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Chapter 1

Einstein’s special relativity

The special theory of relativity is the theory for which Albert Einstein is most famous in
the public mind. To a physicist, the special relativity is merely one of Einstein’s many
contributions to physics.

(Think: Brownian motion, photoelectric effect, general relativity, etc.)

1.1 Introduction

As almost everyone knows by now, the special relativity deals with effects that come into
play at high speeds, at speeds comparable to the speed of light.

There are not that many ways in which classical special relativity impinges on present
day technology — it affects issues of high-precision time-keeping (I’ll return to this point
later), the internal dynamics of the now obsolete high-voltage thermionic valves (vacuum
tubes), and the kinematics of particle accelerators (colloquially called “atom smashers”).
Special relativity also impinges on our technology in the annoying delay you will sometimes
hear on long-distance satellite-based phone lines. Communications satellites orbit the
Earth in the Clarke belt, out at 23,000 miles. For an unlucky choice of destination (and
bad configuration of satellites) your phone call can be riding the radio waves for 90,000
miles or so. Even at the speed of light (186,000 miles/second) this can easily lead to an
approximate half-second delay between speaking and being heard at the other end. (This
problem was even more apparent on the Apollo space missions. The distance from the
Earth to the Moon being about 255,000 miles, you get a 11

2
second delay each way, so at

best you need to wait about 3 seconds for a response. For interplanetary probes deep in
the solar system the one-way delays are often measured in hours.)

1. Special relativity is the relevant generalization of Newtonian mechanics to situations

7
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where velocities are an appreciable fraction of the speed of light.

2. You do not want to look too closely at individual atoms.

3. Gravitational fields have to be negligible. (In fact they are idealized to zero.)

1.2 SR is a Superb theory — “Never to be Discarded”

Special relativity has been very well-tested, both experimentally and mathematically,
it is definitely Superb in the sense of Roger Penrose’s classification of physical theo-
ries. Special relativity’s mathematical structure has been investigated in elaborate detail
(sometimes in baroque detail), and its experimental consequences have been extensively
checked (in the parameter ranges where we expect this theory to be valid, and where we
have appropriate technology).

It is critically important to realize that in a certain sense special relativity will never
be discarded—it’s simply too useful in the range where we already know it works. At
worst, this theory will be superseded by some more complicated “master theory” that
must effectively reduce to special relativity in appropriate limits.

1.3 Textual analysis: A warning

Before we go any further, I feel that an important warning is in order: Never attempt a
comparative textual analysis of popular-level physics books (including these notes) — the
results are almost certain to be abject nonsense. By way of example, any serious literary
study of Don Quixote will require you to learn the Spanish language — working only from
an English language translation is never going to provide deep insight into the work. Sim-
ilarly, popular level books on physics are inherently limited by the translation difficulties
of adopting a natural language at the cost of excising the underlying mathematics. Do
not take pretty pictures and verbal descriptions too seriously — they can be dangerously
misleading — natural language is a subtle and shifting foundation on which to attempt
to build physical theory.

For an example of the problems that can arise purely at the level of English language
usage I need merely point out the confusion attendant on use of the word “paradox”.
In English this word has two primary meanings. Either:

1. an apparent contradiction in a logically consistent theory; or

2. a real logical inconsistency in a truly inconsistent theory.
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(There are also a few more archaic meanings that are not currently of relevance.) Worse,
the most likely meaning has shifted over the past few decades.

Problems arise for instance, in the discussion of the famous “twin paradox” of special
relativity. Einstein and his contemporaries used the word in the sense of an “apparent
inconsistency” (what we might now call a “pseudo-paradox”) and certainly did not claim
or imply that special relativity was internally inconsistent. Unfortunately, many commen-
tators have fixated attention on the word “paradox” and automatically assumed that the
meaning of “real logical inconsistency” was intended, leading to discussions whose results
are both pathetic and predictable. [At least half of the yelling and screaming surrounding
the issue of the “twin paradox” in special relativity can be tracked down to not having a
good dictionary on hand.] And this is just a simple ambiguity within the English language
itself — this is not even a translation difficulty from mathematics to English. (To add to
the confusion, don’t forget that Einstein’s native language was German, not English, and
that his early works were written in German, not English.)

Another famous, or rather infamous, example of the troubles that can be caused by out-
right mis-translation between natural languages is that of the infamous Martian “canali”.
Now “canali” is a perfectly good Italian word that has the English meaning of “channels”
(naturally occurring, with no implication of human or alien intervention). Unfortunately
US newspapers of the late 1800’s mis-translated this into English as “canals” (implying
they were constructed by someone or something). So much for the canals of Mars; they
were never more than endless speculation heaped upon a dubious mis-translation (and
a few highly ambiguous and noisy ground-based visual observations of some things that
looked vaguely like channels). Still, John Carter and Barsoom will continue to live on in
legend.

Another example of places where problems arise is in the discussion of the “Einstein
elevator”. This is a gedanken-experiment (thought-experiment) devised by Einstein
that argues for the complete equivalence between acceleration and an applied gravitational
field. (This is the Einstein Equivalence Principle, one of the main principles underlying
Einstein gravity, the general relativity, about which I will have more to say later.) More
precisely, the Einstein elevator gedanken-experiment argues for the complete equivalence
between acceleration and a homogeneous gravitational field.

Now all real gravitational fields are inhomogeneous, so the result of the Einstein elevator
gedanken-experiment should really be phrased as: “in any real gravitational field, if one
has an elevator that is sufficiently small that inhomogeneities in the gravitational field
can be safely ignored, then a person inside the elevator cannot tell the difference between
gravity and acceleration”

This is often shortened for convenience to: “a person inside an elevator cannot tell the
difference between gravity and acceleration”. Unfortunately I have then (far too often)
seen people who take this shortened version of the Einstein Equivalence Principle too
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literally. If you take the short version as the one and only definition of the Equivalence
Principle, and then observe that real gravitational fields are inhomogeneous, than you can
mistakenly conclude the existence of an internal inconsistency in general relativity. [This
elementary mistake is unfortunately rather distressingly common; and then often leads
to one particular subspecies of physics crackpottery.] Of course, what you have really
deduced is that the shortened version of the Equivalence Principle is not quite precise
enough — going to the long version of the Equivalence Principle removes the problem.

This all comes about because in the interests of clarity it is sometimes appropriate to
delete some of the qualifying phrases that would otherwise make a popular description
or an introductory textbook completely unwieldy and impenetrable — in the interests
of getting any coherent message across I also shall occasionally have to resort to such
trimming. But the reader should be warned that some simplification along these lines is
inevitable — and if by determined textual analysis the reader discovers a logical paradox,
the paradox is almost certainly a translation difficulty and not a part of the underlying
physics. I trust that forewarned is forearmed.

1.4 Filtering out the nonsense

Because the theories and concepts that I am talking about in this course are so far
beyond the pale of everyday experience, I think that it would be useful for the student
if I were to provide some rules of thumb for filtering out the more extreme crackpot
nonsense. (It is unfortunately a truism that nothing attracts the crackpots quite like the
words “Einstein” and “relativity”, it’s like waving a red flag in front of a bull.) Now it
is actually rather difficult to give hard and fast rules for detecting crackpot nonsense.
Certainly any practitioner in the field can look at a specific document and within sixty
seconds can come to a snap decision. Many of rules used in coming to such a conclusion
are entirely heuristic and impossible to formalize in all generality. Fortunately however,
a certain subset of the rules used by practicing physicists can be more or less formalized:
these are the rules associated with the internal consistency of physical theories.

1.4.1 The two faces of physical theory

It is important to realize that physical theories have two main attributes that are logi-
cally distinct from one another. Physical theories must be both internally consistent, and
an accurate reflection of experimental reality. To discuss the first aspect, consistency, a
physical theory must be formalized as some well-defined mathematical structure, some
set of equations and mathematical rules that interrelate various mathematical symbols
in some way. If this mathematical structure is internally inconsistent then the theory
has already failed without a single experiment being performed. The second aspect is
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the extent to which this mathematical structure represents reality. The various math-
ematical symbols appearing in the equations must be asserted to correspond to some
in-principle-measurable experimental quantities. A successful physical theory is one that
is mathematically consistent and that accurately predicts/explains/retrodicts a suitably
large class of experimental results.

But note one very important point: the internal logical and mathematical consistency of
the theory is not decided by experiment — consistency is purely an issue of mathematics
and logic and can be settled once and for all without recourse to experiment. (It is
extremely rare for a physical theory to become in any way well-established and then later
fail some internal consistency checks, there are simply too many physicists working on
problems and checking each other’s results.) Experiment only comes in at the second
stage — no matter how beautiful or internally consistent a physical theory is it is simply
not useful unless it is an accurate description of how the real universe works. (Sometimes
we add qualifying phrases — such as “this theory works well in thus and so a range of
parameters, but is known not to accurately reflect nature if one goes outside this range
of parameters”.)

Very Important Point: It is absolutely critical to realise that there is an enormous differ-
ence between being “wrong” and being a “crackpot” — more on this later.

1.4.2 Rules based on mathematical consistency

These observations let us formalize several rock solid rules:

Rule 1 If you run across someone who claims that the mathematical structure of special
relativity is internally inconsistent, then you can safely ignore them: they are wrong.

What I am saying with this rule is that the internal mathematical structure of special
relativity is provably internally consistent, in exactly the same way in which Euclidean ge-
ometry and non-Euclidean geometries are provably mathematically consistent. (Of course
you will still find some cranks who don’t even believe in Euclidean geometry.) Physics
textbooks explaining special relativity do not harp on this point because it is felt by most
physicists to be trivial. For instance, one need merely observe that all the complications
of Lorentz transformations of space and time are simply examples of a particular type of
matrix multiplication on a four-dimensional vector space. The mathematical structure of
special relativity is simply a special case of the mathematical structure of vector spaces and
one can simply appeal to standard mathematical theorems on the internal consistency of
vector space algebra. If you want to get a little more formal, you can set up a set of formal
axioms for special relativity that describe it as a special type of non-Euclidean Geometry
(Minkowski geometry, for example, see Reichenbach’s book “Axiomatic Relativity?” for
details). The internal consistency of special relativity is then provable in exactly the same
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way as the internal consistency of Euclidean geometry is provable. Remember that most
physicists, and even most textbooks, consider these comments on internal consistency of
special relativity to be so trivial that they are often not explicitly mentioned.

(Minkowski geometry is relatively simple, you can certainly teach it to university under-
graduates, which is what this course is all about, and can even make a good stab at it
with motivated high-school students. Most good university Mathematics libraries will
have two or three books on axiomatic formulations of relativity.)

The flip side of Rule 1 is much more subtle:

Rule 2 If you run across someone who does not dispute the internal consistency of spe-
cial relativity, but who however claims that special relativity does not accurately reflect
empirical reality then you should not necessarily reject the claim out of hand — you will
have to do a little more work to judge the reasonableness of the claim.

A claim of this type is equivalent to claiming to have experimental disproof of the ap-
plicability of special relativity to the real world. To judge such a claim requires more
than mathematical manipulations — it requires you to be conversant with the current
body of experimental evidence, so as to be able to see how the new experiment relates
to previous experiments, and thereby make a “physics judgment” as to how reasonable
and plausible the new claims are. (If the new experiment flatly contradicts ten thousand
older experiments performed under similar conditions one might reasonably infer some
form of “operator error”.) Given the large body of empirical experimental evidence sup-
porting the applicability of special relativity to the real world it will take stunning new
experimental evidence that is truly “beyond any reasonable doubt” before any challenge
to special relativity is taken seriously.

A more prosaic example is useful to get the general idea across: In days of yore, cartogra-
phers had the entertaining habit of scrawling “here be dragons” at the edges of explored
territory. As more of the world was accurately mapped the putative dragon habitat shrank
— to zero. If a modern cartographer were to scrawl “here be dragons” in the middle of
Central Park, Manhattan, he or she will not be taken seriously (absent really compelling
evidence).

The same comment applies to anyone who wants, for whatever reason, to challenge spe-
cial relativity. You should find out what current experimental limits are and plan your
experiments accordingly. A peculiar experimental result in the middle of a parameter
region that has been well-explored by many other techniques is like a claim of a dragon
sighting in Central Park — other more plausible interpretations leap readily to mind.

Rule 3 If you run across someone who: (1) realizes that special relativity is mathemat-
ically consistent, and (2) has a well-thought out experiment that claims to demonstrate
discrepancies between special relativity and the real world, and (3) has a good analysis of
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how these new experimental results match up with previous experimental results, and a
good analysis of why the claimed effect does not show up in previous experiments, then
(and only then) is it time to really start taking the claim seriously.

An added bonus at this stage would be to have a carefully thought out provably-internally-
consistent alternative to special relativity that reproduces special relativity in all old
experiments and is in agreement with the new experiment.

I have made all of these comments specifically about Einstein’s special relativity because
it is the theory most well-known to the public at large, but exactly the same comments
could be applied to Einstein’s general relativity, and [modulo some technical quibbles],
similar comments apply to quantum mechanics and quantum field theory. For instance

Rule 4 If you run across someone who claims that the mathematical structure of general
relativity is internally inconsistent, then you can safely ignore them: they are wrong.

The point here is that there is an entire branch of mathematics (pseudo–Riemannian ge-
ometry, aka Lorentzian geometry, which is itself a sub-branch of differential geometry),
that guarantees mathematical consistency for Einstein gravity (and many alternative the-
ories of gravity that are sufficiently close to Einstein gravity in that they do not do too
much violence to the geometric aspects of the theory).

(Lorentzian geometry is nowhere near as easy as Minkowski geometry. It is advanced
undergraduate or graduate-level mathematics, though in the US it is most often taught
in physics departments. In the UK, and educational systems derived therefrom, it is most
often taught in mathematics or applied mathematics departments. Lorentzian geometry
is also often called pseudo-Riemannian geometry.)

1.4.3 The Rough Guide to crackpot filtering

The alert reader will have noticed that all this discussion of how to filter out potentially
strange and peculiar physics I have not actually defined what a crackpot is. This is partly
because there is no really generally agreed upon definition (though everyone will recognize
one when they run across one). Crack-pottery is associated more with a style of argument
and a style of presentation than it is with the actual content. It is important to realize
that people can be wrong without being crackpots, and that crackpots can accidentally
be right on some issues while still remaining crackpots — crack-pottery can be loosely
characterized as:

1. an inability to mentally separate the logical structure of a physical theory from
issues of experimental evidence, and
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2. the inability to dispassionately assess the experimental evidence, generally coupled
with overwhelming arrogance [and often, unfortunately, some form of mental dis-
ease].

A very rough-and-ready guide to crackpot detection has now been circulating in the
internet for a few years. The crackpot index (see the website) was developed as a humorous
attempt to summarize some of the rules of thumb derived from bitter experience in the
flamewars infesting the internet newsgroup sci.physics. This internet newsgroup is so
heavily infested with crackpot drivel that very few (zero?) professional physicists are
willing to put up with the personal abuse that generally results from giving straightforward
non-crackpot answers to honest questions from genuinely curious non-experts. I shall leave
it as an exercise to the reader to obtain internet access and make their own judgments.
(For that matter, I should also warn readers with internet access that if you go to any
of the standard internet search engines and type in the word relativity, your hits will be
about 50 percent gibbering crackpot nonsense.)

You should of course, not take the final score obtained from the crackpot index too
seriously. A high crackpot index merely indicates that there might be a problem with
the document, but there may be extenuating circumstances. Likewise a low crackpot
index does not guarantee that the document is correct. Unlike the relatively rigid rules I
provided earlier in this chapter, the crackpot index should be used only as a rough guide.

The key issues in avoiding a high crackpot index are:

1. Think your proposal through carefully and check it for internal consistency.

2. Make sure your proposal is compatible with current experimental data.

3. Don’t ever try to claim that classical mechanics, special relativity, general relativity,
or quantum mechanics are internally inconsistent.

4. Don’t try to claim that any other presently accepted theory is internally inconsistent
unless you have very good evidence presented in a very clear and convincing manner.

If any of these suggestions is violated you should be very suspicious of the author’s claims.

1.5 Last Words

To wrap up this introductory chapter, permit me to summarize what you should have
learned:
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1. Physics theories can be quality graded (Superb/ Useful/ Tentative) with the
Superb theories being so well verified by experiment that any direct attack on
them is simply quixotic.

2. Quantum physics and general relativity are two of the Superb theories. In the rest
of these notes I will describe special relativity in a little more detail, and you should
then have a basic understanding of what this theory entails.

3. When judging strange and exotic claims and unfamiliar physics, try to look first for
issues of internal mathematical consistency, secondly for compatibility with present
experiment, and only then should you worry about the details of the “new physics”.



Chapter 2

Notes on notation

• One major difference between these notes and the textbook is that I will still ex-
plicitly keep track of factors of c, the speed of light.

• A professional physicist or mathematician when working in special or general rela-
tivity will often “adopt units so that c = 1”.

• Indeed, in almost all my research work I would do so myself — and then if necessary
reintroduce various factors of c in the final answer by dimensional analysis.

• So like Taylor & Wheeler, when working professionally I would measure all times
and distances in seconds (or equivalently measure all times and distances in metres).

• Where I differ from Taylor & Wheeler is over the advisability of doing so the very first
time you encounter special relativity. I feel that there are pedagogical advantages to
keeping c around for the time being: so for these notes time is measured in seconds
and distance in either “light seconds” (a physical distance of 3× 108 metres) or just
boring old metres.

• Because of this I will distinguish the coordinate x0 from the time t by using:

x0 = ct

This has the advantage that all the coordinates, x0, x1 x2 and x3 are measured in
units of distance.

• I outright refuse to use Minkowski’s x4 = ict notation — if you have never seen
this notation, please do not go out of your way to encounter it. If you have previ-
ously seen the “ict” notation, please try to forget it — bitter experience over the
last century has convinced physicists that “ict” is not worth the bother for special
relativity, and is dangerously misleading when it comes to general relativity.
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• So in these notes I will keep the factors of c explicit. If you want the equivalent
formula in Taylor & Wheeler notation, just set c→ 1.



Chapter 3

Notes on the “light clock”

This is the simplest and easiest way anyone knows of to derive the existence of time
dilation; the slowing down of moving clocks in special relativity.

We want to build a “clock” by using two mirrors and bouncing light back and forth.
Assume the mirrors are at rest (meaning you are in the rest frame of the mirrors):

------*-------------------------------------------------

/|\ | /|\

| | |

| | L

| | |

| \|/ \|/

---------*----------------------------------------------

Figure 3.1: Light clock at rest.

The distance between the mirrors is L, so light takes L/c seconds to go up and L/c seconds
to come back down. Each “tick” of the clock takes 2L/c seconds. The period of the clock
(in its own rest frame) is

T0 = 2L/c.

Now suppose the whole clock is moving sideways with speed V . (That is, we are in a
reference frame in which the clock is moving.)
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=======================> V

-------------------------------------------------------

/\ /|\

/ \ |

/ \ L

/ \ |

/ \ \|/

-------------------------------------------------------

=======================> V

Figure 3.2: Light clock in motion.

The light pulse takes a total time T to cross from one mirror to the other and back. We
want to calculate this total time T . In its back and forth trip the light pulse moves a
total vertical distance 2L (up and down; transverse dimensions are not affected in special
relativity) and a horizontal distance V T . So in this reference frame the total distance
travelled is (by Pythagoras’ theorem)

(distance) =
√

(2L)2 + (V T )2

The speed of the light pulse in this reference frame is then

(speed) = (distance)/(time) =
√

(2L)2 + (V T )2/T

But the central weird observed fact of relativity is that light (in vacuum) always travels
at the same speed regardless of which reference frame you are in, so:

c =
√

(2L)2 + (V T )2/T

That is:
c2T 2 = (2L)2 + V 2T 2

So:
T 2(c2 − V 2) = (2L)2

T 2 = (2L/c)2/(1− V 2/c2)

T =
T0√

1− V 2/c2

That is:
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• In its own rest frame the light clock “ticks” every T0 seconds.

• As seen in any frame moving with speed V with respect to the light clock’s rest
frame, each “tick” takes T = T0/

√
1− V 2/c2 seconds, which is always longer than

T0 — a moving clock slows down.

• (And yes, the same will happen for *any* reliable clock, no matter how constructed.)



Chapter 4

Notes on the Lorentz transformation

What we want to do is to find how to transform time and space coordinates from one
frame to another.

In reference frame X the coordinates are labelled (x0 = ct, x, y, z).

In reference frame X ′ the coordinates are ([x0]′ = ct′, x′, y′, z′).

The derivation has deliberately been made slow and tedious so you can see every little step.

Note that we repeatedly use (in steps 3, 4, and 5) the fact that light rays always travel at
the same speed c, while in step 1 we use use an observer who is “at rest” in one inertial
frame to calibrate one of the coefficients of the Lorentz transformation in terms of the
relative velocity.

4.1 Step 0:

• Whatever the relationship between X and X ′ is, it must be linear: Put two identical
objects end on end in one reference frame and the total length will be twice the
individual lengths; and this must still be true in any other reference frame. Let a
clock tick twice, then the total time is just two ticks — and even if the length of
each tick is different in another reference frame it is still true that two ticks take
twice as long as one tick.

(If you want to be hyper-careful: You are at at this stage implicitly using the
homogeneity of space and time; in a given reference frame all ticks of the clock are
the same no matter when they occur, and all metre-sticks are the same no matter
where you place them.)

• In addition, if the two systems are moving with respect to each other along the
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x axis (equivalently the x′ axis) then the transverse directions (y, z); (y′, z′) are
unaffected.

(If you want to be hyper-careful: There are long technical arguments based on the
principle of relativity for why the transverse directions do not transform, but most
people simply take this step as “obvious”. If you feel at all queasy about this, you
can (for now) just take it as an extra hypotheses, follow through the mathematics
below, and come back later to tidy things up.)

Combined, this means that we must have:

ct′ = Ect+ Fx

x′ = Gct+Hx

y′ = y

z′ = z

I now want to derive formulas for the coefficients E, F , G, H as functions of the relative
velocity between the two frames.

4.2 Step 1:

Consider a person/object who is at rest (for convenience, at the origin) in reference frame
X. As a function of time his “world line” is

P (t) = (ct, 0, 0, 0)

This is a line, parameterized by the coordinate t that tells you exactly where the guy is
as a function of time — he’s always at the origin.

Now transform to the frame X’

ct′ = Ect+ Fx = Ect

x′ = Gct+Hx = Gct

y′ = y = 0

z′ = z = 0

So the “world line” of this same person, when viewed from the X ′ frame is

P ′(t) = (Ect,Gct, 0, 0)
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In the X ′ frame the velocity of the chap at rest in the X frame is:

(velocity) = (distance)/(time) = (Gct)/(Et) = (G/E)c

[Remember to cancel the “c” to convert x0 to physical time]

That is:
G = (v/c)E

where v is the velocity of the X frame as viewed from the X ′ frame.

So we have already derived one relationship between the four quantities E, F , G, H.

4.3 Step 2:

Consider a light ray emitted (for convenience) from the origin and travelling in the +x
direction. As a function of time its “world line” is

P (t) = (ct, ct, 0, 0)

This is a line, parameterized by the coordinate t, that tells you exactly where the light
ray is as a function of time.

Now transform to the frame X ′:

ct′ = Ect+ Fx = Ect+ Fct = (E + F )ct

x′ = Gct+Hx = Gct+Hct = (G+H)ct

y′ = y = 0

z′ = z = 0

So the “world line” of this same light ray, when viewed from the X ′ frame is

P ′(t) = ([E + F ]ct, [G+H]ct, 0, 0)

In the X ′ frame the velocity of the light ray is:

(velocity) = (distance)/(time) = ([G+H]ct)/([E + F ]t) = ([G+H]/[E + F ])c

[Remember to cancel the “c” to convert x0 to physical time]

But since it is a light ray, its velocity in the X ′ frame must also be “c”!

That is:
[G+H]/[E + F ] = 1

That is:
[G+H] = [E + F ]

So we have now derived two relationships between the four quantities E, F , G, H.
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4.4 Step 3:

Consider a light ray emitted (for convenience) from the origin and travelling in the -x
direction. As a function of time its “world line” is

P (t) = (ct,−ct, 0, 0)

This is a line, parameterized by the coordinate t, that tells you exactly where the light
ray is as a function of time.

As compared to Step 2 only a few + signs turn into − signs; the calculation is almost
identical.

Now transform to the frame X ′:

ct′ = Ect+ Fx = Ect− Fct = (E − F )ct

x′ = Gct+Hx = Gct−Hct = (G−H)ct

y′ = y = 0

z′ = z = 0

So the “world line” of this same light ray, when viewed from the X ′ frame is

P ′(t) = ([E − F ]ct, [G−H]ct, 0, 0)

In the X ′ frame the velocity of the light ray is:

(velocity) = (distance)/(time) = ([G−H]ct)/([E − F ]t) = ([G−H]/[E − F ])c

[Remember to cancel the “c” to convert x0 to physical time]

But since it is a light ray, and its velocity in the X frame is −c, its velocity in the X ′

frame must also be “−c”!

That is:
[G−H]/[E − F ] = −1

That is:
[G−H] = −[E − F ] = [F − E]

So we have now derived three relationships between the four quantities E, F , G, H.
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4.5 Step 4:

Combine the results of Step 2 and Step 3:

2: [G+H] = [E + F ] = [F + E]

3: [G−H] = −[E − F ] = [F − E]

Add and subtract these equations you get

F = G and H = E

But from Step 1 we already know
G = (v/c)E

Thus
H = E and F = G = (v/c)E

and the coordinate transformations read

ct′ = E(ct+ [v/c]x)

x′ = E([v/c]ct+ x)

y′ = y

z′ = z

It’s more common to rearrange a little and to write them as

ct′ = E(ct+ [vx/c])

x′ = E(x+ vt)

y′ = y

z′ = z

We still have one unknown coefficient E to deal with...

4.6 Step 5:

Consider a light ray emitted (for convenience) from the origin and travelling in the +y
direction. As a function of time its “world line” is

P (t) = (ct, 0, ct, 0)
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This is a line, parameterized by the coordinate t, that tells you exactly where the light
ray is as a function of time.

Now transform to the frame X ′:

ct′ = Ect+ Fx = Ect− F0 = Ect

x′ = Gct+Hx = Gct−H0 = Gct

y′ = y = ct

z′ = z = 0

So the “world line” of this same light ray, when viewed from the X ′ frame is

P ′(t) = (Ect,Gct, ct, 0)

In the X ′ frame the velocity of the light ray is:

(velocity) = (distance)/(time)

Distance is calculated by the Pythagoras theorem:

(distance) =
√

(Gct)2 + (ct)2 =
√
G2 + 1 ct

Time is just
(time) = Et

[Remember to cancel the “c” to convert x0 to physical time]

So the speed is

(speed) =

√
G2 + 1 ct

Et
=

√
G2 + 1

E
c

But since it is a light ray, and its speed in the X ′ frame must also be “c”!

That is: √
G2 + 1/E = 1

That is:
G2 + 1 = E2

But, from Step 1:
G = (v/c)E

Thus:
(v/c)2E2 + 1 = E2

E2[1− (v/c)2] = 1
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E =
1√

1− (v/c)2

and we are now done.

(And if you stop to think about it, this step 5 is very similar to the calculation we
previously did for the light clock.)

4.7 Summary:

Collecting everything:

ct′ =
ct+ [vx/c]√

1− (v/c)2

x′ =
x+ vt√

1− (v/c)2

y′ = y

z′ = z

It is convenient and standard to define:

β = v/c

γ =
1√

1− (v/c)2
=

1√
1− β2

and then write:
t′ = γ(t+ [vx/c2])

x′ = γ(x+ vt)

y′ = y

z′ = z

These are the Lorentz transformations!1

The derivation has deliberately been made slow and tedious so you can see every little step.

1Some older references, sometimes including Einstein himself, use an obscure obsolete notation where
β = 1/

√
1− v2/c2. Avoid this like the plague: the modern notation, β = v/c and γ = 1/

√
1− v2/c2 is

now so standard that it’s damn silly to do anything else.



Chapter 5

Notes on the combination of
velocities

Technically and physically it’s better to call it “combination of velocities” instead of the
more common (but slightly misleading) phrase “addition of velocities”.

Suppose we have three people: Alice, Bob, and Chuck.

Alice is moving (in the +x direction) at speed v1 with respect to Bob.

Bob is moving (in the +x direction) at speed v2 with respect to Chuck.

How fast is Alice moving with respect to Chuck? Call this v12.

In Newton’s physics you have the simple result:

v12 = v1 + v2.

This is simply not true in Einstein’s physics (except in the limit as all velocities are much
less than the speed of light).

The correct Einstein expression is

v12 =
v1 + v2

1 + [v1v2/c2]
.

We will now prove this central fact of special relativity....

The derivation has deliberately been made slow and tedious so you can see every little step.
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5.1 Derivation:

We will now derive this using the Lorentz transformations to transform time and space
coordinates from one frame to another.

In reference frame X the coordinates are labelled (x0 = ct, x, y, z).
Alice is at rest in this frame.

In reference frame X ′ the coordinates are labelled ([x0]′ = ct′, x′, y′, z′).
Bob is at rest in this frame.

In reference frame X ′′ the coordinates are labelled ([x0]′′ = ct′′, x′′, y′′, z′′).
Chuck is at rest in this frame.

Remember:

It is convenient and standard to define

β = v/c

γ =
1√

1− (v/c)2
=

1√
1− β2

and then write
ct′ = γ(ct+ [vx/c]) = γ(ct+ βx)

x′ = γ(x+ vt)

y′ = y

z′ = z

These are the Lorentz transformations!

5.2 Step 1:

Alice is at rest (for convenience, at the origin) in reference frame X. As a function of time
her “world line” is

Alice(t) = (ct, 0, 0, 0)

This is a line, parameterized by the coordinate t that tells you exactly where Alice is as
a function of time — she’s always at the origin.

Now transform to the frame X ′

ct′ = γ1(ct+ v1x/c) = γ1ct
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x′ = γ1(x+ v1t) = γ1v1t

y′ = y = 0

z′ = z = 0

So the “world line” of Alice, when viewed from the X ′ frame is

Alice′(t) = (γ1ct, γ1v1t, 0, 0)

In the X ′ frame the velocity of Alice, who is at rest in the X frame, is:

(velocity)Alice = (distance)/(time) = (γ1v1t)/(γ1t) = v1

So Alice’s speed with respect to Bob (who is at rest in the X ′ frame) is v1.

This should not be surprising — it’s just along winded way of checking what should be
obvious.

5.3 Step 2:

Now transform to the frame X ′′ (Chuck’s rest frame) from the X ′ frame (Bob’s rest frame)
using:

ct′′ = γ2(ct
′ + v2x

′/c)

x′′ = γ2(x
′ + v2t

′)

y′′ = y′

z′′ = z′

Remember that Bob’s worldline, in the X ′ frame, is

Bob′(t′) = (ct′, 0, 0, 0)

which is just another way of saying that Bob is at rest in the X ′ frame. If you transform
this to the X ′′ frame (Chuck’s rest frame) you will easily see that Bob’s speed with respect
to Chuck is v2. (Just copy the argument of Step 1.)

ct′′ = γ2(ct
′ + v2x

′/c) = γ2ct
′

x′′ = γ2(x
′ + v2t

′) = γ2v2t
′

y′′ = y′ = 0

z′′ = z′ = 0

So
Bob′′(t′) = (γ2ct

′, γ2v2, 0, 0)
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In the X ′′ frame the velocity of Bob, who is at rest in the X ′ frame, is:

(velocity)Bob = (distance)/(time) = (γ2v2t
′)/(γ2t

′) = v2

So Bob’s speed with respect to Chuck (who is at rest in the X ′′ frame) is v2.

This should again be a statement of the blindingly obvious.

Key step:

Now for the nontrivial part of the calculation: Let us now transform Alice’s worldline into
the X ′′ frame. Remember that in the X ′ frame Alice’s worldline is

Alice′(t) = (γ1ct, γ1v1t, 0, 0)

So

ct′′ = γ2(ct
′ + v2x

′/c)

= γ2(γ1ct+ v2γ1v1t/c)

= γ1γ2ct(1 + [v1v2/c
2])

x′′ = γ2(x
′ + v2t

′)

= γ2(γ1v1t+ v2γ1ct)

= γ1γ2(v1 + v2)t

y′′ = y′ = 0

z′′ = z′ = 0

Thus Alice’s worldline, as viewed in Chuck’s rest frame (X ′′), is

Alice′′(t) = (γ1γ2ct(1 + [v1v2/c
2]), γ1γ2(v1 + v2)t, 0, 0)

So her speed in Chuck’s rest frame is

v12 = (velocity)Alice as observed by Chuck = (distance)/(time) = x′′/t′′

=
[γ1γ2(v1 + v2)t]

[γ1γ2t(1 + [v1v2/c2])]

That is

v12 =
v1 + v2

1 + [v1v2/c2]

End of proof.

The derivation has deliberately been made slow and tedious so you can see every little step.
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5.4 Comments:

1) It should now be clear why you cannot just “add” velocities in the usual sense [v1 +v2].
The central point is that v1 is a speed measured in frame X ′ while v2 is a speed measured
in X ′′.

2) Sometimes you will see the composition law written in the form

v12 = v1 ⊕ v2 =
v1 + v2

1 + [v1v2/c2]

This emphasises the fact that “composition”(⊕) is not simply “addition”.

3) We used the fact that the two velocities were parallel to each other to simplify life by
choosing the coordinate axes so that we only had to consider motion in the x direction.
If the two velocities are not parallel to each other life gets much more complicated.

4) If both v1 and v2 are small compared to “c” then it is useful to approximate

v12 ≈ v1 + v2

Newton’s result (Galileo’s result) is a useful approximation at low speeds.

5) Apparently weird stuff happens if either v1 = c or v2 = c. Think about it a little.
Convince yourself it’s not so weird after all.

6) Seriously weird stuff happens if either v1 > c or v2 > c. Think about it a little.
Convince yourself that, after all, this situation is even weirder than it first appears.

7) Sometimes people like to define a “rapidity parameter”:

ξ = tanh−1(v/c); v = c tanh(ξ).

You should amuse yourselves by showing that in terms of this rapidity parameter

ξ12 = ξ1 + ξ2.

That is: in special relativity rapidity parameters add in the usual way (at least for collinear
motion). Furthermore the composition of velocities law is simply related to a quite stan-
dard hyperbolic trig identity

tanh(ξ1 + ξ2) =
tanh(ξ1) + tanh(ξ2)

1 + tanh(ξ1) tanh(ξ2)
.

You can amuse yourselves by checking this.

Specifically, prove that:

v12 = v1 ⊕ v2 = c tanh
(
tanh−1(v1/c) + tanh−1(v2/c)

)
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5.5 Non-collinear velocities

In the discussion so far the velocities have all been in the same direction (collinear). What
do you think might happen if you try to combine velocities that ate not collinear? Here’s
a few hints for the truly dedicated...

Perpendicular: The relativistic combination of perpendicular velocities ~v1 and ~v2 is
particularly elegant:

~v21 = ~v1 +
√

1− v2
1 ~v2 , (5.1)

~v12 = ~v2 +
√

1− v2
2 ~v1 , (5.2)

||~v21|| = ||~v12|| =
√
v2

1 + v2
2 − v2

1v
2
2 , (5.3)

γ12 = γ1γ2 . (5.4)

Note specifically that
~v12 6= ~v21. (5.5)

In fact, the angle between the two is exactly the so-called Wigner rotation angle Ω:

sin Ω =
v1γ1v2γ2

γ1γ2 + 1
, (5.6)

cos Ω + 1 =
(γ1 + 1)(γ2 + 1)

γ1γ2 + 1
. (5.7)

General: The relativistic combination of general velocities ~v1 and ~v2:

~v21 =
~v1 + ~v2‖1 +

√
1− v2

1 ~v2⊥1

1 + ~v1~·v2

, (5.8)

~v12 =
~v2 + ~v1‖2 +

√
1− v2

2 ~v1⊥2

1 + ~v1 · ~v2

, (5.9)

||~v21|| = ||~v12|| =
√
||~v1 + ~v2||2 − ||~v1 × ~v2||2

1 + ~v1 · ~v2

, (5.10)

γ12 = γ1γ2(1 + ~v1 · ~v2) . (5.11)

The Wigner rotation angle Ω:

sin Ω =
v1γ1v2γ2(1 + γ1 + γ2 + γ12)

(γ1 + 1)(γ2 + 1)(γ12 + 1)
sin θ , (5.12)
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cos Ω + 1 =
(γ12 + γ1 + γ2 + 1)2

(γ1 + 1)(γ2 + 1)(γ12 + 1)
. (5.13)

For a continually accelerating object, the Wigner rotation leads to Thomas precession.
As seen in the lab frame:

d~Ω

dt
= ~v1 × ~a

(
γ1

1 + γ1

)
. (5.14)

The Thomas precession as seen in the co-moving reference frame:

d~Ω

dt
= ~v1 × ~a

(
γ2

1

1 + γ1

)
. (5.15)

Further reading: For more details on this subject, see:
“Elementary analysis of the special relativistic combination of velocities, Wigner rotation,
and Thomas precession”.
Kane O’Donnell, Matt Visser. e-Print: arXiv:1102.2001 [gr-qc]



Chapter 6

Notes on the twin pseudo-paradox

I will now batter the twin pseudo-paradox to death with sledgehammers — analyzing the
situation in a number of different ways (which ultimately must all agree with each other).

(I’d rather beat one well-known pseudo-paradox to death with sledgehammers than give
a superficial overview of the endless list of pseudo-paradoxes that people have come up
with over the years.)

In the next section I will analyse the twin pseudo-paradox using the notion of invariant
interval. You will soon be sick to death of the twin pseudo-paradox since in the subsequent
section I will analyze it using the Doppler effect (as seen by an observer on Earth),
and in the section after that I will analyze it using the Doppler effect (as seen by an
observer on the traveller), and in the section after that I will analyze it using the Lorentz
transformations.

All four analyses agree with each other, as of course they must.

6.1 Analysis using the invariant interval:

Consider a pair of twins. One remains “at rest” on Earth, while the other travels on a fast
rocket ship to Alpha Centauri, turns around and eventually comes back to Earth. We want
to compare the total time taken for the complete trip as measured by the stay-at-home
twin and the travelling twin.

6.1.1 Step 1:

First consider the spacetime diagram:
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Figure 6.1: Spacetime diagram for twin pseudo-paradox.

Where I have carefully labelled the START, TURNAROUND, and RETURN events.

In the coordinate system attached to the Earth the START event occurs at

ESTART = (ct, x) = (0, 0)

Setting the coordinates of this event to (0,0) is a convenience, not a fundamental part of
the physics.

Suppose the total trip, as seen by the Earth observer, takes time T .

Then in the coordinate system attached to the Earth the RETURN event occurs at

ERETURN = (ct, x) = (cT, 0)

What about the TURNAROUND event? Since we assume the speed on the outward leg
is the same as that on the inward leg, the turnaround must have come at the halfway
point of the journey, at

t = T/2

And, if the rocket has been moving away with speed v, the position of this turnaround
event must be

x = vt = vT/2

That is: in the coordinate system attached to the Earth the TURNAROUND event occurs
at

ETURNAROUND = (ct, x) = (cT/2, vT/2)
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6.1.2 Step 2:

As measured by the travelling twin, how much time elapses between the START and
TURNAROUND events?

Use the invariant interval.

Consider now only the outward leg of the journey.

Let this unknown time lapse be ∆t′, and note that from the travelling twin’s point of view
both START and TURNAROUND events occur at the same place (which can conveniently
be taken to be x′ = 0) — this is because the travelling twin is always “at rest” in his own
free float frame. So for these two events delta x′ = 0.

Then:
Invariant interval = (c∆t′)2 − (∆x′)2 = (c∆t)2 − (∆x)2.

Invariant interval = (c∆t′)2 − 0 = (cT/2)2 − (vT/2)2.

Invariant interval = (c∆t′)2 = (cT )2[1− (v/c)2]/4.

That is:
∆t′ = (T/2)

√
1− v2/c2

6.1.3 Step 3:

As measured by the travelling twin, how much time elapses between the TURNAROUND
and RETURN events?

Use the invariant interval.

Consider now only the inward leg of the journey. (This logic is almost an exact copy of
step 2).

Let this unknown time lapse be ∆t′′, and note that from the travelling twin’s point of
view both TURNAROUND and RETURN events occur at the same place (which can
conveniently be taken to be x′′ = 0) — this is because the travelling twin is always “at
rest” in his own free float frame. So for these two events ∆x′′ = 0.

Then:
Invariant interval = (c∆t′′)2 − (∆x′′)2 = (c∆t)2 − (∆x)2.
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Invariant interval = (c∆t′′)2 − 0 = (cT − cT/2)2 − (0− vT/2)2.

Invariant interval = (c∆t′′)2 − 0 = (cT/2)2 − (vT/2)2.

Invariant interval = (c∆t′′)2 = (cT )2[1− (v/c)2]/4.

That is:
∆t′′ = (T/2)

√
1− v2/c2

You could have guessed this by symmetry:

∆t′ = ∆t′′.

6.1.4 Step 4:

Total time taken for the trip, as measured by the travelling twin, is:

T (travelling twin) = T (outward trip) + T (inward trip)

= ∆t′ + ∆t′′

= (T/2)
√

1− v2/c2 + (T/2)
√

1− v2/c2

= T
√

1− v2/c2

= T (stay at home twin)
√

1− v2/c2

That is:
T (travelling twin) = T (stay at home twin)

√
1− v2/c2

So the travelling twin observes less time to pass than does the stay-at-home twin. When
he gets back from the journey he will be physically younger than his twin brother.

Warning: The “twin paradox” is an example of a“pseudo-paradox”, an apparent con-
tradiction in what, when you look at it carefully, is actually a perfectly correct chain of
logic.

The “twin paradox” is not a “true paradox”, there is no actual logical contradiction.

English is particularly bad at making the distinction between these two concepts. Good
dictionaries will at least list both possible meanings of the English word “paradox”:
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• (1) an actual contradiction in a superficially valid chain of logic,

and

• (2) a superficial apparent contradiction in a perfectly valid chain of logic.

All special relativity paradoxes are of type (2), and it is safer to refer to them as “pseudo-
paradoxes”.

6.2 Analysis using the Doppler effect

(as seen by Earth):

In this section I will analyse the twin pseudo-paradox using the Doppler effect — I will
concentrate on the situation as SEEN [not OBSERVED] by the stay at home twin on
Earth.

Warning: The words SEEN and OBSERVED have special technical meanings in Special
Relativity — see the textbook.

(In the next section I will use the Doppler effect to analyze the situation as SEEN by the
travelling twin.)

Consider a pair of twins. One remains “at rest” on Earth, while the other travels on a fast
rocket ship to Alpha Centauri, turns around and eventually comes back to Earth. We want
to compare the total time taken for the complete trip as measured by the stay-at-home
twin and the travelling twin.

6.2.1 Step 1:

First consider the spacetime diagram:

Where I have labelled the START, TURNAROUND, and RETURN events.

In the coordinate system attached to the Earth the START event occurs at

ESTART = (ct, x) = (0, 0)

Setting the coordinates of this event to (0, 0) is a convenience, not a fundamental part of
the physics.



Math 321/322/323: Special Relativity 40

*

RETURN |\

| \

| \

| \

| \

| \

| \. TURNAROUND

| /

| /

| /

| /

| /

| /

START |/

*

Figure 6.2: Spacetime diagram for twin pseudo-paradox.

Suppose the total trip, as seen by the Earth observer, takes time T .

Then in the coordinate system attached to the Earth the RETURN event occurs at

ERETURN = (ct, x) = (cT, 0)

What about TURNAROUND? Since we assume the speed on the outward leg is the same
as that on the inward leg, the turnaround must have come at the halfway point of the
journey, at

t = T/2

And, if the rocket has been moving away with speed v, the position of this turnaround
event must be

x = vt = vT/2

That is: in the coordinate system attached to the Earth the TURNAROUND event occurs
at

ETURNAROUND = (ct, x) = (cT/2, vT/2)
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6.2.2 Step 2:

When does the stay at home twin on Earth SEE the turnaround event? We know its
coordinates are

ETURNAROUND = (ct, x) = (cT/2, vT/2)

and that light travels at speed c, so the light from this turnaround event gets back to
Earth at time

t(light arrival) = t(light departure) + (distance)/c

= T/2 + (vT/2)/c

= [T/2](1 + v/c)

= tout

That is:
tout = [T/2](1 + v/c)

So the coordinates of the event “Earth SEES turnaround” are

EEarth SEES turnaround = ([cT/2](1 + v/c), 0)

I emphasise again that the “turnaround” and “Earth SEES turnaround” events are quite
distinct.

Note that as SEEN by the Earth, the time-lapse between turnaround and return is

tin = tRETURN − tEarth SEES turnaround = T − [T/2](1 + v/c)

That is
tin = [T/2](1− v/c)

Consistency check: tout + tin = T .

6.2.3 Step 3:

On the outward leg of the journey the frequency of light emitted by the traveller is Doppler
shifted down by a factor

fout = f0

√
(1− v/c)
(1 + v/c)

On the return leg the frequency of light is Doppler shifted up by the reciprocal factor

fin = f0

√
(1 + v/c)

(1− v/c)
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So suppose out travelling twin has a laser pointed back at Earth, we want to count the
total number of wave crests passing by as SEEN by the Earth. We will then relate this
total number of wavecrests to the elapsed time.

6.2.4 Step 4:

On the outward leg of the journey we (on Earth) SEE a frequency

fout = f0

√
(1− v/c)/(1 + v/c)

and we SEE the outward leg appear to last till time

tout = [T/2](1 + v/c).

So the total number of wave crests passing by during the outward leg of the journey is

Nout = fout tout

= f0

√
(1− v/c)/(1 + v/c) [T/2](1 + v/c).

= [f0 T/2]
√

(1− v/c)(1 + v/c)

= [f0 T/2]
√

1− v2/c2.

6.2.5 Step 5:

On the inward leg of the journey we (on Earth) SEE a frequency

fin = f0

√
(1 + v/c)/(1− v/c)

and we SEE the inward leg appear to last a time

tin = [T/2](1− v/c).

So the total number of wave crests passing by during the inward leg of the journey is

Nin = fin tin

= f0

√
(1 + v/c)/(1− v/c)[T/2](1− v/c).

= [f0 T/2]
√

(1 + v/c)(1− v/c)
= [f0 T/2]

√
1− v2/c2

= Nout

Note the symmetry
Nout = Nin
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6.2.6 Step 6:

The total number of wavecrests passing the Earth during the whole trip is

N = Nout +Nin

= [f0 T/2]
√

1− v2/c2 + [f0 T/2]
√

1− v2/c2

= [f0 T ]
√

1− v2/c2.

6.2.7 Step 7:

But the total number of wavecrests seen by the Earth equals the total number of wavecrests
emitted by the travelling twin, and as far as he was concerned they were being emitted
with frequency f0. Therefore the total elapsed time as MEASURED by the travelling
twin is

Ttraveller = N/f0

= [f0 T ]
√

1− v2/c2/f0.

= T
√

1− v2/c2

= Tstay−at−home

√
1− v2/c2.

That is
Ttraveller = Tstay−at−home

√
1− v2/c2.

Which is (of course) exactly the same result as obtained by other methods.

6.3 Analysis using the Doppler effect

(as seen by the traveller):

In this section I will analyse the twin pseudo-paradox using the Doppler effect — I will
concentrate on the situation as SEEN [not OBSERVED] by the travelling twin.

(In the previous section I have used the Doppler effect to analyze the situation as SEEN
by the stay at home twin on Earth.)

Consider a pair of twins. One remains “at rest” on Earth, while the other travels on a fast
rocket ship to Alpha Centauri, turns around and eventually comes back to Earth. We want
to compare the total time taken for the complete trip as measured by the stay-at-home
twin and the travelling twin.
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6.3.1 Step 1:

First consider the spacetime diagram:

*

RETURN |\

| \

| \

| \

| \

| \

| \. TURNAROUND

| /

| /

| /

| /

| /

| /

START |/

*

Figure 6.3: Spacetime diagram for twin pseudo-paradox.

Where I have labelled the START, TURNAROUND, and RETURN events.

In the coordinate system attached to the Earth the START event occurs at

ESTART = (ct, x) = (0, 0)

Setting the coordinates of this event to (0, 0) is a convenience, not a fundamental part of
the physics.

Suppose the total trip, as seen by the Earth observer, takes time T .

Then in the coordinate system attached to the Earth the RETURN event occurs at

ERETURN = (ct, x) = (cT, 0)

What about TURNAROUND? Since we assume the speed on the outward leg is the same
as that on the inward leg, the turnaround must have come at the halfway point of the
journey, at

t = T/2
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And, if the rocket has been moving away with speed v, the position of this turnaround
event must be

x = vt = vT/2

That is: in the coordinate system attached to the Earth the TURNAROUND event occurs
at

ETURNAROUND = (ct, x) = (cT/2, vT/2)

6.3.2 Step 2:

On the outward leg of the journey the frequency of light emitted by the Earth and seen
by the traveller is Doppler shifted down by a factor

fout = f0

√
(1− v/c)
(1 + v/c)

On the return leg the frequency of light is emitted by the Earth and seen by the traveller
Doppler shifted up by the reciprocal factor

fin = f0

√
(1 + v/c)

(1− v/c)

So suppose the Earth twin has a laser pointed at the travelling twin, we want to count
the total number of wave crests passing by as SEEN by the travelling twin. We will then
relate this total number of wavecrests to the elapsed time.

6.3.3 Step 3:

On the outward leg of the journey we (the travelling twin) SEE a frequency

fout = f0

√
(1− v/c)
(1 + v/c)

and the outward leg lasts some unknown time tout, as measured by the travelling twin.

So the total number of wave crests passing by is

Nout = fout tout

= f0

√
(1− v/c)
(1 + v/c)

tout

= [f0 tout]

√
(1− v/c)
(1 + v/c)

.
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6.3.4 Step 4:

On the inward leg of the journey we (the travelling twin) SEE a frequency

fin = f0

√
(1 + v/c)

(1− v/c)

and the inward leg lasts some unknown time tin, as measured by the travelling twin.

So the total number of wave crests passing by is

Nin = fin tin

= f0

√
(1 + v/c)

(1− v/c)
tin

= [f0 tin]
√

(1 + v/c)/(1− v/c)

6.3.5 Step 5:

Since the twin is moving just as fast on the way out as on the way back

tout = tin

Even if we don’t know how long this time is, we do know it’s the same for both legs of
the journey and so

Ttraveller = tout + tin = 2tout = 2tin

6.3.6 Step 6:

The total number of wavecrests emitted from Earth and passing the traveller during the
whole trip is

N = Nout +Nin

= [f0 tout]
√

(1− v/c)/(1 + v/c) + [f0tin]
√

(1 + v/c)/(1− v/c)
= [f0 tout](

√
(1− v/c)/(1 + v/c) +

√
(1 + v/c)/(1− v/c))

= [f0 tout]([(1− v/c) + (1− v/c)]/
√

1− v2/c2)

= [f0 tout](2/
√

1− v2/c2)

= [f0 Ttraveller]/
√

1− v2/c2
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6.3.7 Step 7:

But the total number of wavecrests seen by the traveller equals the total number of
wavecrests emitted by the Earth twin, and as far as he was concerned they were being
emitted with frequency f0. Therefore the total elapsed time as MEASURED by the Earth
twin is

Tearth = N/f0

=
{

[f0Ttraveller]/
√

1− v2/c2
}
/f0.

= Ttraveller/
√

1− v2/c2.

That is:
Ttraveller = Tearth

√
1− v2/c2

Which is (of course) exactly the same result as obtained by other methods.

6.4 Analysis using Lorentz transformations:

By now you have seen the “twin paradox” [remember it’s a “pseudo”-paradox] handled
in three different ways:

(1) using the invariant interval,

(2) using the Doppler shift to analyze clock pulses as SEEN by the stay-at-home twin
on Earth, and

(3) using the Doppler shift to analyze clock pulses as SEEN by the travelling twin on
the rocket ship.

The point of all this repetition is to show you that the same calculation can be done
many different ways, and that no matter how you do it, the same physics question always
results in the same physics answer.

Now we will use the Lorentz transformations to get the same result.

(That is, concentrate on what is OBSERVED; with the usual special relativity warning
that the word OBSERVE is not identical to the word SEE.)
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*

Figure 6.4: Spacetime diagram for twin pseudo-paradox.

6.4.1 Step 1:

Consider the spacetime diagram:

Where I have labelled the START, TURNAROUND, and RETURN events.

Suppose that, as observed by the twin left behind on Earth, the trip takes total time T ,
and that the travelling twin is observed to move away with velocity v on the outward leg,
and return with velocity v in the inward leg of the journey.

In the coordinate system of the Earth, which we can approximate to be a free-float frame
(inertial frame, free-fall frame), the START event occurs at

ESTART = (ct, x) = (0, 0)

[Setting the coordinates of this event to (0, 0) is a *convenience*, not a fundamental part
of the physics.]

Then in the coordinate system attached to the Earth the RETURN event occurs at

ERETURN = (ct, x) = (cT, 0)

What about TURNAROUND? Since we assume the speed on the outward leg is the same
as that on the inward leg, the turnaround must have come at the halfway point of the
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journey, at
t = T/2

And, if the rocket has been moving away with speed v, the position of this turnaround
event must be

x = vt = vT/2

That is: in the coordinate system attached to the Earth the TURNAROUND event occurs
at

ETURNAROUND = (ct, x) = (cT/2, vT/2)

That is the coordinates of the 3 key events are:

ESTART = (ct, x) = (0, 0)

ETURNAROUND = (ct, x) = (cT/2, vT/2)

ERETURN = (ct, x) = (cT, 0)

6.4.2 Step 3:

The Lorentz transformations appropriate to the outward leg are:

ct′ = γ(ct± vx/c)

x′ = γ(x± vt)

y′ = y [superfluous]

z′ = z [superfluous]

For the time being I have assumed that we are all totally confused as to whether to pick
the plus or minus sign, so I’ll do both simultaneously and fix it up later. [This is a very
useful little trick.]

Then:
E ′START = (γ(0± 0), γ(0± 0)) = (0, 0)

Big surprise, the origin maps into the origin...

For the turnaround event

E ′TURNAROUND = (γ(cT/2± v[vT/2]/c), γ(vT/2± vT/2))
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But, we are supposed to be transforming into the rest frame of the outgoing rocket. So
whatever its initial position was [it happens to be x′(start) = 0], it must have the same
final position [x′(turnaround) = 0].

This means we must pick the minus sign above.

That is: the correct Lorentz transformation for the outgoing (departure leg) is

ct′ = γ(ct− vx/c)

x′ = γ(x− vt)

and

E ′TURNAROUND = (γ(cT/2− v[vT/2]/c), γ(vT/2− vT/2)) = ([cT/2] γ (1− v2/c2), 0)

That is:
E ′TURNAROUND = ([cT/2]

√
1− v2/c2, 0)

Interpretation: As measured by the departing traveller, the time elapsed till he turns on
his rockets and comes screaming back at you is given in terms of T (the total trip time
as seen by the Earth) by

Telapsed(outward) = [T/2]
√

1− v2/c2

Aside (not necessary for the calculation): If we now calculate the coordinates of the
RETURN event in this outward moving coordinate system we get

E ′RETURN = (γ(cT − 0), γ(0− vT )) = (cTγ,−vTγ)

While true, these coordinates are not particularly useful for anything.

6.4.3 Step 4:

Now analyze the inward leg (return leg) of the journey.

Since in the Lorentz transformations we took the minus sign for the outward leg of the
trip, we must take the plus sign for the inward leg. That is:

ct′′ = γ(ct+ vx/c)

x′′ = γ(x+ vt)

y′′ = y [superfluous]
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z′′ = z [superfluous]

Then:
E ′′START = (γ(0 + 0), γ(0 + 0)) = (0, 0) [not a surprise]

Similarly:

E ′′TURNAROUND = (γ(cT/2 + vT/2), γ(vT/2 + vT/2)) = ([cT/2]γ(1 + v2/c2), γvT )

[looks quite messy, patience, ...]

Finally:
E ′′RETURN = (γ(cT + 0), γ(0 + vT )) = (cTγ, vTγ)

[looks quite messy, patience, ...]

Interpretation:
x′′(turnaround) = γ vT = x′′(return)

Good. This means that on the inward leg the rocket is not moving in its own reference
frame. (This does not guarantee correctness but is a consistency check that had better
work out; the more consistency checks you can build into the calculation the better.)

As measured by the returning traveller, the time elapsed between when he turns on his
rockets and comes screaming back at you and his return to Earth is given in terms of T
(the total trip time as seen by the Earth) by

Telapsed(inward) = t′′(return)− t′′(turnaround)

Which we compute as

Telapsed(inward) = [T γ]− [[T/2] γ(1 + v2/c2)]

= [T/2]γ(1− v2/c2) [slightly nontrivial subtraction]

= [T/2]
√

1− v2/c2

= Telapsed(outward)

Note the symmetry between the outward leg and the inward leg.

6.4.4 Step 5:

As measured by the twin on the rocket

Telapsed(rocket) = Telapsed(outward) + Telapsed(inward)

= [T/2]
√

1− v2/c2 + [T/2]
√

1− v2/c2

= T
√

1− v2/c2



Math 321/322/323: Special Relativity 52

As measured by the twin on the Earth

Telapsed(earth) = T

Note that these are elapsed times along two separate distinct paths through spacetime.

That is:
Trocket = Tearth

√
1− v2/c2.

This is (naturally), the same answer as obtained by the previous 3 calculations.

6.5 Summary:

We have now seen four different ways of battering the twin pseudo-paradox to death —
all calculations agree that the “travelling twin” ages slower.

The key point this that the travelling twin follows a kinked path through spacetime. This
is qualitatively different from the worldline of the stay at home twin who follows a straight
line through spacetime. Bent paths connecting two events simply have different lengths
than straight paths connecting the same to events.

In Euclidean geometry, bent paths are always longer than straight paths. In the Lorentzian
geometry appropriate to special relativity it turns out that bent world lines (timelike
curves) are always shorter than straight world lines (timelike curves).

Ultimately this is due to the fact that the invariant interval [which is the (3+1) dimensional
analogue of the Euclidean Pythagoras theorem], contains a minus sign in addition to the
3 plus signs...

Γ(∆X) = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

(And no, this comment is not supposed to be obvious, think about it a little...)



Chapter 7

Notes on the “warp drive”

Anyone who has been anywhere near a television set or movie theater sometime over the
past 20 years has at least heard of the concept of “warp drive” and FTL (faster-than-light)
travel.

Of course the mass media does not exactly capture the full flavour of some of the high
weirdness that warp drive would imply...

There are fundamental physics reasons why the scientific community is deeply suspicious
of the warp drive.

Below I will walk you through one of the simpler problems associated with warp drive
physics. When you dig deeper into things, life gets even messier...

What’s wrong with warp drive?

This discussion will come under the heading of: “honest-to-god seriously inconsistent
logical paradox”.

7.1 Step 1:

Suppose we make a pact with the devil and get hold of a warp drive, that can make a
spaceship travel at 1000 times the speed of light.

This is warp factor 10 in Star Trek language. According to Wikipedia

(speed) = (warp factor)3 × c

53
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at least in the old Star trek series...

(Some science fiction fans, “trekkies”, really have way too much time on their hands. If
you think that trying to set up a precise technical definition of “warp factor” is a little
“over the top”, think about the mindset required to learn to read and write the Klingon
language.)

We sit here on Earth and send the Enterprise out to the nearest Star, Alpha Centauri.

Give the DEPARTURE event the coordinates

EDEPARTURE = (ct, x) = (0, 0).

This is simply a convenience, not a fundamental part of the physics...

Alpha Centauri is about 4.5 light years away.

7.2 Step 2:

As measured by someone on Earth it takes the Enterprise (4.5/1000) years [that is, 4.5×
10−3 years] to get there.

That’s 1.6 days, or 39.4 hours.

The (Earth-based) coordinates of the ARRIVAL event are

EARRIVAL = (ct, x) = (c× 39.4 hours, 4.5 light years).

To cut down on the clutter, I’ll call the distance to Alpha Centauri L for the rest of the
problem; I won’t put in numbers for L unless and until they are needed; like right at the
end of the problem.) Then

EARRIVAL = (ct, x) = (L/1000, L)

7.3 Step 3:

Calculate γ = (1− v2/c2)−1/2 for the segment of the trip made under warp drive. That is

γ =
1√

1− (1000)2
=

1√
−999, 999

=
i√

999, 999
≈ i

1000

So the γ factor that comes into Lorentz contraction and time dilation is complex, in fact
it’s pure imaginary. This does at the very least suggest that we better think very carefully
about what is going on.
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7.4 Step 4:

Now draw a spacetime diagram, and label the events as we go.

| / (light ray) * ARRIVAL

| / *

| / *

| / *

| / *

| / *

| / *

| / *

| / *

| / *

|/ *

DEPARTURE *

Figure 7.1: Spacetime diagram for outward leg of the warp trip (not to scale).

Q: With respect to the DEPARTURE event, is this ARRIVAL event SPACELIKE sepa-
rated, TIMELIKE separated, or NULL separated (LIGHTLIKE separated)?

[See the textbook for discussion and definition of these terms.]

A: The two events DEPARTURE and ARRIVAL are SPACELIKE separated
after all the very definition of FTL implies you will be outside the light cone...

7.5 Step 5:

Q: With respect to the DEPARTURE event, is this ARRIVAL event in the ABSOLUTE
FUTURE, on the FUTURE LIGHT CONE, in the AMBIGUOUS ELSEWHEN, on the
PAST LIGHT CONE, or in the ABSOLUTE PAST?

[Notation: See page 182 of the textbook; what I and most other people call the AB-
SOLUTE FUTURE is what Taylor–Wheeler call the “active future”. What I and and
most other people call the ABSOLUTE PAST is what Taylor–Wheeler call the “passive
past”. Lastly, what I am calling the AMBIGUOUS ELSEWHEN is known by many dif-
ferent names: “elsewhen”, the “ambiguous region”, the “relative when”, the “ambiguous
present” — Taylor–Wheeler call it the “neutral region” or the “unreachable region”.]
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A: The ARRIVAL event is in the AMBIGUOUS ELSEWHEN with respect to the depar-
ture event.

(HINT: Can you already see a potential problem developing?)

7.6 Step 6:

After the Enterprise gets to Alpha Centauri and drops out of warp, (and we assume
this means that it comes to rest with respect to the Earth), Captain Picard engages the
impulse drive and quickly accelerates the Enterprise to 900 km/sec relative to the Earth
(and away from the Earth).

Remember:

c = (speed of light) = 3× 108 metres/sec = 3× 105 km/sec

Evaluate

β = v/c =
900 km/sec

3× 105 km/sec
=

3

1000
= 3× 10−3.

Evaluate γ = 1/
√

1− β2; (now using the speed generated by the impulse engines).

γ =
1√

1− (3× 10−3)2
=

1√
1− 9× 10−6

Your calculator will probably round γ too much, so it’s better to use an approximation
based on the binomial expansion: (1 + x)n ≈ 1 + nx+ ...

γ =
1√

1− 9× 10−6
= (1− 9× 10−6)−1/2 ≈ 1 + 4.5× 10−6.

7.7 Step 7:

Assuming the impulse drive was on for only a very short time, (that is, neglect the
time taken to turn on the impulse engines and build up impulse speed), what are the
coordinates of the ARRIVAL event in the reference frame of the now moving Enterprise?

(That is, do a Lorentz transformation.)

Start from the fact that

EARRIVAL = (ct, x) = (L/1000, L),
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and use
ct′ = γ(ct− vx/c) ≈ (1)× [L/1000− 3× 10−3L] = −2× 10−3L,

x′ = γ(x− vt) ≈ (1)× [L− (3× 10−3)(L/1000)] ≈ L.

That is (keeping only the most significant pieces, the bits we are neglecting are always
about a million times smaller than the bits we are keeping)

E ′ARRIVAL = (ct′, x′) ≈ (−2L/1000, L).

Note: You cold always amuse yourself by not making any approximation here, and
keeping the full exact result. (And no, this would not make any significant difference to
our final conclusions.)

What are the coordinates of the DEPARTURE event in this same reference frame?

This is trivial, the Lorentz transformations are linear without an offset so (0, 0) maps to
(0, 0). That is

E ′DEPARTURE = (ct′, x′) = (0, 0).

Note one particular act of weirdness that drops out of the analysis: as OBSERVED in
the new reference frame (that of the Enterprise after switching off its impulse power), the
ARRIVAL (at Alpha Centauri) event occurs earlier than the DEPARTURE (from Earth)
event — the fact that the order of these events can be interchanged via an ordinary slower-
than-light Lorentz transformation (that is, by using impulse engines in trekkie-speak) is a
reflection of the fact that the ARRIVAL and DEPARTURE events are spacelike separated,
so that with respect to each other the events are in the AMBIGUOUS ELSEWHEN.

Note: I carefully chose warp speed and impulse speed to get this flip in the time order.
You might want to amuse yourself by deriving the inequality involving vwarp and vimpulse

that will guarantee a flip in time ordering... (It’s not that difficult to derive the inequality,
and once you see the answer it should be “obvious”.)

In this same reference frame, what is the distance to Earth? (As measured by the Enter-
prise at the instant the impulse drive was switched off.)

Well the γ factor that goes into the relevant Lorentz contraction is γ ≈ 1 + 4.5× 10−6, so
the distance back to Earth is still L (near as makes no difference).

7.8 Step 8:

Now the Enterprise goes back into warp, and heads back toward the Earth at 1000 times
the speed of light with respect to the moving reference frame it was in when the warp drive
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was turned on.

[After all, if special relativity is in any sense correct, then top speed of the warp drive has
to be defined with respect to whatever frame the spaceship is in when the warp drive is
turned on; if maximum warp speed is defined with respect to something else (e.g. the fixed
stars), then you have done some pretty serious additional mutilation to special relativity
over and above assuming faster-than-light (FTL) travel.]

Now roughly how long does it take to get back to earth? (As measured in the reference
frame the Enterprise was in at the instant the impulse drive was switched off.)

Feel free to make a few approximations to make the answer look a little simpler — you
can again drop small terms if they are negligible, but make sure to keep the big pieces.

[These approximations are not a matter of deep principle, it’s just to simplify the linear
algebra for you a little.]

Well the distance back to earth is still L (near as makes no difference), and the speed
is still 1000c, so it takes a time L/(1000c) to get back. And we have already done this
calculation

L/(1000c) ≈ 1.6 days ≈ 39.4 hours.

So the RETURN event on Earth takes place at

ct′ ≈ −2L/1000 + L/1000 ≈ −L/1000

and
x′ = 0

That is (after the Enterprise switches off the warp drive on its return to Earth):

E ′RETURN = (ct′, x′) = (−L/1000, 0).

7.9 Step 9:

Finally, translate this all back into the reference frame of the Earth. (Do an inverse
Lorentz transformation.)

The relevant β and γ are those required to bleed of the 900 km/sec speed that was built
up by using the impulse engines. That is:

β = 3× 10−3.

γ ≈ 1 + 4.5× 10−6
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What time is it (roughly) on Earth when the Enterprise gets back from its trip?

ct = γ(ct′ + vx′c) ≈ (1)× ((−L/1000) + 0) ≈ −L/1000.

Aside:
x = γ(x′ + vt′) ≈ (1)× (0 + β[−L/1000]) = −3× 10−6L ≈ 0

So
ERETURN = (ct, x) ≈ (−L/1000, 0).

Is there anything strange about your final result?

tRETURN ≈ −L/(1000c) ≈ −1.6 days ≈ −39.4 hours...

So the Enterprise gets back from its little trip about a day and a half before it leaves.

Consistency check:

x = γ(x′ + vt′) ≈ (1)× (0 + (3× 10−3)× (−L/1000)) ≈= −3× 10−6L

In other words, the Enterprise has actually overshot the Earth by about 3 parts in a
million. This is consistent with the fact that we were making approximations that con-
sistently dropped one part in a million corrections to the leading order physics...

7.10 Step 10:

What should you conclude about the possibility of warp drive or FTL travel?

Let’s put it politely: The hypothesis of warp drive, or FTL travel generally, is logically
incompatible with standard special relativity.

(If you desperately want to believe in FTL, then at an absolute minimum you will have to
make some serious modifications to special relativity, above and beyond what is required
simply for FTL itself. We currently [2013] have no good experimental evidence that would
drive us in such a direction, and standard special relativity, supplemented by general
relativity whenever gravity is important, is the best game in town.)

— # # # —

Exercise: Generalize the discussion to arbitrary values of vwarp, vimpulse, and L. ♦

Exercise: While you are at it, make the calculations exact by solving all relevant alge-
braic equations analytically. ♦
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Exercise: FTL communication is almost as bad as FTL travel — Look up the article
in Physical Review D by Benford, Book, and Newcomb: “The tachyonic anti-telephone”.
(Google is a good place to start... And yes, this is Greg Benford the Science Fiction writer,
who also happens to be a Professor of Physics at the University of Califirnia at Irvine.) ♦

Exercise: Learn some general relativity. Search the internet (Google again) to find the
(thankfully small) number of serious scientific papers that have attempted to analyze the
nature of warp drives in general relativity. The problems a warp drive engineer would
encounter in general relativity are if anything considerably worse than the issues dealt
with above. ♦

Exercise: Those of you who read some Science Fiction might have run across the
authors Gregory Benford, Robert L Forward, John Cramer, Geoff Landis. Do a Google
search on the combination Benford, Forward, Cramer, Landis, and the term “wormhole”.
Enjoy.

♦



Chapter 8

Coda

Between these notes, the textbook, and the various homework exercises, I hope you now
have a good feel for at least introductory special relativity — and I hope that you’ll be
interested in learning more about both the special relativity and the general relativity
[Einstein’s theory of gravity].

Cheers
Matt Visser
26 February 2013
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Appendix A

Appendix: The poor man’s
Schwarzschild solution

A.1 Basics:

The idea of this appendix is to provide a quick (and slightly dirty) plausibility argument
for the Schwarzschild solution of general relativity.

It gives the basic ideas without too much fuss...

This is not in any way a derivation — for proper rigorous derivations see any textbook
on general relativity.

I’ll use the ideas of “free float frames”, as discussed in Taylor and Wheeler, mix in a little
Newtonian physics, and out will drop a good hunk of general relativity.

A.2 Free float frames:

Start with a mass M which has Newtonian gravitational potential

Φ = −GM
r
.

Take a bunch of free float frames out at infinity that are stationary, and drop them.

In the Newtonian approximation these free float frames pick up a speed

~v = −
√

2GM

r
r̂.

62
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In the free float frames, physics looks simple, and the invariant interval is simply given by

ds2
FF = −c2 dt2FF + dx2

FF + dy2
FF + dz2

FF .

where I want to emphasize that these are locally defined free-fall coordinates.

As emphasized in Taylor & Wheeler, these free-fall coordinates will only make sense over
“small” regions of space and time.

A.3 Rigid frame:

Let’s try to relate this to a rigidly defined surveyor’s system of coordinates that is tied
down at spatial infinity.

Call these coordinates trigid, xrigid, yrigid, and zrigid.

Since we know the speed of the freely falling system with respect to the rigid system, and
we assume velocities are small we can write an approximate Galilean transformation

dtrigid = dtFF ;

d~xrigid = d~xFF + ~v dtFF .

Inverting
dtFF = dtrigid;

d~xFF = d~xrigid − ~v dtrigid.

A.4 Approximate metric:

Substituting
ds2

rigid = −c2dt2rigid + ||d~xrigid − ~v dtrigid||2

Expanding
ds2

rigid = −[c2 − v2]dt2rigid − 2~v · d~x dtrigid + ||d~xrigid||2.

Substituting

ds2
rigid = −

[
c2 − 2GM

r

]
dt2rigid + 2

√
2GM

r
drrigid dtrigid + ||d~xrigid||2.

This is only an approximation — Newton’s gravity; Galilean coordinate transformations.
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A.5 The miracle du jour:

The invariant interval

ds2
rigid = −

[
c2 − 2GM

r

]
dt2rigid + 2

√
2GM

r
drrigid dtrigid + ||d~xrigid||2.

is an exact solution of Einstein’s equations of general relativity.

It is the Schwarzschild solution in disguise.

If you don’t believe me, feed it to Maple and have it calculate the Ricci tensor.

This is *one* representation of the space-time geometry of a Schwarzschild black hole,
in a particular and relatively unusual coordinate system (the Painleve–Gullstrand coor-
dinates).

There are many other coordinate systems you could use.

A.6 Schwarzschild radius:

You can see that something goes wrong at

2GM

rs

= c2; rS =
2GM

c2
.

Reverend John Michell (1783);
Peter Simon Laplace (1799).

Check dimensions!

In Einstein’s gravity the coefficient of dt2rigid goes to zero at the Schwarzschild radius; in
Newton’s gravity the escape velocity

vescape =

√
2GM

R
.

reaches the speed of light once R = rS.

A.7 Comments:

• This sort of argument should work generically for weak fields.
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• That it is exact for Schwarzschild seems to be an accident.

• This sort of approach has a good chance of working for arbitrary spherically sym-
metric geometries.

• This sort of approach definitely fails for the Kerr geometry (rotating black holes).

• This sort of approach should not be thought of as fundamental physics.

For technical details see:

• Heuristic approach to the Schwarzschild geometry

• Matt Visser

• e-Print Archive: gr-qc/0309072

• International Journal of Modern Physics D14 (2005) 2051-2068.

• December 2005 “Year of Physics” issue.

— # # # —
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