
Notes for Swing High Module

Mark McGuinness

MATH321/2/3

These notes provide supporting information that will likely be useful for
students participating in the Swing High module.

1 The Simple Pendulum

This is an application of perturbation theory, based on Lin & Segel (LS)
pp.48–55 (Mathematics Applied to Deterministic Problems in the Natural
Sciences, by CC Lin and LA Segel, Classics in Applied Mathematics, SIAM,
1988).

The pendulum provides us with a simple system that is easy to visualise and
that we have some physical feeling for, but which also is nonlinear and useful
as an example of the use of perturbation methods for studying solutions.

The usual standard treatment of a pendulum is to reduce it to simple har-
monic motion, by linearising. We will see how perturbation theory extends
and improves upon this approximation.

Consider a rigid massless rod as illustrated in fig. (1), with a point mass M at
the lower end, free to rotate in one dimension about a pivot point. Already
we have idealised the actual pendulum, to simplify the problem. Intuition
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Figure 1: The simple pendulum

and personal experience (or professional advice) usually play an important
part of these first steps in modelling.

To obtain a differential equation for the movement of this pendulum, we
use Newton’s law of motion, force equals mass times acceleration, F = Mg,
where force and acceleration are vector quantities (in bold font), and the
magnitude of g is taken to be 9.8 ms−2.

The force on the pendulum may be resolved into a component in the direction
of the rod, which is balanced by tension in the rod and by the pivot point,
and a component normal to the rod, which causes the mass to accelerate (see
fig. (2)).

ASIDE: Velocity and Acceleration in polar coordinates

Because we know the rod moves according to the component in the θ di-
rection, it is best to use polar coordinates here. Here is a brief review of
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Figure 2: Forces on the simple pendulum

the general case with varying r and θ. Recall that if the cartesian unit vec-
tors are i in the x-direction and j in the y-direction, then polar unit vectors
are ir = i cos θ + j sin θ in the radial direction and iθ = −i sin θ + j cos θ in
the (positive) θ direction (that is, tangent to a circle centered on origin and
through the position of a particle (here, the mass M)).

Then the position vector with polar coordinates (r, θ) may be written in
terms of the polar unit vectors as

r = rir .

Note that the angle information is contained in ir. In particular, note that
taking derivatives of the definitions gives

dir
dt

= θ̇iθ

where θ̇ means dθ/dt, and
diθ
dt

= −θ̇ir .
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Figure 3: Polar coordinates and unit vectors

Then velocity is

v ≡ dr

dt
=
d(rir)

dt

=
dr

dt
ir + r

dir
dt

= ṙir + rθ̇iθ

and acceleration is

a ≡ dv

dt
= (r̈ − rθ̇2)ir + (rθ̈ + 2ṙθ̇)iθ .

Back to the pendulum:

Then for our pendulum, with a fixed length r = L, the components of force
and mass times acceleration in the direction iθ balance to give

−Mg sin θ = MLθ̈ .
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Hence
θ̈ +

g

L
sin θ = 0 . (1)

We are interested in the solution with initial conditions

θ(0) = a θ̇(0) = Ω . (2)

This completes what is often the most difficult part of mathematical mod-
elling, taking a problem and reducing it to an equation to be solved, usually
a differential equation. We now consider solving the mathematical prob-
lem, numerically and/or analytically. Analytical solutions will often involve
asymptotic methods to obtain approximate analytic results.

1.1 Approximate analytic solutions

The simplest approach is to assume θ is small enough that sin θ ∼ θ, and
obtain the linearised equation

θ̈ +
g

L
θ = 0 , θ(0) = a , θ̇(0) = Ω . (3)

Solutions may be found by substituting an exponential form, to obtain the
general solution

θ0 = Aeiω0t +Be−iω0t

where ω0 =
√
g/L. The initial conditions give

θ0(0) = A+B = a ,

θ̇0(0) = iω0A− iω0B = Ω ,

which can be solved for A and B, or using

eix = cosx+ i sinx

we can write the solution to the initial value problem in the form

θ0 = a cos(ω0t) +
Ω

ω0

sin(ω0t) .
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This solution is periodic, with period

P0 =
2π

ω0

= 2π

√
L

g
.

However, the exact period of the solution to eqn (1) is not P0, and for exam-
ple, if one wishes to know the exact time of maximum swing, the prediction
that this time is nP0 , n = 1, 2, . . . becomes very inaccurate for large times,
or large n.

1.2 Asymptotic expansions

If we rewrite eqn (1) in the form

θ̈ + ω2
0θ = ω2

0(θ − sin θ) = ω2
0(θ3/3!− θ5/5! + . . .) , (4)

we see that the solution θ0 to the linearised problem has been obtained by
setting the right-hand side of eqn (4) to zero. This is justified by noting that
the size of terms on the left-hand side is of the order of θ, while the size of
the terms on the right-hand side is of the order of θ3, which is much smaller
than θ as θ → 0.

Note that the terminology is of the order of means roughly
is about the same size as, but may be given a more formal meaning, as in
Appendix 3.1 of LS.

Then an improved solution θ1 might be obtained in an iterative process, by
solving

θ̈1 + ω2
0θ1 = ω2

0θ
3
0/3! , θ1(0) = a , θ̇1(0) = Ω , (5)

and in principle this process might be repeated again and again, to further
improve the (analytic) approximation to the solution θ. This iterative process
is called the method of successive approximations. It works because at each
step, the problem to be solved is a linear one.

Before solving, it is convenient to rescale. Let

Θ(t) =
θ(t)

θm
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where

θm ≡
max
t
|θ(t)| .

Now |Θ(t)| ≤ 1, which is useful for estimating sizes. Then eqn (4) becomes

Θ̈+ω2
0Θ = ω2

0

[
Θ− 1

θm
sin(θmΘ)

]
≈ ω2

0θ
2
m

Θ3

3!
, Θ(0) = a/θm , Θ̇(0) = Ω/θm .

(6)
The right-hand side of eqn (6) is of the order of θ2m, and we will assume that
this is much less than one. This is clearer if you rescale time by ω0.

Now we consider the case that Ω = 0, that is, releasing the pendulum from
an initial angle θ(0) = a, we see that θm = a. Hence, to make θm small, we
will require that a� 1. Then eqn (6) becomes

Θ̈+ω2
0Θ = ω2

0

[
Θ− 1

a
sin(aΘ)

]
= ω2

0

∞∑
n=1

(−1)n+1a2n
Θ2n+1

(2n+ 1)!
, Θ(0) = 1 , Θ̇(0) = 0 .

(7)
We expand Θ as a power series in the small parameter a:

Θ = Θ(t, a) = Θ(0)(t) + aΘ(1)(t) + a2Θ(2)(t) + . . .

and substitute this into eqn (7) and equate coefficients of powers of a. Note
that the initial conditions become

Θ(0)(0) = 1 , Θ̇(0)(0) = 0 ,

and
Θ(n)(0) = 0 , Θ̇(n)(0) = 0 , n ≥ 1 .

Then equating coefficients gives

a0:

Θ̈(0) + ω2
0Θ(0) = 0

which is the linearised problem. The solution is

Θ(0) = cos(ω0t) .
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a1:

Θ̈(1) + ω2
0Θ(1) = 0

which (considering the initial conditions) has solution Θ(1) = 0.

a2:

Θ̈(2) + ω2
0Θ(2) =

ω2
0

6
[Θ(0)]3 =

ω2
0

6
cos3(ω0t) =

ω2
0

24
[cos(3ω0t) + 3 cos(ω0t)] .

The solution to this nonhomogeneous differential equation is

Θ(2) =
1

192
[cos(ω0t)− cos(3ω0t)] +

ω0t

16
sin(ω0t) .

So far we have the following approximation to the solution:

Θ = cos(ω0t) + a2
[

1

192
[cos(ω0t)− cos(3ω0t)] +

ω0t

16
sin(ω0t)

]
+ . . .

The second term is a correction to the amplitude, the third term is a higher
harmonic, and the fourth term (which has the term t in it) grows without
bound as t → ∞. This is a problem, as it contradicts the assumption we
have made in deriving this solution, that corrections involving the higher
powers of a are small. Put another way, we constructed Θ to be no bigger
than one in magnitude, but this third term gives an unbounded Θ, and the
approximation fails for large times.

We are actually seeking an asymptotic expansion, with each term much less
than the previous one (as a→ 0). The power series in a guarantees this, but
for any small fixed a, the growth in time eventually destroys the usefulness
of the expansion. This problem term is called a secular term. It is a sign
that our approach needs to be improved.

The source of the problem lies in the fact that the period of the nonlinear
pendulum is not exactly 2π/ω0. In fact, you will show in your assignment
that the exact period is

P =
4

ω0

∫ π/2

0

dψ√
1− k2 sin2 ψ
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where
k2 = sin2(a/2) .

The period P approaches P0 = 2π/ω0 as a→ 0, but is not equal to P0.

The expansion we have used is inherently periodic with period P0. Poincaré’s
method seeks to improve upon this restriction.

Poincaré’s Method

This is also called the Poincaré — Lindstedt method, and is also to be found
in Logan (p. 42)1. It is also related to the method of multiple scales (LS
11.2). We allow the period to change (a little) by also expanding time as a
power series in a. Let

Θ = Θ(0)(τ) + aΘ(1)(τ) + a2Θ(2)(τ) + . . .

and
t = τ + at(1)(τ) + a2t(2)(τ) + . . .

and we choose τ so that secular terms are removed. To simplify calculations,
in fact we take

t = τ(1 + a2h2 + . . .)

where h2 is some constant to be determined. Then substituting and equating
powers of a gives

Θ(0) = cos(ω0τ)

as before, and

d2Θ(2)

dτ 2
+ ω2

0Θ(2) = ω2
0(1/8− 2h2) cos(ω0τ) +

ω2
0

24
cos(3ω0τ) .

The first term on the right-hand side gives rise to the secular term, and can
be eliminated by choosing h2 = 1/16. Then note that

Θ(0) = cos(ω0τ) ≈ cos[ω0t(1− a2/16)] ,

1Applied Mathematics - a contemporary approach, JD Logan, Wiley 1987. KAIST
library QA37.2.L64 1987
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and we have found an approximate correction to the period,

P ∼ 2π

ω0

(
1 +

a2

16

)
.

2 Phase Plane Analysis

A useful way to view and understand solution behaviour is the geometric
approach of using a phase space. We illustrate with a phase plane analysis
of the pendulum (LS 11.3).

Consider the differential equation

θ̈(t) + ω2
0 sin θ(t) = 0 , θ(0) = a , θ̇(0) = Ω (8)

and rescale time as t∗ = tω0. Then in terms of the new time t∗,

d2θ

d(t∗)2
+ sin θ(t∗) = 0 ,

and we will drop the *’s for convenience from now on. So we consider for the
nonlinear pendulum,

θ̈ + sin θ = 0 , θ(0) = a , θ̇(0) = b ≡ Ω/ω0 . (9)

To study solutions in the phase plane, we convert this second-order differen-
tial equation to two coupled first-order equations: let ω = θ̇. Then

θ̇ = ω

ω̇ = − sin θ . (10)

Solutions are usefully viewed in the phase plane with θ along the x-axis and
ω along the y-axis. We find level curves (along which solutions move) by
deriving an equation expressing conservation of energy: multiplying eqn (9)
through by θ̇, it follows that

d

dt

(
θ̇2

2
− cos θ

)
= 0 ,
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so that (
θ̇2

2
− cos θ

)
= constant = b2/2− cos a ,

that is,
ω2 = 2 cos θ − 2 cos a+ b2 . (11)

This equation implicitly defines (constant energy) curves in the phase plane,
which solutions must lie on. A given set of initial conditions defines one set
of curves which that solution must move along as time progresses.

For small θ, the linearised version of this equation is

ω2 + θ2 = b2 − 2 cos a ,

that is, circles in the phase plane. Since θ̇ = ω, the direction of movement
on the circles is clockwise.

Sketching of the more general nonlinear case is helped if you note that the
equation is invariant under a change of sign of either ω or θ (so we can
consider the first quadrant only), and that the right-hand side is periodic
with period 2π, so we only need to consider θ ∈ (0, 2π). Combining these
two observations allows us to only consider θ ∈ (0, π). Also remember that
small θ values give circles. The phase portrait then looks like that in Fig. (4).

Figure 4: The Phase plane for the nonlinear pendulum

Note the closed loops (trajectories) corresponding to smaller energies or
smaller angular velocities, the open trajectories that look like cosine curves

11



corresponding to large energy, large angular velocities, propellor-like motion
of the pendulum, and the special curves (called separatrices) that separate
the two behaviours. Can you picture what a pendulum is doing, if the phase
plane solution is on a separatrix?

Equilibrium Points
or fixed points or critical points are places in phase space where the velocity
is zero, that is, the right-hand sides of the first-order coupled differential
equations are simultaneously zero. For our problem, this means ω = 0 and
θ = nπ , n = 0,±1,±2, . . ..

Limit Cycles
are simple closed curves in the phase plane. They correspond to periodic
solutions, even for systems where the axes are not periodic.

The Poincaré-Bendixson theorem guarantees that the only bounded solution
behaviours that are possible in the phase plane are fixed points or limit cycles
or approaches to these or approaches to special closed curves connecting fixed
points. In particular, chaotic or aperiodic bounded behaviour is not possible
in the phase plane — you need a phase space that is at least three-dimensional
(and nonlinear equations too) for chaos to be possible for solutions to a
system of first-order differential equations.

2.1 Trajectories near critical points

It is possible to analyse the local behaviour of solution trajectories near
critical points, and determine the stability of the critical points. Also, such an
analysis can help piece together the global picture of what solution behaviours
are possible.

At a critical point (X, Y ) of the system

ẋ = f(x, y)

ẏ = g(x, y)

we have f(X, Y ) = g(X, Y ) = 0. Now we consider small deviations x̄, ȳ from
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equilibrium
x = X + x̄ , y = Y + ȳ

and we use Taylor series expansions in x̄, ȳ. Then

ẋ = Ẋ + ˙̄x

and

f(X + x̄, Y + ȳ) = f(X, Y ) +
∂f

∂x

∣∣∣∣
(X,Y )

x̄+
∂f

∂y

∣∣∣∣
(X,Y )

ȳ + . . .

We truncate at the linear terms, for small x̄, ȳ, to obtain equations that are
linearised about the fixed points

˙̄x = fx(X, Y )x̄+ fy(X, Y )ȳ = ax̄+ bȳ (say) ,

˙̄y = gx(X, Y )x̄+ gy(X, Y )ȳ = cx̄+ dȳ (say) .

Solutions are (
x̄
ȳ

)
=

(
x̂
ŷ

)
emt

provided that (
a−m b
c d−m

)(
x̂
ŷ

)
=

(
0
0

)
.

Nontrivial solutions require the determinant of the matrix to be zero, so that

m2 + βm+ γ = 0 , β = −(a+ d) , γ = ad− bc . (12)

The stability and local behaviour of solutions near (X, Y ) depends on the
solutions m to this characteristic equation, which are simply the eigenvalues
of the Jacobean matrix. Cases to consider are:

(I)
If both roots of eqn (12) are real, then it is a saddle point if one root is
positive and one root is negative, or a stable node (or a sink) if both roots
are negative, or an unstable node (or a source) if both roots are positive.

(II)
If the roots of eqn (12) are not real, they must form a complex conjugate
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pair. The solutions then oscillate or spiral near the fixed point. If m has
a negative real part, solutions form stable spirals (also called a sink) and
approach the fixed point as time increases. If m has a positive real part,
solutions form unstable spirals (also called a source) and leave the fixed point
as time increases. A zero real part is a special case, with orbits determined
by the next term in the Taylor series expansion, called a center, or neutrally
stable.

A diagram that summarises all of these results is shown below. It is the
stability diagram for the phase plane, and shows solution behaviour in the
parameter space (γ, β).
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Figure 5: The stability diagram for a general phase plane
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Example - rabbits and sheep
This is an example of the classic Lotka-Volterra model of competition between
two species. Let’s consider rabbits (x(t) of them) and sheep (y(t) of them),
competing for the same grass with a limited supply. We ignore all other
effects, like predators, seasonal effects, other food. Two main effects are
modelled:

1. Each species would grow to a certain size, called its carrying capacity,
in the absence of the other species. We assume a net growth rate r
(births minus deaths) that is exponential, so that for example ẋ = rx,
and that above a certain size (the carrying capacity K) the growth
rate becomes negative ( death rate higher than birth rate). A model
equation that does this is the logistic equation

ẋ = rx
(

1− x

K

)
first suggested by Verhulst in 1838.

2. When rabbits and sheep meet, there is trouble over who gets to eat that
patch of grass. We assume the number of encounters is proportional to
both populations, and that encounters reduce both growth rates.

A model that incorporates these assumptions is

ẋ = x(3− x− 2y)

ẏ = y(2− x− y) .

Fixed points are (0, 0), (0, 2), (3, 0), and (1, 1). Stability requires we find the
eigenvalues λ of the Jacobean(

∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

)
=

(
3− 2x− 2y −2x
−y 2− x− 2y

)
.

At (0, 0) the Jacobean is (
3 0
0 2

)
and eigenvalues are 3, 2. Hence (0, 0) is an unstable node, or a source.
Trajectories leave origin parallel to the smallest (slowest) eigenvector for

16



λ = 2, that is, tangent to the y-axis, as illustrated in the phase portrait:

At (0, 2), the Jacobean is (
−1 0
−2 −2

)
and eigenvalues are -1, -2, and the fixed point is a sink or stable node.
Trajectories approach along the eigenvector corresponding to the eigenvalue
-1, direction (1,−2), as illustrated in the phase portrait:

At (3, 0), the Jacobean is (
−3 −6
0 −1

)
and eigenvalues are -3, -1, and the fixed point is a sink or stable node.
Trajectories approach along the eigenvector corresponding to the eigenvalue
-1, direction (3,−1), as illustrated in the phase portrait:
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At (1, 1), the Jacobean is (
−1 −2
−1 −1

)
and eigenvalues are −1±

√
2, and the fixed point is a saddle point. Trajecto-

ries approach along the eigenvector corresponding to the eigenvalue −1−
√

2,
and depart along the eigenvector corresponding to the eigenvalue −1 +

√
2,

as illustrated in the phase portrait:

These local pictures of phase space behaviour may be combined to get a
global view of solution trajectories. Also note that when x = 0, then ẋ = 0,
so the y-axis is a trajectory. Similarly, when y = 0, then ẏ = 0, so the x-axis
is a trajectory. See the phase portrait below for a computer-generated plot
of the key trajectories in the first quadrant.
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Note that most initial conditions lead to one of the species dominating, and
the other species becoming extinct. The curve separating the first quadrant
into two regions (basins of attraction of the two stable fixed points), one in
which rabbits become extinct and one in which sheep become extinct, is also
the stable manifold of the saddle point.

2.2 Energy

It is also useful to consider conservation of energy, when trying to understand
solution behaviour. We use the nonlinear pendulum as an example again.

Recall the rescaled equation for the nonlinear pendulum,

θ̈ + sin θ = 0 , θ(0) = a , θ̇(0) = b ≡ Ω/ω0 , (13)

where time has been rescaled using ω0 =
√
g/L, and θ is the angle of the

pendulum in radians (which is dimensionless).

Earlier, we noted that conservation of energy was revealed by multiplying
eqn (13) through by θ̇, so that

d

dt

(
θ̇2

2
− cos θ

)
= 0 . (14)
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This equation implicitly defines constant energy curves in the phase plane,
which solutions must lie on. The initial conditions determine the energy or
curve which is traced. Rewriting eqn (14) in the dimensional form

d

dt

[
1

2
m(Lθ̇)2 +mgL(1− cos θ)

]
= 0 (15)

expresses conservation of energy for the nonlinear pendulum, with the first
term being kinetic energy (1

2
mv2 where v is linear velocity), and the second

term being potential energy mgh (you can check the geometry to see that
L(1− cos θ) is the height h of the pendulum mass above its lowest point).

Damped Nonlinear Pendulum

An modification of the nonlinear pendulum equation that includes a term
modelling a damping force (which is proportional to velocity in magnitude
and is directed in the opposite direction to motion) is

θ̈ + νθ̇ + sin θ = 0 , (16)

where ν > 0 is a measure of friction, perhaps at the pivot point, and is zero
if there is no friction.

This may be multiplied by θ̇ and integrated as before, to obtain the energy
equation

d

dt

[
1

2
m(Lθ̇)2 +mgL(1− cos θ)

]
= −mLνθ̇2 . (17)

Note that for ν > 0, the rate of change of energy (given by the right-hand
side of the above equation) is then negative, so that energy decreases for
the damped pendulum. Note that the rate of energy damping varies with
velocity, as expected.

The Phase Plane again

A useful way to view the phase portrait for the undamped nonlinear pendu-
lum is to explicitly acknowledge the periodicity in θ by wrapping the plane
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Figure 6: An alternative view of the phase plane for the nonlinear pendulum,
recognising the periodicity in the angle variable.

into a cylinder with θ varying in the angular direction, and the angular ve-
locity θ̇ still being the vertical coordinate, as in fig (6).

A further useful view for understanding different energy levels, noting the
symmetry about the θ axis, is to bend the tube in fig (6) in two (or into a
”U” shape) so that energy is now the vertical axis, as in fig (7).

The phase plane for the damped nonlinear pendulum is illustrated in fig (8).
Note that the fixed points that were centers for the undamped pendulum have
now become stable spiral points, due to energy decay. The basin of attraction
of the stable spiral point at origin is shaded grey. All initial conditions, except
for very special ones, approach the position where the pendulum is hanging
downwards. The special initial condition, on the stable manifolds of saddle
points, approach (and never reach) a final position where the pendulum is
upside-down.
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Figure 7: A view of the phase plane for the nonlinear pendulum, recognising
the role played by energy conservation.

Figure 8: The phase plane for the damped nonlinear pendulum.
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It is also useful to view the phase trajectories with energy plotted vertically,
and θ explicitly treated as periodic as before, for the damped nonlinear pen-
dulum, as in fig (9).

Figure 9: The phase plane for the damped nonlinear pendulum, modified to
have energy on the vertical axis, and with the angle axis wrapped around to
explicitly show periodicity.
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