Name: Model Solutions
ID number: \qquad

- Duration: 50 MINUTES.

50 Marks

- There are FIVE questions, on FIVE pages. Attempt every question in the spaces provided. Use the reverse side if you run out of space.
- Write your name and ID number on the first page, and clearly label each question attempt.
Question 1.
(a) State the Handshaking Lemma.

For a graph $G=(V, E)$,

$$
\sum_{v \in V} d(v)=2|E| .
$$

(b) Give the definition of a forest.

A forest is a graph with no cycles.
(c) Let G be a connected graph. Give the definition of a spanning tree of G.

A spanning tree of G is a subgraph H of C that is a tree and $|V(H)|=|V(G)|$.
(d) Let G be a non-empty graph that is connected but not a tree. Prove that there exists an edge e in G such that $G \backslash e$ is connected.
Since G is connected, it has a spannoy tree H. By definition, $V(H)=V\left(G_{1}\right)$, and $E(H) \subseteq E(C)$.
But $H \neq G$, since H is a tree but G is not. Therefore, there exits an edge $e \in E(G) \backslash E(1 t)$.
Now ale has It as a spanny tree, so ale is conceded.

Question 2.
(a) Let G be a graph. Give the definition of a cut vertex of G.

A vertex $v \in \cup(G)$ is a cut vertex if $G-v$ has more components than G.
(b) Let G be a graph. Are the following statements true or false? Justify your answer with an explanation if true, or give a counterexample if false.
(i) If G is isomorphic to the path graph P_{n} for some positive integer n, then G is bipartite.
Trey. let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of P_{n}
such that $v_{i} v_{i+1}$ is an edge for each $\left.i \in\{1\},, \ldots, n-1\right\}$.
Then letting $A=\left\{u_{i}: i\right.$ is odd $\}$ and
$B=\left\{v_{i}: i\right.$ is ares $\}$ goes a biportiton of $V\left(l_{1}\right)$.
(ii) If G is a 3 -connected graph, then G is 2-connected.

True. If G is 3-connected, then $|V(a)| \geqslant 4, G$ is connected and G has no vertex lats of size 1 or 2 . In portizala, $|V(G)| \geqslant 3$ and G has no curt vetoes, so G is 2-conneted.
(iii) If H is an minor of G, then H is a subgraph of G.

False. Counterevargle:
is a moor of

(out os is not a srbyeph of id).

Question 3.

By drawing an appropriate graph, give a clearly illustrated example of the following:
(a) a graph with exactly one cut vertex and exactly two bridges.

the unique cut vertex
(b) a 3-connected graph G such that, for every edge e of G, the graph $G \backslash e$ is not 3-connected.

Here, for any $e \in E(G)$, the
graph Gie has a vertex
of degree 2, so ale is not 3-cornected.
(c) a graph with two (x, y)-paths P and Q such that P and Q are edge-disjoint, but not internally vertex-disjoint.

Question 4.
(a) Are the following statements true or false? Justify your answer with an explanation if true, or give a counterexample if false. In the former case, you may refer to results seen in class, without giving a proof.
(i) If G is a 3-connected graph with at least five vertices, then there exists an edge e in G such that G / e is 3-connected.
Tree. we proved this as a the ven in kedwes.'
(ii) If G is a non-empty simple graph where every vertex has degree three, then G is 3 -connected.

(b) Let G be a graph and let X and Y be nonempty subsets of $V(G)$.
(i) Define what is meant by an (X, Y)-path.

A path from a vertex $x \in X$ to a vertex $g \in Y$.
(ii) For a set $S \subseteq V(G)$, define what it means for S to separate X from Y.
s senates x from y if eve (x, y)-path

$$
\text { contains some vertex in } S \text {. }
$$

(iii) State Manger's theorem.

The minimum size of a set that separates X for Y
equals the maxhum number of uertex-digoint (x, y)-palls.
(iv) Explain why it follows from Manger's theorem that if G is 2-connected and X and Y each have size two, then there are two vertex-disjoint (X, Y)-paths in G.

By Merge's theorem, it riffles to show the minmun size of o set the sparates X from Y is at lest 2 .

So suppose S separates X furn Y. Since G i connected, $S \neq \phi \cdot$ If $|S|=1$, then ever (x, y)-path passes thanh the single veter sin S. Sine XIS and YSS are non-enpty, G-s is disconnected (as a perbexinxIS B in a different component to a vertex $n ~ Y(S)$. So S is a cut retex, cortadialng that $G, 32$-corrected. So $|s| \geqslant 2$ as required.

Question 5.
(5 marks)
(a) Define a plane graph (you may make reference to a planar embedding without defining this term).

A plane graph is a graph together with a planer exbeddy.
(b) Let G be a plane graph. Define what it means for an edge of G to be incident to a face of G.
An edge e of $h \Delta$ ncidat to a face f if $e s i m$ the boundary of f.
(c) Is the following statement true or false? Justify your answer with an explanation if true, or give a counterexample if false.

- Every edge in a plane graph is incident with two distinct faces.

False /e.g. The aver far is the only face incident Toe of with the edge.

This page is deliberately left blank, for extra working.

