MATH 361 Test 15 April 2024

Name: MO/\ Sat'ﬂm ID number:

e Duration: 50 MINUTES. 50 Marks

e There are FIVE questions, on FIVE pages. Attempt every question in the spaces
provided. Use the reverse side if you run out of space.

e Write your name and ID number on the first page, and clearly label each question

attempt.
Question 1. (10 marks)
(a) State the Handshaking Lemma. 2]
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(b) Give the definition of a forest. 1]
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(c) Let G be a connected graph. Give the definition of a spanning tree of G. 2]
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(d) Let G be a non-empty graph that is connected but not a tree. Prove that there
exists an edge e in G such that G\e is connected. 5]
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Question 2. (11 marks)

(a) Let G be a graph. Give the definition of a cut verter of G. 2]
A overex v € U(C») N oa  (wt verfex. El} C-v bas rore
C.D--.\ao/\-e.\'}g fan e

(b) Let G be a graph. Are the following statements true or false? Justify your answer
with an explanation if true, or give a counterexample if false.

(i) If G is isomorphic to the path graph P, for some positive integer n, then G is
bipartite. 3]
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(ii) If G is a 3-connected graph, then G is 2-connected. 3]
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(iii) If H is an minor of G, then H is a subgraph of G. 3]
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Question 3. (9 marks)

By drawing an appropriate graph, give a clearly illustrated example of the following:

(a) a graph with exactly one cut vertex and exactly two bridges. 3]
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(b) a 3-connected graph G such that, for every edge e of G, the graph G\e is not
3-connected. 3]
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(c) a graph with two (x,y)-paths P and @ such that P and @) are edge-disjoint, but
not internally vertex-disjoint. 3]
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Question 4. (15 marks)

(a) Are the following statements true or false? Justify your answer with an explanation
if true, or give a counterexample if false. In the former case, you may refer to results
seen in class, without giving a proof.

(i) If G is a 3-connected graph with at least five vertices, then there exists an
edge e in G such that G/e is 3-connected. 2]
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(ii) If G is a non-empty simple graph where every vertex has degree three, then G
is 3-connected. 3]
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(b) Let G be a graph and let X and Y be non-empty subsets of V(G).
(i) Define what is meant by an (X,Y")-path. 1]
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(ii) For a set S C V(G), define what it means for S to separate X from Y. 1]
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(iii) State Menger’s theorem. 2]
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(iv) Explain why it follows from Menger’s theorem that if G is 2-connected and X
and Y each have size two, then there are two vertex-disjoint (X, Y)-paths in

G. [6]
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Question 5. (5 marks)

(a) Define a plane graph (you may make reference to a planar embedding without defin-
ing this term). 1]
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(b) Let G be a plane graph. Define what it means for an edge of G to be incident to a

face of G. [1]
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(c) Is the following statement true or false? Justify your answer with an explanation if
true, or give a counterexample if false.

e Every edge in a plane graph is incident with two distinct faces. (3]
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