MATH 322/323 Module 1 Cartesian Tensors Mar 5 – May 5 2014 Assignment 3 and Tutorial 4

Timetable-whole (termmodified
-------------------	--------------

Week		0	0			0	7
Start	Mar 3	2 Mar 10	Mar 17 Assignment 1 due	4 Mar 24	5 March 31	Apr 7 Assignment 3 due	April 14
Mon 14:10- 15:00	Intro lecture	L3	L5	L7	L9	Spare	L11
Tues 14:10- 15:00	L1	L4	L6	L8	L10	spare	Т6
	Assignment 1 set	Assignment 2 set			Assignment 4 set		
Weds				Spare Assignment 2 due		Spare	Spare
14:10- 15:00	L2	Spare	Spare		Spare		
Tutorial Fri 14:10-	Т1	Т2	T3 Assignment 3 set	Τ4	Т5	Spare	Assignment 4 due Thursday 17 April
15:00							

Assignments and tutorial exercises

All assignments due 5pm on day of week shown.

Essay due 5pm Monday 5 May

Assessment Summary

Essay 20%	%	due 5 May.
Assignment 4 20)%	Hooke's Law, tensor calculus
Assignment 3 20)%	Strain gauges – principal axes, simple shear
Assignment 2 20)%	Prove Kronecker is a tensor; lead rubber bearing, stress force across a plane
Assignment 1 20	9%	Index notation; Rotational transformations; Euler vector

MATH/GPHS 322/323 Tensors Module

Assignment 3 due 7 April.

(1) a, b, c are three strain gauges 60° apart all in the same plane (c.f. Q1 in the tutorial exercises, where a, b, c are 45° apart).

If ε_a , ε_b , ε_c , are the strains measured in the directions a, b, c respectively, find the 2-D strain tensor, the Principal Strains and the directions of the Principal Axes.

Hint. Solve the quadratic equation for the eigenvalues using tensor components of strain before you substitute for ε_a , ε_b , ε_c . Do not spend a lot of time trying to simplify the resulting expression.

(2) A continuum deforms as follows: the displacement Δu_i of any point P relative to the origin is of the form:

 $\Delta u_i = (u_1, 0, 0)^T,$

where $u_1 = k a_2$, where k is a constant $\ll 1$, and a_1 , a_2 , a_3 are Lagrangian coordinates (this deformation is called *Simple Shear*).

Find the Strain and Rotation tensors E and W, the equivalent rotation vector $\underline{\omega}$, and the Principal Strains and Principal Axes of E. What is the dilatation?

(3) Find the Principal Axes, Principal Strains and dilatation for a continuum where the strain tensor is:

 $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -2 \end{bmatrix} \times 10^{-4}$

Tutorial Four 28 March (to help with Assignment 3)

(1) We have three strain gauges (ie instruments which measure the change in a length of wire, or the distance between two points using a laser, etc) deployed 45° apart in a plane, as shown.

The material the strain gauges are mounted on suffers a strain E and each registers a (linear) strain = ε_1 , ε_2 , ε_3 respectively. That is, there is a change of :

- ε_1 per unit length in the direction of s_1 , which is a_1 ;
- ϵ_2 per unit length in the direction of s_2 , which is at 45 ° to a_1 ;
- ϵ_3 per unit length in the direction of s_3 , which is a_3 ;

Without loss of generality, we can take each strain gauge to have unit length. For each of s_1 , s_2 , s_3 take their end-points to be on a unit circle.

Calculate the strain tensor E using strain gauge measurements.

There is no deformation, or change, in the a_3 direction, so we have *plane strain*. The rules that determine u_1 and u_2 are that $u_1 \propto a_2$ and $u_2 \propto a_1$ with *different* constants of proportionality k; so:

 $u_1 = k_1 a_2$ and $u_2 = k_2 a_1$

Find the Strain and Rotation tensors, the equivalent rotation vector, the Principal Strains, the Principal Axes and the dilatation.

NB example with $k_1 = k_2$ is in lectures.