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Module on Quantum Mechanics: Assignment 5

• This fifth assignment is specific to the honours-level quantum module
(Math 466).

• You do not need to do this assignment if you are enrolled in 3rd-year
Math 321/322/323.

• In assignment 3 you did some simple calculations describing trans-
mission and reflection from a a compound barrier consisting of two
identical sub-barriers separated by an adjustable distance; the present
assignment will deal with unequal barriers and multiple barriers.

• Carefully read the article “Compound transfer matrices: Constructive
and destructive interference” (Journal of Mathematical Physics, 2012),
and answer the questions below.

• For extra background you could also take a look at the electronic
preprint (e-print) “Bounds on variable-length compound jumps” (2013).

• Let me know of any typos.

1. [Easy] As a warm-up, prove the following mathematical identities:

(a) sinh
(
sinh−1A+ sinh−1B

)
= A

√
1 +B2 +

√
1 + A2 B.

(b) cosh
(
sinh−1A+ sinh−1B

)
=
√

1 + A2
√

1 +B2 + A B.

(c) cosh
(
cosh−1A+ cosh−1B

)
= A B +

√
A2 − 1

√
B2 − 1.

(d) tanh
(
tanh−1A+ tanh−1B

)
=

A+B

1 + AB
.

(e) sech
(
sech−1A+ sech−1B

)
=

AB

1 +
√

1− A2
√

1−B2
.
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2. [Easy]

Consider two barriers described (as in the notes, and in the JMP article)
by transfer matrices

M1 =

[
α1 β1

β∗1 α∗1

]
; |α1|2 − |β1|2 = 1,

and

M2 =

[
α2 β2

β∗2 α∗2

]
; |α2|2 − |β2|2 = 1.

The compound two-barrier system will also be described by some trans-
fer matrix

M12 =

[
α12 β12

β∗12 α∗12

]
; |α12|2 − |β12|2 = 1.

Assuming that the two sub-barriers are non overlapping:

(a) How would you calculate M12 in terms of M1 and M2?

(b) Explicitly calculate α12 in terms of α1, β1, α2 and β2.

(c) Explicitly calculate β12 in terms of α1, β1, α2 and β2.

3. [Easy]

From the explicit formula for α12 you have derived above, show how to
deduce

|α1||α2| − |β1||β2| ≤ |α12| ≤ |α1||α2|+ |β1||β2|.

4. [Straightforward]

From the explicit formula for β12 you have derived above, show how to
deduce ∣∣∣ |α1||β2| − |β1||α2|

∣∣∣ ≤ |β12| ≤ |α1||β2|+ |β1||α2|

5. [Straightforward]

Using the relationship between the Bogoliubov coefficient α and the
transmission probability T , together with the normalization constraint
|α|2 − |β|2 = 1, show how to turn the bound on |α12| into a bound on
the transmission probability T12.
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Specifically, demonstrate that:

sech2
{

sech−1
√
T1 + sech−1

√
T2

}
≤ T12 ≤ sech2

{
sech−1

√
T1 − sech−1

√
T2

}
.

6. [Straightforward]

Using the relationship between the Bogoliubov coefficients (α and β)
and the transmission probability T , together with the normalization
constraint |α|2 − |β|2 = 1, show how to turn the bounds on |α12| and
|β12| into a bound on the refection probability R12.

Specifically, demonstrate that:

tanh2
{

tanh−1
√
R1 − tanh−1

√
R2

}
≤ R12 ≤ tanh2

{
tanh−1

√
R1 + tanh−1

√
R2

}
.

7. [Easy]

Using the hyperbolic trig identities proved in question 1, convert the
bound on the transmission probability T to the form:

T1T2{
1 +
√

1− T1

√
1− T2

}2 ≤ T12 ≤
T1T2{

1−
√

1− T1

√
1− T2

}2 .

8. [Easy]

Using the hyperbolic trig identities proved in question 1, convert the
bound on the reflection probability R to the form:{ √

R1 −
√
R2

1−
√
R1

√
R2

}2

≤ R12 ≤
{ √

R1 +
√
R2

1 +
√
R1

√
R2

}2

.

9. [Straightforward]

If we reinterpret the same mathematics in terms of a time-dependent
parametrically excited oscillator, the same sort of logic can be used
to obtain a bound on the number of particles cerated by parametric
amplification.

Use the relation between the Bogoliubov coefficient β and the number
of particles N created by parametric amplification to deduce:

sinh2
{

sinh−1
√
N1 − sinh−1

√
N2

}
≤ N12 ≤ sinh2

{
sinh−1

√
N1 + sinh−1

√
N2

}
.
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10. [Easy]

Using the hyperbolic trig identities proved in question 1, convert the
bound on the number of created particles N to the form:{√

N1(N2 + 1)−
√
N2(N1 + 1)

}2

≤ N12 ≤
{√

N1(N2 + 1) +
√
N2(N1 + 1)

}2

.

11. [Straightforward]

Now consider n non-overlapping barriers in a row.

Prove the straightforward result that:

|α12...n| ≤ cosh

{
n∑

i=1

cosh−1 |αi|

}
; |β12...n| ≤ sinh

{
n∑

i=1

sinh−1 |βi|

}
.

12. [Straightforward]

Convert these bounds on |α12...n| and |β12...n| to bounds on the trans-
mission probability, the reflection probability, and (in the parametric
oscillator interpretation) the number of created particles.

Specifically, show that:

T12...n ≥ sech2

{
n∑

i=1

sech−1
√
Ti

}
;

R12...n ≤ tanh2

{
n∑

i=1

tanh−1
√
Ri

}
.

N12...n ≤ sinh2

{
n∑

i=1

sinh−1
√
Ni

}
.

13. [Difficult]

Again consider n non-overlapping barriers in a row.

Define the quantities

Θpeak = max
i∈{1,2,3,...,n}

cosh−1 |αi|; Θtotal =
n∑

i=1

cosh−1 |αi|.
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Now prove the decidedly non-trivial results that

|α12...n| ≥ cosh [max{2Θpeak −Θtotal, 0}] ;

|β12...n| ≥ sinh [max{2Θpeak −Θtotal, 0}] .
Doing this will require you to both read and understand most of the
technical details of the article “Compound transfer matrices: Construc-
tive and destructive interference” (Journal of Mathematical Physics,
2012).

Note minor changes in notation — this is deliberate, it is part of the
assignment to force you to read and comprehend a research-level article.

14. [Trivial]

Using the definition of Θtotal above, and the results of question 12,
justify the definitions

T12...n ≥ Tmin ≡ sech2 {Θtotal} ,

R12...n ≤ Rmax ≡ tanh2 {Θtotal} .
N12...n ≤ Nmax ≡ sinh2 {Θtotal} ,

15. [Straightforward]

Using the definitions and bounds of the previous two questions, show
that

T12...n ≤ sech2
[
max

{
2 sech−1

√
Tpeak − sech−1

√
Tmin, 0

}]
.

R12...n ≥ tanh2
[
max

{
2 tanh−1

√
Rpeak − tanh−1

√
Rmax, 0

}]
.

N12...n ≥ sinh2
[
max

{
2 sinh−1

√
Npeak − sinh−1

√
Nmax, 0

}]
.

• That’s all — please let me know of any typos or obscurities.

• For extra background you could also take a look at the electronic
preprint (e-print) “Bounds on variable-length compound jumps” (2013).

— # # # —


