MATH 322/323 Module 1 Cartesian Tensors Mar 5 – May 5 2014 Assignment 4 and Tutorial 5 Revised Schedule:

Timetable								
Week	1	2	3	4	5	6	7	
Start	Mar 3	Mar 10	Mar 17 Assignment 1 due	Mar 24 Assignment 2 due	March 31	Apr 7 Assignment 3 due	April 14	
Mon 14:10- 15:00	Intro lecture	L3	L5	L7	L9	Spare	Τ5	
Tues 14:10- 15:00	L1 Assignment 1 set	L4 Assignment 2 set	L6 Assignment 3 set	L8 Assignment 4 set	L10	spare	Т6	
Weds 14:10- 15:00	L2	Spare	Spare	Spare	L11	Spare	Spare	
Tutorial Fri 14:10- 15:00	Т1	Т2	Т3	Т4	L12	Spare	Assignment 4 due Thursday 17 April	

Assignments and tutorial exercises

All assignments due 5pm on day of week shown.

Essay due 5pm Monday 5 May

Assessment Summary

Essay 20)%	due 5 May.
Assignment 4 2	20%	Hooke's Law, tensor calculus
Assignment 3 2	20%	Strain gauges – principal axes, simple shear
Assignment 2 2		Prove Kronecker is a tensor; lead rubber bearing, stress force across a plane
Assignment 1 2	0%	Index notation; Rotational transformations; Euler vector

MATH/GPHS 322/ 323

Assignment 4 due Thursday 17 April.

(1) Assuming the form of Hooke's Law for an isotropic material:

 $S_{ij} = 2 \ \mu \ E_{ij} + \lambda \ E_{kk} \ \delta_{ij}$

(i) Show that the Bulk Modulus K defined to be 1/3 S $_{kk}$ / E $_{kk}$ is given by K = λ + 2/3 μ

Young's modulus Y is measured as the ratio of a uniaxial tension S $_{11}$ to the strain E $_{11}$ it produces in a body ('uniaxial' means that S $_{22}$ and S $_{33} = 0$).

(ii) Write down the equations for S $_{11}$, S $_{22}$ and S $_{33}$ from Hooke's Law.

(iii) Under uniaxial tension, the body will contract in the x $_2$ and x $_3$ directions i.e. E $_{22}$, E $_{33} \neq 0$.

Poisson's Ratio v is defined by: $v = -E_{22} / E_{11}$

Assuming that the body has axial symmetry, show that

$$v = \lambda / 2(\lambda + \mu)$$

(iv) Show that: $Y = \mu (3 \lambda + 2 \mu)/(\lambda + \mu)$

NB by making appropriate measurements of K, Y and v, we can infer the Lame Constants for a material.

(2) If E_{ij} and S_{ij} are the strain and stress tensors in a continuum, the *strain potential energy* W per unit volume of the material is defined to be the work done in straining a unit volume of material to strain E_{ij} :

 $W = \int_{0}^{E \text{ i j}} \mathbf{S}_{kl} dE_{kl} \text{ (summation convention).}$ (i) Show that for an elastic material

$$W = \lambda/2 E_{kk}^2 + \mu E_{kl} E_{kl}$$

3. (i) Show that $u_1 = A \sin(\omega t \pm v x_1); u_2 = 0; u_3 = 0$

where t is time and A, ω and v are constants, is a solution of Navier's equation without body forces viz.

 $\rho \partial^2 u_i / \partial t^2 = \mu \partial^2 u_i / \partial x_i \partial x_i + (\mu + \lambda) \partial^2 u_k / \partial x_k \partial x_i$

provided $c = \omega / v$ satisfies

 $c^2 = (K + 4/3 \mu)/\rho$ where K is the Bulk Modulus.

(ii) Briefly describe the way in which the continuum is deforming in this motion -

- In space (fix time)
- In time (fix position x 1).

(iii) If ($\omega t \pm vx_1$) is dimensionless, what are the dimensions (units) for ω , v and c? What is the physical meaning of c?

Tutorial Five 14 April (and 15 April if required)

1. A specimen of isotropic material is subjected to compression S $_{11}$, but is constrained so that it cannot expand in the x $_2$ and x $_3$ directions. Show that the apparent modulus of elasticity is:

$$Y(1 - v)/(1 + v)(1 - 2v)$$

Hence show that we can re-write Hooke's law for isotropic elastic solids as:

E _{ij} =
$$(1 + \nu)/Y$$
 S _{ij} - ν/Y S _{kk} δ _{ij}

2. If E kl is defined by E $_{12}$ = E $_{21}$ = - 2, E kl = 0 otherwise, evaluate

$$I = \int_{0}^{E \, kl} U_{ij} \, dU_{ij}$$

3. Show that:

$$u_2 = A \sin(\omega t \pm v x_1); u_1 = 0; u_3 = 0$$

is a solution of Navier's equation without body forces -

$$\rho \partial^2 u_i / \partial t^2 = \mu \partial^2 u_i / \partial x_j \partial x_j + (\mu + \lambda) \partial^2 u_k / \partial x_k \partial x_i$$

provided $c = \omega / v$ satisfies

$$c^2 = \mu/\rho$$