MATH 322/323 Module 1 Cartesian Tensors Mar 5 - May 52014 Assignment 3 and Tutorial 4

Timetable-whole term--modified

Week	1	2	3	4	5	6	7
Start	Mar 3	Mar 10	Mar 17 Assignment 1 due	Mar 24	March 31	Apr 7 Assignment 3 due	April 14
$\begin{aligned} & \text { Mon } \\ & \text { 14:10- } \\ & 15: 00 \\ & \hline \end{aligned}$	Intro lecture	L3	L5	L7	L9	Spare	L11
$\begin{aligned} & \text { Tues } \\ & \text { 14:10- } \\ & \text { 15:00 } \end{aligned}$	L1 Assignment 1 set	L4 Assignment 2 set	L6	L8	L10 Assignment 4 set	spare	T6
Weds 14:1015:00	L2	Spare	Spare	Spare Assignment 2 due	Spare	Spare	Spare
Tutorial Fri 14:10- 15:00	T1	T2	T3 Assignment 3 set	T4	T5	Spare	Assignment 4 due Thursday 17 April

Assignments and tutorial exercises

All assignments due 5 pm on day of week shown.

Essay due 5pm Monday 5 May

Assessment Summary

Assignment 1 20\%
Assignment 2 20\%

Assignment 3 20\%
Assignment 4 20\%
Essay 20\%

Index notation; Rotational transformations; Euler vector
Prove Kronecker is a tensor; lead rubber bearing, stress force across a plane

Strain gauges - principal axes, simple shear
Hooke's Law, tensor calculus
due 5 May.

MATH/GPHS 322/323 Tensors Module

Assignment 3 due 7 April.

(1) $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three strain gauges 60° apart all in the same plane (c.f. Q1 in the tutorial exercises, where a, b, c are 45° apart).

If $\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}, \varepsilon_{\mathrm{c}}$, are the strains measured in the directions $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively, find the 2-D strain tensor, the Principal Strains and the directions of the Principal Axes.

Hint. Solve the quadratic equation for the eigenvalues using tensor components of strain before you substitute for $\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}, \varepsilon_{\mathrm{c}}$. Do not spend a lot of time trying to simplify the resulting expression.
(2) A continuum deforms as follows: the displacement Δu_{i} of any point P relative to the origin is of the form:
$\Delta \mathrm{u}_{\mathrm{i}}=\left(\mathrm{u}_{1}, 0,0\right)^{\mathrm{T}}$,
where $\mathrm{u}_{1}=\mathrm{k} \mathrm{a}_{2}$, where k is a constant $\ll 1$, and $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ are Lagrangian coordinates (this deformation is called Simple Shear).

Find the Strain and Rotation tensors E and W , the equivalent rotation vector $\underline{\omega}$, and the Principal Strains and Principal Axes of E. What is the dilatation?
(3) Find the Principal Axes, Principal Strains and dilatation for a continuum where the strain tensor is:

Tutorial Four 28 March (to help with Assignment 3)

(1) We have three strain gauges (ie instruments which measure the change in a length of wire, or the distance between two points using a laser, etc) deployed 45° apart in a plane, as shown.

The material the strain gauges are mounted on suffers a strain E and each registers a (linear) strain $=\varepsilon_{1}, \varepsilon_{2}$, ε_{3} respectively. That is, there is a change of :
ε_{1} per unit length in the direction of s_{1}, which is a_{1};
ε_{2} per unit length in the direction of s_{2}, which is at 45° to a_{1};
ε_{3} per unit length in the direction of s_{3}, which is a_{3};
Without loss of generality, we can take each strain gauge to have unit length. For each of $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$ take their end-points to be on a unit circle.

Calculate the strain tensor E using strain gauge measurements.
(2) Consider a unit square:

There is no deformation, or change, in the a_{3} direction, so we have plane strain.
The rules that determine u_{1} and u_{2} are that $u_{1} \propto a_{2}$ and $u_{2} \propto a_{1}$ with different constants of proportionality k; so:

$$
\mathrm{u}_{1}=\mathrm{k}_{1} \mathrm{a}_{2} \text { and } \mathrm{u}_{2}=\mathrm{k}_{2} \mathrm{a}_{1}
$$

Find the Strain and Rotation tensors, the equivalent rotation vector, the Principal Strains, the Principal Axes and the dilatation.

NB example with $\mathrm{k}_{1}=\mathrm{k}_{2}$ is in lectures.

