was to obtain a linear order for pairs (a, b) of positive
integers. In the lexicographic order, when (a, b) and (c, d) are distinct, we have
(a, b) ≺ (c, d) if either a < c, or a = c and b < d; otherwise (c, d) ≺ (a, b).

→ Perhaps this seems like a lot of effort to go to, just to define the above
order. But lexicographic orderings are a useful theme in mathematics,
not just for ordering pairs of integers.

Proof of Theorem 7.2. Let ≺ be the lexicographic order on pairs of positive
integers. Trivially, any clique of size one is both red and blue. Hence we may
set

r(1, t) = r(s, 1) = 1

for all s and t. This establishes the base case of our induction.

Now consider a pair (s, t) for s > 1 and t > 1. We may assume that for any
(s′, t′) such that (1, 1) ≺ (s′, t′) ≺ (s, t), the result holds. That is, for such
an (s′, t′), there exists a number r(s′, t′) such that any red-blue edge-coloured
complete graph with at least r(s′, t′) vertices has either a red clique of size s′,
or a blue clique of size t′. When such an r(s′, t′) exists, we say that r(s′, t′) is
well defined.

In the lexicographic order, (1, 1) ≺ (s − 1, t) ≺ (s, t) and (1, 1) ≺ (s, t − 1) ≺
(s, t). Thus, by the induction assumption, r(s − 1, t) and r(s, t − 1) are well
defined. Now let G be a red-blue edge-coloured complete graph with

|V (G)| = r(s− 1, t) + r(s, t− 1).

Let v be a vertex of G. The degree of v is

d(v) = |V (G)| − 1 = r(s− 1, t) + r(s, t− 1)− 1.

Let Rv and Bv be the set of red and blue edges incident with v, respectively.
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7.2.1. Either |Rv| ≥ r(s− 1, t), or |Bv| ≥ r(s, t− 1).

Subproof. If |Rv| < r(s− 1, t) and |Bv| < r(s, t− 1), then

d(v) ≤ r(s− 1, t)− 1 + r(s, t− 1)− 1 < r(s− 1, t) + r(s, t− 1)− 1 = d(v).

But d(v) < d(v) is contradictory, so we deduce that 7.2.1 holds. �

Say that |Rv| ≥ r(s−1, t). Let S be the set of vertices joined to v by red edges.
Then |S| ≥ r(s − 1, t). Hence, as r(s − 1, t) is well defined, G[S] has either a
red clique of size s− 1 or a blue clique of size t. If the latter case holds, then G
has a blue clique of size t. In the former case S ∪ {v} is a red clique of size s.

On the other hand, suppose |Bv| ≥ r(s, t − 1). Then we let S be the set of
vertices joined to v by blue edges, so |S| ≥ r(s, t − 1). As r(s, t − 1) is well
defined, either G[S] has either a red clique of size s, or a blue clique of size t−1,
in which case S ∪ {v} is a blue clique of size t.

We have shown that if G is a red-blue edge-coloured complete graph with at
least r(s − 1, t) + r(s, t − 1) vertices, then G has either a red clique of size s,
or a blue clique of size t. Therefore, r(s, t) is well defined and, in particular,
r(s, t) ≤ r(s− 1, t) + r(s, t− 1). The theorem now follows by induction. □

We now get Theorem 7.1 as a straightforward corollary.

Proof of Theorem 7.1. For any positive integer t, we let r(t) be the number
r(t, t) given by Theorem 7.2. Let t be a positive integer and let G be a red-blue
edge-coloured complete graph with at least r(t) vertices. Then, as r(t) = r(t, t)
where r(t, t) is as given by Theorem 7.2, G has either a red clique of size t, or
a blue clique of size t. In other words, G has a monochromatic clique of size t,
as required. □

→ Note that we never found the exact value of r(s, t). All we said was
that such a number exists. That is, the proof of Ramsey’s theorem was
non-constructive.

Once upon a time, in the not too distant past, it could be said that the dominant
culture in mathematics was anti constructive techniques. But the computer
revolution has changed that. The theory of algorithms and computability theory
are now highly developed branches of mathematics. A non-constructive proof,
like the proof of Ramsey’s theorem that we just saw, may be elegant, but a
constructive proof that leads to an efficient algorithm or an exact answer could
be more useful.
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Ramsey Numbers. Let s and t be positive integers. Now, we let r(s, t) be
the minimum possible number that guarantees that a red-blue edge-coloured
complete graph with at least r(s, t) vertices has either a red clique of size s or
a blue clique of size t.

→ Theorem 7.2 showed that, for any (s, t), there exists a number N that
guarantees that a red-blue edge-coloured complete graph with at least
N vertices has either a red clique of size s or a blue clique of size t. But
if N is such a number, so is N + 1, and so is any number greater than
N . Now, we are interested in finding the smallest possible value for N ,
and henceforth we take r(s, t) to be this number.

Numbers that give this (minimum) value of r(s, t), for different values of s and t,
are called Ramsey numbers. Graph theorists have expended considerable effort
in calculating Ramsey numbers.

The way to try to do this is to calculate upper and lower bounds for a Ramsey
number. Consider a simple example.

Take K5 and colour a 5-cycle red and the rest blue. Then it is easily checked
that there is no red triangle and no blue triangle. Hence r(3, 3) ≥ 6. We have
established that 6 is a lower bound for r(3, 3).

But we proved in an assignment that any red-blue edge-coloured K6 has either
a red triangle or a blue triangle. Hence r(3, 3) ≤ 6. In other words, 6 is an
upper bound for r(3, 3).

Hey! The number 6 is both a lower and an upper bound. So we have proved
that r(3, 3) = 6.

How easy was that. Surely calculating the others cannot be too hard. It turns
out that it is not that easy. It’s not hard to see that r(s, t) = r(t, s) so it’s usual
to focus on Ramsey numbers where s < t.

Also, we’ve already seen that r(1, t) = 1 for all t, and the next lemma is easy.

Lemma 7.3. If t ≥ 2, then r(2, t) = t.

Proof. [redacted] □

The interesting cases are where s ≥ 3 and t ≥ 3.

The following table shows all known Ramsey numbers r(s, t) where 3 ≤ s ≤ t.
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s 3 3 3 3 3 3 3 4 4
t 3 4 5 6 7 8 9 4 5

r(s, t) 6 9 14 18 23 28 36 18 25

That seems pretty pathetic. If we think of the cases where s = t, then all
we know is r(3, 3) and r(4, 4). Surely r(5, 5) cannot be too hard to calculate.
Paul Erdős, one of the most interesting mathematicians of all time, said the
following in about 1990.

Suppose aliens invade the earth and threaten to obliterate it in a
year’s time unless human beings can find r(5, 5). We could mar-
shall the world’s best minds and fastest computers, and within
a year we could probably find the value. If the aliens demanded
r(6, 6) we would have no choice but to launch a preemptive at-
tack.

And it’s not that Paul was naive about increasing computer power, as one can
see from this interesting Scientific American article.

The problem is combinatorial explosion which is a way of describing just how
incredibly quickly the number of possibilities can grow in discrete mathematics.

→ Combinatorial explosion can be a good thing, however. If we didn’t have
it, then we wouldn’t be able to encode enough information for human
beings in the DNA of an embryo. Also, cryptographic systems, which
are now used ubiquitously (for example, in internet banking), rely on it
for security.

While exact values of Ramsey numbers are beyond us, we can still try to find
some upper and lower bounds. For example, it is known that r(3, 10) ≥ 40 and
r(3, 10) ≤ 41 (and the latter was just proved in the last year, as you can see
here).

The next theorem gives an upper bound for all Ramsey numbers.

Theorem 7.4. For all positive integers s and t,

r(s, t) ≤
(
s+ t− 2

s− 1

)
.

Proof. We use induction, with the help of the lexicographic ordering on pairs of
integers. Consider (s, t), for positive integers s and t. If either s ≤ 2 or t ≤ 2,
then it is easily seen (with the help of Lemma 7.3 and the statement preceding

https://en.wikipedia.org/wiki/Paul_Erd%C5%91s
https://blogs.scientificamerican.com/roots-of-unity/moores-law-and-ramsey-numbers/
https://arxiv.org/abs/2401.00392
https://arxiv.org/abs/2401.00392
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it) that the result holds. So assume that s ≥ 3 and t ≥ 3, and that the result
holds for all (m,n) such that (1, 1) ≺ (m,n) ≺ (s, t) in the lexicographic order.

By Theorem 7.2, and the induction hypothesis,

r(s, t) ≤ r(s, t− 1) + r(s− 1, t)

≤
(
s+ t− 3

s− 1

)
+

(
s+ t− 3

s− 2

)
=

(s+ t− 3)!

(s− 2)!(t− 2)!
· (t− 1) + (s− 1)

(s− 1)(t− 1)

=

(
s+ t− 2

s− 1

)
.

Thus, by induction, the theorem holds for all pairs of positive integers (s, t). □

Note that
(
s+t−2
s−1

)
is the number of (s − 1)-subsets of a (s + t − 2)-element set

and that 2s+t−2 is the total number of subsets. So, we see that

r(s, t) ≤ 2s+t−2.

In particular
r(s, s) ≤ 22s−2.

This shows that Ramsey numbers grow at most exponentially. The next the-
orem of Erdős shows that Ramsey numbers of the form r(k, k) grow at least
exponentially. In other words, it gives an exponential lower bound for r(k, k).

Theorem 7.5 (Erdős 1947). For all positive integers k,

r(k, k) ≥ 2k/2.

Proof. Because r(1, 1) = 1 and r(2, 2) = 2, we may assume that k ≥ 3. We
denote by Gn the set of red-blue edge-coloured complete graphs with vertex set
{v1, v2, . . . , vn}.

7.5.1. |Gn| = 2(
n
2).

Subproof. We have
(
n
2

)
edges in the complete graph on n vertices. For each

edge, there are two possibilities: we either colour it red or blue. In this way,

we can obtain each possible red-blue edge-colouring. So there are 2(
n
2) graphs

in Gn. �

7.5.2. The number of graphs in Gn having a particular set of k vertices as a red

clique is 2(
n
2)−(

k
2).
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Subproof. Consider our fixed set of k vertices that form a red clique. There are(
k
2

)
edges between these vertices, and we are guaranteed these are red. There

are
(
n
2

)
−

(
k
2

)
edges remaining. Arguing as before, we see that there are

2(
n
2)−(

k
2)

ways of extending our colouring. �

Let Rk
n be the set of those graphs which have a red clique of size k. There

are
(
n
k

)
distinct k-element subsets of {v1, v2, . . . , vn}. By this fact and 7.5.2, we

have

|Rk
n| ≤

(
n

k

)
2(

n
2)−(

k
2)

(A graph with more than one red clique of size k will get counted on the right
more than once, so we can only guarantee an inequality here.)

Using the above inequality and 7.5.1, we get

|Rk
n|

|Gn|
≤

(
n

k

)
2−(

n
k) ≤ nk2−(

n
k)

k!

Now suppose that n < 2
k
2 . Then

|Rk
n|

|Gn|
<

2k
2/22−(

k
2)

k!
=

2k/2

k!
<

1

2
.

In other words, if n < 2k/2, then fewer than half of the graphs in Gn contain a
red k-clique. An identical argument shows that fewer than half contain a blue
k-clique. Hence some graph contains neither a red k-clique nor a blue k-clique.
Because this holds for any n < 2k/2, we have r(k, k) ≥ 2k/2. □

Let’s take k = 12. By Theorem 7.5, there exists a red-blue edge-coloured
complete graph with 212/2 − 1 = 26 − 1 = 63 vertices that does not contain a
monochromatic clique of size 12. But it does not tell you how to find it!

All up, by Theorems 7.4 and 7.5 we have

2k/2 < r(k, k) < 22k−2.

But there is a lot of space in between those two numbers!
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Stable sets and cliques. Let G = (V,E) be a simple graph. Recall that a
clique in G is a subset W of vertices of G such that G[W ] is a complete graph. A
stable set in G is a subset W of vertices such that G[W ] has no edges. In other
words, there is some W ⊆ V (G) such that for every pair of distinct vertices u, v
in W , there is no edge between u and v.

Recall that the complement of G, denoted G, is the simple graph such that there
is an edge between u and v in G if and only if there is no edge between u and
v in G. The next lemma follows almost immediately from these definitions.

Lemma 7.6. Let G be a simple graph. Then W is a stable set in G if and only
if W is a clique in G.

While stable sets and cliques are very different structures, they are related by
Lemma 7.6.

Many natural problems amount to finding a maximum-sized clique or stable set
in a graph. Here is an example.

Attack of the Aliens. The aliens have given the world one year to find r(5, 5).
Victoria University of Wellington is doing its bit, and the mathematicians and
computer scientists at VUW are forming a team to collaborate on this project.
It turns out that with respect to such collaborations, pairs of people are either
compatible or incompatible. The goal is to find the largest possible team such
that every pair of people in the team is compatible.

One way to do this is to construct a graph whose vertices are the mathematicians
and computer scientists with edges joining people if they are compatible. We
seek a maximum sized clique in this graph.

On the other hand we could use the same set of vertices with edges joining
people if they are incompatible. Then we are looking for a maximum sized
stable set in this graph.

Maybe there are many incompatibilities, and we need to be a bit more creative
with this problem. What if we took advantage of people’s competitive instinct
and were also happy to make a “team” of incompatible people?

Hopefully, this situation is starting to seem familiar. Take a complete graph
whose vertices are the staff members. For an edge between two staff members,
colour it blue if they are compatible, and red if they are not. A large blue
clique gives us our compatible team, and a large red clique gives us our ruthless
competitors.
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Theorem 7.7. Let G be a simple graph. If G has at least r(s, t) vertices, then
G has either a clique of size s or a stable set of size t.

Proof. Say G = (V,E). We use G to construct a complete graph Kn with vertex
set V as follows. For each edge uv of this Kn, we colour it red if there is an
edge between u and v in G, otherwise we colour it blue. By Theorem 7.2, the
Kn has either a red clique of size s, giving a clique of size s in G; or Kn has a
blue clique of size t, giving a stable set of size t in G. □

In fact, Ramsey theory is often presented in terms of cliques and stable sets.
In the end, there is no real difference; the underlying theory is identical. One
advantage of the clique/stable set perspective is that it makes it easier to draw
pictures. An (s, t)-Ramsey graph is a graph G that has no clique of size s and
no stable set of size t and is such that |V (G)| = r(s, t)− 1. In other words, for
any graph with more vertices, there must be either a clique of size s or a stable
set of size t. Given that we know very few Ramsey numbers exactly, we know
very few (s, t)-Ramsey graphs. Here are a few:

The 5-cycle in (a) is a (3, 3)-Ramsey graph. The graph in (b) is our old friend
the Möbius graph and is a (3, 4)-Ramsey graph. The graph in (c) is a (3, 5)-
Ramsey graph, and the graph in (d) is a (4, 4)-Ramsey graph.
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Given the symmetries exhibited by these graphs, it is tempting to think that
constructive techniques could exist to find higher-order Ramsey graphs. But it
seems that such techniques, if they exist, are not easy to discover.

The Ramsey theory results we have seen so far can be generalised in many, many
ways. Indeed Ramsey theory is a subject in its own right and has implications
way beyond graph theory.

More Colours. One obvious way to extend Ramsey theory is to have more
colours in our palette than just red and blue. Assume we have k “colours”
{1, 2, . . . , k} for some k ≥ 2, and that we k-edge-colour a complete graph G
with these colours. We say that a clique S in G is i-monochromatic if all edges
of G[S] are coloured i.

For positive integers t1, t2, . . . , tk, we define r(t1, t2, . . . , tk) to be the least inte-
ger n such that, for any k-edge-coloured complete graphK on at least n vertices,
there will exist i such that K has an i-monochromatic clique S of size ti.

Theorem 7.8. For all positive integers t1, t2, . . . , tk, the number r(t1, t2, . . . , tk)
is well defined and satisfies

r(t1, t2, . . . , tk) ≤ r(t1 − 1, t2, . . . , tk) + r(t1, t2 − 1, . . . , tk) + · · ·
+ r(t1, t2, . . . , tk − 1)− k + 2.

when ti ≥ 2 for all i.

Proof. [redacted] □

The proof of Theorem 7.8 generalises the technique of the proof of Theorem 7.2
and is an excellent exercise.

An application to number theory. Consider the partition

({1, 4, 10, 13}, {2, 3, 11, 12}, {5, 6, 7, 8, 9})

of the set {1, 2, 3, . . . , 13}. You can check that in each part of the partition, you
cannot find a, b, c such that

a+ b = c.

But you can also check that, no matter how you partition {1, 2, . . . , 14} into
three parts, you can always find a solution to a+b = c in one of the parts. Schur
proved that, in general, given any positive integer n, there exists an integer rn
such that whenever {1, 2, . . . , rn} is partitioned into n parts, there will be a
solution to a+ b = c in one of the parts.
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Let rn = r(t1, t2, . . . , tn), where t1 = t2 = · · · = tn = 3; note that this is well
defined by Theorem 7.8.

Theorem 7.9 (Schur 1916). Let {A1, A2, . . . , An} be a partition of {1, 2, . . . , rn}
into n subsets. Then some Ai contains three integers x, y, and z satisfying
x+ y = z.

In other words, for any n, if we choose a sequence of integers of size at least
rn and partition its members into n subsets, we will always find a subset that
contains integers x, y, and z satisfying x+ y = z.

Proof. Consider the complete graph whose vertex set is {1, 2, . . . , rn}. Colour
the edges of this graph by the rule that the edge uv gets colour i if |u− v| ∈ Ai.
By Theorem 7.8, there exists a monochromatic triangle in this graph.

This means that there are three vertices a, b and c such that the edges ab, bc
and ac all have colour j for some j. Assume without loss of generality that
a > b > c. Write x = a− b, y = b− c and z = a− c. Then x, y and z are all in
Aj. Moreover x+ y = z as required. □

Theorem 7.9 is nothing more than a taster. The impact of Ramsey theory on
number theory and other branches of mathematics has been quite profound.
There is a copy of the excellent book Ramsey Theory by Graham, Rothschild
and Spencer in the VUW library.


