IMarch 2014 Euan' Tutarial IQuetibe Tersul

1. Let a be the poritimm vectar of a siven paint $\left(x_{1,}, x_{2,3}, x_{y, y}\right)^{T}$ ard r be the positizevecdx of any point $\left(x_{1} x_{2} x_{5}\right)$ T. Describe ${ }^{T}$. locese or \vec{r} if:
a) $\left|r_{2}-a\right|=3$
a) $r=a=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}x_{10} \\ x_{1} \\ x_{3 \rightarrow}\end{array}\right) \cdots\left(\begin{array}{l}x_{1}-x_{13} \\ x_{2}-x_{23} \\ x_{3}-x_{34}\end{array}\right)$
$\left|\frac{r}{2}-a\right|=$ length of the sectar $\left.-\sqrt{(r-a}-a\right) \cdot(r-6)^{\top}$

$$
=\sqrt{\left(x_{1}-x_{1}\right)^{2}+\left(x_{2}-x_{2 \pi}\right)^{2}+\left(x_{3}-x_{3 j}\right)^{2}}=3
$$

Thil i) a-cirite of radiss? sphere

$$
\operatorname{la}_{x}^{x_{1}} \text { or } x_{r}
$$

$|\vec{r}-\dot{a}|=3$ lemghiontway
b) $\left(r^{2}-\vec{a}\right), \overrightarrow{0}=0$.

$$
\Rightarrow \quad i f f^{-2}+\vec{a} \mid=0
$$

then 5 -a mutbe $1+0 \vec{e}$
So. if we wore im $2 \cdot 0^{\text {locas }} r^{2}$ wand be a pra li-k d te a
But in 3-0 r must be any vector im a plowe a tus

$$
\text { cacos }+|a|
$$

c) $(\vec{r}-\vec{a}) \cdot \vec{r}=0$

Now $\left(r^{-}-\vec{a}\right)$ mande 1

$$
x-8
$$

Giver α Ond

$$
\begin{aligned}
& \vec{r}-\vec{r}=\vec{a} \cdot \vec{r}=0 \\
& \text { Corsite } \\
& |r|^{2}=|r| a \mid e o s e \\
& |r|^{2}=a \operatorname{art} \theta \\
& \text { frl } \\
& |r|=|a| \cos \theta
\end{aligned}
$$

set anstore
set up cosidirat $5 y$ yem Sy Hat \vec{a} is abig anaxis-e.b. \vec{x}_{1} : Then θ is neamed fimx

Tutorial question 1c: ($\mathbf{r}-\mathbf{a}) \cdot \underline{\mathbf{r}}=0$

- By inspection, two solutions are $\underline{\mathbf{r}}=\underline{\mathbf{a}}$ and $\underline{\mathbf{r}}=0$.
- Set up a coordinate system with $\underline{\mathbf{x}}_{\underline{1}}$ along $\underline{\mathbf{a}}$
- If we consider the angle between r and a as θ, then both are at $\theta=0$.
- Choosing many values of θ and drawing, points look like sphere of radius $\mathrm{a} / 2$ about point $(\mathrm{a} / 2,0,0)$.
- But how to prove? (to go over in tutorial)

Using equations, with $\underline{\mathbf{a}}=\underline{\mathrm{a}}_{1}$

- $(\underline{\mathbf{r}}-\underline{\mathbf{a}}) \cdot \underline{\mathbf{r}}=(\underline{\mathbf{r}} \cdot \underline{\mathbf{r}})-(\underline{\mathbf{a}} \cdot \underline{\mathbf{r}})=0$
- $\underline{\mathbf{r}} \mathbf{r}=\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2}+\mathrm{x}_{3}{ }^{2}$
- $\underline{\mathbf{a} \cdot \underline{\mathbf{r}}=\mathrm{ax}_{1}}$
- $(\underline{\mathbf{r}} \cdot \underline{\mathbf{r}})-(\underline{\mathbf{a}} \cdot \underline{\mathbf{r}})=\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2}+\mathrm{x}_{3}{ }^{2}-\mathrm{ax}_{1}$
- But $\left(x_{1}-\frac{a}{2}\right)^{2}=x_{1}^{2}+\frac{a^{2}}{4}-x_{1} a$
- so $\quad x_{1}^{2}-a x_{1}=\left(x_{1}-\frac{a}{2}\right)^{2}-\frac{a^{2}}{4}$
- So $(\underline{\mathbf{r}} \cdot \underline{\mathbf{r}})-(\underline{\mathbf{a}} \cdot \underline{\mathbf{r}})=\left(\mathrm{x}_{1}-\mathrm{a} / 2\right)^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}{ }^{2}-\mathrm{a}^{2} / 4=0$
- Which is the equation for a sphere of radius $\mathrm{a} / 2$ at the point $(\mathrm{a} / 2,0,0)$ QED

Tuatarial I Q 1 end $亠$?
So if \vec{r} i' port 00°, it con sorout forctor to be 1
 sericircle.

2, a) Shawe timet the orcastice triangle foredby ters vectors sinl_{3} is $\ldots \frac{1}{2} a_{2} \times \frac{1}{3}$

Ansurs, sec nits: p.22-23 for parts
For pestà

$$
\begin{array}{r}
a \times b=(a b \sin \alpha) \hat{n} \\
\hat{n} \frac{1}{1+n+1} \\
5
\end{array}
$$

Pres of a trisesce: $\frac{1}{2}$ bole theisht.
let angle betwec a and b be o then tre bare $=b \mid$ and haigt $=b / \sin \alpha$

a
b) So tie area ó aprojecto triagk prjecte alsa a dircctio wis and θ t th areng to thetriage

Let the projectio directen- be in \hat{x}_{1} directism (might need to reurit $a+b i-n 0-1$ ardindent

$$
\underline{a}=a_{-} \hat{x}_{1}+a_{2} \hat{x}_{2}+a_{3} \hat{x}_{3}=a \hat{x}_{3}
$$

projection of $a=a_{p}$ aimo in

$$
\begin{aligned}
& \hat{a}_{\hat{a}} \vec{a}^{P}\left(\hat{\hat{a}_{1}} \cdot \vec{a}\right) \hat{x}_{1}=\left(\begin{array}{l}
a_{2} \\
a_{2} \\
a_{3}
\end{array}\right)-\left(\begin{array}{l}
a_{1} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
a_{2} \\
a_{3}
\end{array}\right) \\
& a_{p}=a_{2} \hat{x}_{2}+a_{3} \hat{x_{3}}
\end{aligned}
$$

Tutarial Ore q. 26 contimued
Projection for \Rightarrow alony $\hat{x}_{\text {r }}$ is simitarix

$$
\hat{b}_{p}=b_{2} \hat{x}_{2}+b_{3} \hat{x}_{3} \quad a_{p} x_{1}=\left\lvert\, \begin{aligned}
& \hat{x}_{1} \hat{x}_{2} \hat{x}_{3} \\
& 0 a_{2} a_{3} \\
& 0 b_{2}
\end{aligned}\right.
$$

$$
\begin{array}{ll}
\cos \theta=(\text { projection divetit } & +0 \\
\cos \theta=\hat{x_{1}} \cdot \hat{n}=(1,0,2) \cdot \frac{a \times b}{|a \times b|}=\frac{a_{2} b_{3}-b_{2} a j}{|a \times b|}
\end{array}
$$

$$
(1,1,1) \cup\left(0 x_{0}\right)
$$

$$
\begin{aligned}
&=x_{1} \operatorname{con} \cos a x y \\
&=\left(a b_{3}-b_{2} a_{3}\right)
\end{aligned}
$$

$$
\therefore a_{2} b_{3}-b_{2} a_{3}=\left|a_{2} x_{2}\right| \cos \theta
$$

So $A_{e}=\frac{1}{2}[a \times b \mid \cos \theta \quad Q E D$
$=r \rightarrow$ (arimat arijur tient

Tutarial Q Questa 3 and 4 .
3. If $a-6 d=$ are distinet vecter, construct a $B A$ Cartesia set of ores wheje e_{1} is nomal to ta pato ot 9 anda and x_{2} ant x_{3} are any tur vestx in tu plave o a ond b

To find a ugetor narnat to tsathe \& b whilwillbe in the plane $\frac{1}{\text { in }}$ tiat vectas, just we.

$$
x_{1}=\frac{\vec{a} \times \vec{b}}{\mid \vec{a} \times \vec{x}^{\prime}}=\text { writ vertx nacsa क a ab }
$$

les \vec{x}_{2} be $\vec{a} \mid \vec{a}$ urit vetor aldy a dirctiz
$t \tan \hat{x}_{g}=\frac{\hat{x}_{1} \times \hat{x}_{2}}{\left|x_{1} \times x_{2}\right|}=\frac{\vec{a} \times \vec{b} \mid \times \vec{a}}{|-\vec{a}|+|a|}$
4. Attempt to firt a non-trivial solutis to $A x=0$:
i) for $A=\left[\begin{array}{ccc}3 & 4 & 5 \\ 2 & -1 & 2 \\ -1 & -5 & -3\end{array}\right]$
onlythe trian selution exist if detplo
Hee

$$
\operatorname{dec} \theta:\left|\begin{array}{lll}
3 & 4 & 5 \\
2 & -1 & 2 \\
-1 & -5 & -3
\end{array}\right|=9-8-50-5+24+30
$$

det $A=0$ So nomtrivist salutisy exist.
Use Gausfiam Elimimation to fi-d tie simplestanine:
Equa iabeuti \(\left.\begin{array}{cccc}-1 \& -5 \& -3 \& 0

2 \& -1 \& 2 \& 0\end{array} \right\rvert\,\)| 4 |
| :--- |

tutorial 1 problem 4 (i) intinued
Add mintiris to othe rowe to clinirate varioblel:

$$
\begin{aligned}
& \begin{array}{rrrr}
-1 & -5 & -3 & 0 \\
0 & -11 & -4 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 345 \text { maltivy bivory } 3 \text { and ad }
\end{aligned}
$$

\pm

$$
\begin{array}{rrrr}
-1 & -5 & -3 & 0 \\
0 & -11 & -4 & 0 \\
0 & -11 & -4 & 0
\end{array}
$$

last twe equation are idental. So all ue time is that

$$
\begin{aligned}
-11 x_{2} & =4 x_{3} \\
x_{2} & =-\frac{4}{11} x_{3}
\end{aligned}
$$

So if $x_{3}=1$ then $x_{2}=-\frac{4}{11} x_{3}$ at $\quad x_{1}=-5 x_{2}-3 x_{3}$

$$
x_{1}=-\frac{20}{11} x_{3}-3 x_{3}=x_{3}\left(-\frac{53}{11}\right)
$$

(i) $A=\left[\begin{array}{ccc}3 & 4 & 0 \\ 2 & -1 & 0 \\ 0 & 1 & 1\end{array}\right]$

$$
\text { deth }=\left|\begin{array}{ccc}
3 & 4 & 0 \\
2 & -1 & 0 \\
0 & -1 & 1
\end{array}\right|=-3+8=-11 \neq 0 \text { so onlythetrionl }
$$

tuterial 1
Q5. \hat{u} and \vec{u}_{2} are mutvally 1 vectars ujed os constrat areve courtivate syiten \vec{y} is described in be oddyytem.

New system ... $\vec{y}^{\prime}=A^{\top} \vec{y} \quad$ where A^{\top} is made of coluran vecture.
Siven by the new coordinate syrton vecter. u_{1}, u_{2}, u_{3} expersion: the do syith.

$$
\vec{u}_{1}=\left(\begin{array}{l}
u_{13} \\
u_{12} \\
u_{13}
\end{array}\right) \quad \vec{u}_{2}=\left(\begin{array}{l}
u_{21} \\
u_{12} \\
u_{23}
\end{array}\right) \quad \vec{u}_{3}=\left(\begin{array}{l}
u_{31} \\
u_{32} \\
v_{33}
\end{array}\right) \quad \vec{u}_{3}=\frac{\vec{u}_{1} \times \vec{u}_{2}}{1 u_{2} \times u_{2}}
$$

So. $A^{\top}=\left(\begin{array}{lll}u_{11} & u_{21} & u_{31} \\ u_{12} & u_{22} & u_{32} \\ u_{13} & u_{23} & u_{33}\end{array}\right)^{T}=\left(\begin{array}{lll}u_{11} & u_{12} & u_{3} \\ u_{321} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33}\end{array}\right)$ $\hat{A T}$

$$
\begin{aligned}
& y^{\prime}=\left(\begin{array}{l}
\hat{a}_{1} \cdot \vec{y} \\
\hat{u}_{2} \cdot \vec{y} \\
u_{3} \cdot \vec{y}
\end{array}\right)=u_{1} y_{1}+u_{12} y_{2}+u_{13} y_{3}, u_{2} y_{1}+u_{22} y_{2}+u_{23} y_{3} \\
& u_{31} y_{1}+u_{32} y_{2}+u_{33} \partial_{3} \\
& y^{\prime}=A^{\top} y \\
& =\left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{12} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\left|\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right|\right.
\end{aligned}
$$

usuaty frim Antarit of bre.

6. (onstruet trarsformation natices A forsinazthe cominod

$$
A \operatorname{trac}=A^{\top} R^{\prime}(s d)
$$

a) Rotation throgh 90° abmb $\hat{x}_{2} a x i$:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
\text { Rotate using } \\
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
& A^{\top}=\left(\begin{array}{lll}
0 & 0 & -1 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

muitich $A^{\top} b y \hat{x}_{2} \Rightarrow x_{2} \quad A^{\top} b y x_{1} \rightarrow$

$$
\begin{aligned}
& x_{3}^{2}=A^{+} \hat{a}_{3}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\binom{0}{1}-\left(\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right.
\end{aligned}
$$ calle \hat{x}

Tutsial Unc
Gb) Rotation throy, 45- about f_{2} folloed by rotatio thergh 45° ioguat nol \hat{x}
\qquad

Nextin $A^{\prime}=1$

$$
A \text { tatai= } A^{\prime} T \quad A^{\top}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\
0 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Fi, tine } A \\
\sin 4 s^{\circ}= \\
=\frac{\sqrt{2}}{2}=\sqrt{2} \\
\frac{1}{2}
\end{array}\left|\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right| \\
& \Rightarrow A^{\top}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0
\end{array}\right)
\end{aligned}
$$

Exercixs

1) Show that $A \neq=\lambda I \vec{x}$ has ana tring solatim iff

$$
|A=\lambda|=0
$$

Aisan nxer (squarc) mabrix.
 S土iti $\quad A \vec{x}=0$

Has a non-trivial salution only f det $A=0$
$\delta_{0} \quad A x-x=(A-x) \vec{x}=0$ if $\operatorname{det}^{4}(n x y)=1$
Sopper det $A \neq 0$ the

a) A, invalide
a) $A x=1$ hat ont te trivis solus
c) $A x=\beta$ is coasistat fr any $n \times 1$ natrix \square
2) E. git valay dan coccopaing ligevestory for the now.

$$
A=\left[\begin{array}{ccc}
2 & 0 & 6 \\
0 & 1 & 0 \\
0 & 0 & -4
\end{array}\right] \quad(A-\lambda I) *=\left[\begin{array}{ccc}
1-\lambda & 0 & 6 \\
-1 & 1-\lambda & 0 \\
0 & 0 & -4-\lambda
\end{array}\right]
$$

ded A = eash ciematof Irow multies by atjont

$$
\begin{aligned}
& S(A-\lambda I \mid=0\left[\left.\begin{array}{cc}
0 & 6 \\
0 & -4-\lambda
\end{array}|+(1-\lambda)| \begin{array}{cc}
2-\lambda & 6 \\
6 & -4-\lambda
\end{array}|+0| \begin{array}{c}
2 \rightarrow 0 \\
6
\end{array} \right\rvert\,\right. \\
&=(1-\lambda)[(2-\lambda)(-4-\lambda)-36] \\
&=(1-\lambda)\left[-\gamma-2 \lambda+4 \lambda+\lambda^{2}-36\right] \\
&=(1-\lambda)\left[\lambda^{2}+2 \lambda-44\right]=0 \\
&\text { eiganvalug ore } \left.\lambda=1 \text { or } \lambda=\frac{-2 \sqrt{4+464}}{2}\right]=-1 \pm \sqrt{45}
\end{aligned}
$$

if $\lambda=1$, sigen vatr ; fons by

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 6 \\
0 & 0 & 0 \\
6 & 0 & -5
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\begin{array}{l}
0 \\
0
\end{array}} \\
\Rightarrow \quad e_{1}+6 e_{3}=0 \\
6 e_{1}-5 e_{3}=0 \\
15 \\
0-36 e_{3}-5 e_{3}=0 \\
-41 e_{3}=0 \\
e_{3}=0 \\
e_{1}=0
\end{gathered}
$$

$$
\text { eisarectax }=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

$$
f, \quad \lambda=-1+\sqrt{45}
$$

$$
A-(-1+\sqrt{4} 5) \perp\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)=5
$$

$$
e_{2}=0
$$

$$
\rightarrow\left(\begin{array}{c}
a_{11} \\
0 \\
a_{12}
\end{array}\right]
$$

for $\lambda=-1-\sqrt{45}$.

$$
\begin{aligned}
& \begin{array}{ccc|c}
2+1-\sqrt{45} & 0 & 6 & 0 \\
0 & 1-1+\sqrt{4}) & 0 & e_{1} \\
6 & 0 & -4-1-\sqrt{4}
\end{array} \\
& (3-\sqrt{4}) e_{1}+b e_{3}=0 \\
& 6 e_{1}-5+\sqrt{1+5} e_{3}=0
\end{aligned}
$$

