School Of Mathematics, Statistics, and Operations research
 Te Kura Mātai Tatauranga, Rangahau Pūnaha

MATH 466
 Applied Mathematics
 T1 and T2 2013

Module on Quantum Mechanics: Assignment 5

- This fifth assignment is specific to the honours-level quantum module (Math 466).
- You do not need to do this assignment if you are enrolled in 3rd-year Math 321/322/323.
- In assignment 3 you did some simple calculations describing transmission and reflection from a a compound barrier consisting of two identical sub-barriers separated by an adjustable distance; the present assignment will deal with unequal barriers and multiple barriers.
- Carefully read the article "Compound transfer matrices: Constructive and destructive interference" (Journal of Mathematical Physics, 2012), and answer the questions below.
- For extra background you could also take a look at the electronic preprint (e-print) "Bounds on variable-length compound jumps" (2013).
- Let me know of any typos.

1. [Easy] As a warm-up, prove the following mathematical identities:
(a) $\sinh \left(\sinh ^{-1} A+\sinh ^{-1} B\right)=A \sqrt{1+B^{2}}+\sqrt{1+A^{2}} B$.
(b) $\cosh \left(\sinh ^{-1} A+\sinh ^{-1} B\right)=\sqrt{1+A^{2}} \sqrt{1+B^{2}}+A B$.
(c) $\cosh \left(\cosh ^{-1} A+\cosh ^{-1} B\right)=A B+\sqrt{A^{2}-1} \sqrt{B^{2}-1}$.
(d) $\tanh \left(\tanh ^{-1} A+\tanh ^{-1} B\right)=\frac{A+B}{1+A B}$.
(e) $\operatorname{sech}\left(\operatorname{sech}^{-1} A+\operatorname{sech}^{-1} B\right)=\frac{A B}{1+\sqrt{1-A^{2}} \sqrt{1-B^{2}}}$.

2. [Easy]

Consider two barriers described (as in the notes, and in the JMP article) by transfer matrices

$$
M_{1}=\left[\begin{array}{cc}
\alpha_{1} & \beta_{1} \\
\beta_{1}^{*} & \alpha_{1}^{*}
\end{array}\right] ; \quad \quad\left|\alpha_{1}\right|^{2}-\left|\beta_{1}\right|^{2}=1,
$$

and

$$
M_{2}=\left[\begin{array}{cc}
\alpha_{2} & \beta_{2} \\
\beta_{2}^{*} & \alpha_{2}^{*}
\end{array}\right] ; \quad \quad\left|\alpha_{2}\right|^{2}-\left|\beta_{2}\right|^{2}=1 .
$$

The compound two-barrier system will also be described by some transfer matrix

$$
M_{12}=\left[\begin{array}{cc}
\alpha_{12} & \beta_{12} \\
\beta_{12}^{*} & \alpha_{12}^{*}
\end{array}\right] ; \quad \quad\left|\alpha_{12}\right|^{2}-\left|\beta_{12}\right|^{2}=1
$$

Assuming that the two sub-barriers are non overlapping:
(a) How would you calculate M_{12} in terms of M_{1} and M_{2} ?
(b) Explicitly calculate α_{12} in terms of $\alpha_{1}, \beta_{1}, \alpha_{2}$ and β_{2}.
(c) Explicitly calculate β_{12} in terms of $\alpha_{1}, \beta_{1}, \alpha_{2}$ and β_{2}.
3. [Easy]

From the explicit formula for α_{12} you have derived above, show how to deduce

$$
\left|\alpha_{1}\right|\left|\alpha_{2}\right|-\left|\beta_{1}\right|\left|\beta_{2}\right| \leq\left|\alpha_{12}\right| \leq\left|\alpha_{1}\right|\left|\alpha_{2}\right|+\left|\beta_{1}\right|\left|\beta_{2}\right| .
$$

4. [Straightforward]

From the explicit formula for β_{12} you have derived above, show how to deduce

$$
\left|\left|\alpha_{1}\right|\right| \beta_{2}\left|-\left|\beta_{1}\right|\right| \alpha_{2}| | \leq\left|\beta_{12}\right| \leq\left|\alpha_{1}\right|\left|\beta_{2}\right|+\left|\beta_{1}\right|\left|\alpha_{2}\right|
$$

5. [Straightforward]

Using the relationship between the Bogoliubov coefficient α and the transmission probability T, together with the normalization constraint $|\alpha|^{2}-|\beta|^{2}=1$, show how to turn the bound on $\left|\alpha_{12}\right|$ into a bound on the transmission probability T_{12}.

Specifically, demonstrate that:

$$
\operatorname{sech}^{2}\left\{\operatorname{sech}^{-1} \sqrt{T_{1}}+\operatorname{sech}^{-1} \sqrt{T_{2}}\right\} \leq T_{12} \leq \operatorname{sech}^{2}\left\{\operatorname{sech}^{-1} \sqrt{T_{1}}-\operatorname{sech}^{-1} \sqrt{T_{2}}\right\}
$$

6. [Straightforward]

Using the relationship between the Bogoliubov coefficients (α and β) and the transmission probability T, together with the normalization constraint $|\alpha|^{2}-|\beta|^{2}=1$, show how to turn the bounds on $\left|\alpha_{12}\right|$ and $\left|\beta_{12}\right|$ into a bound on the refection probability R_{12}.
Specifically, demonstrate that:

$$
\tanh ^{2}\left\{\tanh ^{-1} \sqrt{R_{1}}-\tanh ^{-1} \sqrt{R_{2}}\right\} \leq R_{12} \leq \tanh ^{2}\left\{\tanh ^{-1} \sqrt{R_{1}}+\tanh ^{-1} \sqrt{R_{2}}\right\}
$$

7. [Easy]

Using the hyperbolic trig identities proved in question 1, convert the bound on the transmission probability T to the form:

$$
\frac{T_{1} T_{2}}{\left\{1+\sqrt{1-T_{1}} \sqrt{1-T_{2}}\right\}^{2}} \leq T_{12} \leq \frac{T_{1} T_{2}}{\left\{1-\sqrt{1-T_{1}} \sqrt{1-T_{2}}\right\}^{2}} .
$$

8. [Easy]

Using the hyperbolic trig identities proved in question 1, convert the bound on the reflection probability R to the form:

$$
\left\{\frac{\sqrt{R_{1}}-\sqrt{R_{2}}}{1-\sqrt{R_{1}} \sqrt{R_{2}}}\right\}^{2} \leq R_{12} \leq\left\{\frac{\sqrt{R_{1}}+\sqrt{R_{2}}}{1+\sqrt{R_{1}} \sqrt{R_{2}}}\right\}^{2}
$$

9. [Straightforward]

If we reinterpret the same mathematics in terms of a time-dependent parametrically excited oscillator, the same sort of logic can be used to obtain a bound on the number of particles cerated by parametric amplification.
Use the relation between the Bogoliubov coefficient β and the number of particles N created by parametric amplification to deduce:

$$
\sinh ^{2}\left\{\sinh ^{-1} \sqrt{N_{1}}-\sinh ^{-1} \sqrt{N_{2}}\right\} \leq N_{12} \leq \sinh ^{2}\left\{\sinh ^{-1} \sqrt{N_{1}}+\sinh ^{-1} \sqrt{N_{2}}\right\}
$$

10. [Easy]

Using the hyperbolic trig identities proved in question 1, convert the bound on the number of created particles N to the form:
$\left\{\sqrt{N_{1}\left(N_{2}+1\right)}-\sqrt{N_{2}\left(N_{1}+1\right)}\right\}^{2} \leq N_{12} \leq\left\{\sqrt{N_{1}\left(N_{2}+1\right)}+\sqrt{N_{2}\left(N_{1}+1\right)}\right\}^{2}$.
11. [Straightforward]

Now consider n non-overlapping barriers in a row.
Prove the straightforward result that:
$\left|\alpha_{12 \ldots n}\right| \leq \cosh \left\{\sum_{i=1}^{n} \cosh ^{-1}\left|\alpha_{i}\right|\right\} ; \quad\left|\beta_{12 \ldots n}\right| \leq \sinh \left\{\sum_{i=1}^{n} \sinh ^{-1}\left|\beta_{i}\right|\right\}$.
12. [Straightforward]

Convert these bounds on $\left|\alpha_{12 \ldots n}\right|$ and $\left|\beta_{12 \ldots n}\right|$ to bounds on the transmission probability, the reflection probability, and (in the parametric oscillator interpretation) the number of created particles.
Specifically, show that:

$$
\begin{aligned}
& T_{12 \ldots n} \geq \operatorname{sech}^{2}\left\{\sum_{i=1}^{n} \operatorname{sech}^{-1} \sqrt{T_{i}}\right\} \\
& R_{12 \ldots n} \leq \tanh ^{2}\left\{\sum_{i=1}^{n} \tanh ^{-1} \sqrt{R_{i}}\right\} . \\
& N_{12 \ldots n} \leq \sinh ^{2}\left\{\sum_{i=1}^{n} \sinh ^{-1} \sqrt{N_{i}}\right\} .
\end{aligned}
$$

13. [Difficult]

Again consider n non-overlapping barriers in a row.
Define the quantities

$$
\Theta_{\text {peak }}=\max _{i \in\{1,2,3, \ldots, n\}} \cosh ^{-1}\left|\alpha_{i}\right| ; \quad \Theta_{\text {total }}=\sum_{i=1}^{n} \cosh ^{-1}\left|\alpha_{i}\right| .
$$

Now prove the decidedly non-trivial results that

$$
\begin{aligned}
& \left|\alpha_{12 \ldots n}\right| \geq \cosh \left[\max \left\{2 \Theta_{\text {peak }}-\Theta_{\text {total }}, 0\right\}\right] ; \\
& \left|\beta_{12 \ldots n}\right| \geq \sinh \left[\max \left\{2 \Theta_{\text {peak }}-\Theta_{\text {total }}, 0\right\}\right] .
\end{aligned}
$$

Doing this will require you to both read and understand most of the technical details of the article "Compound transfer matrices: Constructive and destructive interference" (Journal of Mathematical Physics, 2012).

Note minor changes in notation - this is deliberate, it is part of the assignment to force you to read and comprehend a research-level article.
14. [Trivial]

Using the definition of $\Theta_{\text {total }}$ above, and the results of question 12, justify the definitions

$$
\begin{aligned}
& T_{12 \ldots n} \geq T_{\min } \equiv \operatorname{sech}^{2}\left\{\Theta_{\text {total }}\right\}, \\
& R_{12 \ldots n} \leq R_{\max } \equiv \tanh ^{2}\left\{\Theta_{\text {total }}\right\} . \\
& N_{12 \ldots n} \leq N_{\max } \equiv \sinh ^{2}\left\{\Theta_{\text {total }}\right\},
\end{aligned}
$$

15. [Straightforward]

Using the definitions and bounds of the previous two questions, show that

$$
\begin{aligned}
T_{12 \ldots n} & \leq \operatorname{sech}^{2}\left[\max \left\{2 \operatorname{sech}^{-1} \sqrt{T_{\text {peak }}}-\operatorname{sech}^{-1} \sqrt{T_{\min }}, 0\right\}\right] . \\
R_{12 \ldots n} & \geq \tanh ^{2}\left[\max \left\{2 \tanh ^{-1} \sqrt{R_{\text {peak }}}-\tanh ^{-1} \sqrt{R_{\max }}, 0\right\}\right] . \\
N_{12 \ldots n} & \geq \sinh ^{2}\left[\max \left\{2 \sinh ^{-1} \sqrt{N_{\text {peak }}}-\sinh ^{-1} \sqrt{N_{\text {max }}}, 0\right\}\right] .
\end{aligned}
$$

- That's all - please let me know of any typos or obscurities.
- For extra background you could also take a look at the electronic preprint (e-print) "Bounds on variable-length compound jumps" (2013).

