MATH 322/323 Module 1 Cartesian Tensors Mar 5 - May 52014
Assignment 4 and Tutorial 5 Revised Schedule:
Timetable

Week	1	2	3	4	5	6	7
Start	Mar 3	Mar 10	Mar 17 Assignment 1 due	Mar 24 Assignment 2 due	March 31	Apr 7 Assignment 3 due	April 14
$\begin{array}{\|l\|} \hline \text { Mon } \\ 14: 10- \\ 15: 00 \\ \hline \end{array}$	Intro lecture	L3	L5	L7	L9	Spare	T5
$\begin{array}{\|l\|} \hline \text { Tues } \\ \text { 14:10- } \\ 15: 00 \end{array}$	L1 Assignment 1 set	L4 Assignment 2 set	L6 Assignment 3 set	L8 Assignment 4 set	L10	spare	T6
$\begin{aligned} & \hline \text { Weds } \\ & 14: 10- \\ & \text { 15:00 } \\ & \hline \end{aligned}$	L2	Spare	Spare	Spare	L11	Spare	Spare
$\begin{array}{\|l} \hline \text { Tutorial } \\ \\ \text { Fri } \\ \text { 14:10- } \\ \text { 15:00 } \\ \hline \end{array}$	T1	T2	T3	T4	L12	Spare	Assignment 4 due Thursday 17 April

Assignments and tutorial exercises

All assignments due 5 pm on day of week shown.

Essay due 5pm Monday 5 May

Assessment Summary

Assignment 1 20\%
Assignment 2 20\%

Assignment 3 20\%
Assignment 4 20\%
Essay 20\%

Index notation; Rotational transformations; Euler vector
Prove Kronecker is a tensor; lead rubber bearing, stress force across a plane

Strain gauges - principal axes, simple shear
Hooke's Law, tensor calculus
due 5 May.

MATH/GPHS 322/ 323

Assignment 4 due Thursday 17 April.

(1) Assuming the form of Hooke's Law for an isotropic material:

$$
\mathrm{S}_{\mathrm{ij}}=2 \mu \mathrm{E}_{\mathrm{ij}}+\lambda \mathrm{E}_{\mathrm{kk}} \delta_{\mathrm{ij}}
$$

(i) Show that the Bulk Modulus K defined to be $1 / 3 \mathrm{~S}_{\mathrm{kk}} / \mathrm{E}_{\mathrm{kk}}$ is given by $\mathrm{K}=\lambda+2 / 3 \mu$

Young's modulus Y is measured as the ratio of a uniaxial tension S_{11} to the strain E_{11} it produces in a body ('uniaxial' means that S_{22} and $\mathrm{S}_{33}=0$).
(ii) Write down the equations for $\mathrm{S}_{11}, \mathrm{~S}_{22}$ and S_{33} from Hooke's Law.
(iii) Under uniaxial tension, the body will contract in the x_{2} and x_{3} directions i.e. $\mathrm{E}_{22}, \mathrm{E}_{33} \neq 0$.

Poisson's Ratio v is defined by: $v=-\mathrm{E}_{22} / \mathrm{E}_{11}$
Assuming that the body has axial symmetry, show that

$$
v=\lambda / 2(\lambda+\mu)
$$

(iv) Show that:

$$
\mathrm{Y}=\mu(3 \lambda+2 \mu) /(\lambda+\mu)
$$

NB by making appropriate measurements of K, Y and v, we can infer the Lame Constants for a material.
(2) If E_{ij} and S_{ij} are the strain and stress tensors in a continuum, the strain potential energy W per unit volume of the material is defined to be the work done in straining a unit volume of material to strain E_{ij} :
$\mathrm{W}=\int_{0}^{\mathrm{Eij}} \mathrm{S}_{\mathrm{kl}} \mathrm{dE}_{\mathrm{kl}}$ (summation convention).
(i) Show that for an elastic material
$\mathrm{W}=\lambda / 2 \mathrm{E}_{\mathrm{kk}}^{2}+\mu \mathrm{E}_{\mathrm{k} 1} \mathrm{E}_{\mathrm{k} 1}$
3. (i) Show that $\mathrm{u}_{1}=A \sin \left(\omega t \pm v \mathrm{x}_{1}\right) ; \mathrm{u}_{2}=0 ; \mathrm{u}_{3}=0$
where t is time and A, ω and v are constants, is a solution of Navier's equation without body forces viz.

$$
\rho \partial^{2} \mathbf{u}_{\mathrm{i}} / \partial \mathrm{t}^{2}=\mu \partial^{2} \mathrm{u}_{\mathrm{i}} / \partial \mathrm{x}_{\mathrm{j}} \partial \mathrm{x}_{\mathrm{j}}+(\mu+\lambda) \partial^{2} \mathrm{u}_{\mathrm{k}} / \partial \mathrm{x}_{\mathrm{k}} \partial \mathrm{x}_{\mathrm{i}}
$$

provided $\mathrm{c}=\omega / \mathrm{v}$ satisfies

$$
c^{2}=(K+4 / 3 \mu) / \rho \quad \text { where } K \text { is the Bulk Modulus. }
$$

(ii) Briefly describe the way in which the continuum is deforming in this motion -

- In space (fix time)
- In time (fix position x_{1}).
(iii) If ($\omega \mathrm{t} \pm v \mathrm{x}_{1}$) is dimensionless, what are the dimensions (units) for ω, v and c ? What is the physical meaning of c ?

Tutorial Five 14 April (and 15 April if required)

1. A specimen of isotropic material is subjected to compression S_{11}, but is constrained so that it cannot expand in the x_{2} and x_{3} directions. Show that the apparent modulus of elasticity is:
$Y(1-v) /(1+v)(1-2 v)$
Hence show that we can re-write Hooke's law for isotropic elastic solids as:

$$
\mathrm{E}_{\mathrm{ij}}=(1+v) / \mathrm{Y} \mathrm{~S}_{\mathrm{ij}}-v / \mathrm{Y} \mathrm{~S}_{\mathrm{kk}} \delta_{\mathrm{ij}}
$$

2. If E_{kl} is defined by $\mathrm{E}_{12}=\mathrm{E}_{21}=-2, \mathrm{E}_{\mathrm{kl}}=0$ otherwise, evaluate

$$
I=\int_{0}^{\mathrm{Ekl}} \mathrm{U}_{\mathrm{ij}} \mathrm{~d} \mathrm{U}_{\mathrm{ij}}
$$

3. Show that:
$\mathrm{u}_{2}=A \sin \left(\omega t \pm v \mathrm{x}_{1}\right) ; \mathrm{u}_{1} \quad=0 ; \mathrm{u}_{3} \quad=0$
is a solution of Navier's equation without body forces -

$$
\rho \partial^{2} \mathrm{u}_{\mathrm{i}} / \partial \mathrm{t}^{2}=\mu \partial^{2} \mathrm{u}_{\mathrm{i}} / \partial \mathrm{x}_{\mathrm{j}} \partial \mathrm{x}_{\mathrm{j}}+(\mu+\lambda) \partial^{2} \mathrm{u}_{\mathrm{k}} / \partial \mathrm{x}_{\mathrm{k}} \partial \mathrm{x}_{\mathrm{i}}
$$

provided $c=\omega / v$ satisfies

$$
c^{2}=\mu / \rho
$$

